MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2025/26

Syllabus

Machine
Learning

* Transformers

Attention and Transformers

* The Transformer architecture was
proposed in the paper entitled “Attention
is All You Need”

* As of March 2024, this paper had over
111,000 citations from peers

* |t was responsible for expanding the 2014
attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture.

* The paper is considered the founding
document for modern artificial
intelligence, as transformers became the

main architecture of large language (and
vision) models (e.g., Chat GPT).

Output
Probabilities

Add&Norm
Feed
Forward
Add&Norm

Multi-Head
Attention

-

~

Add&Norm

Add&Norm
Masked
Multi-Head
Attention

O

Input Output
Embedding

Positional
Encoding

Positional
Encoding

Output
(shifted right)

Key concepts:
embeddings,
positional encoding
and attention

Attention and Transformers

* |t was originally proposed for “Machine translation” purposes, i.e.,
seguence-to-sequence tasks.

* The focus was on improving Seqg2seq techniques for machine translation,
but even in their paper the authors saw the potential for other tasks like
“question answering” and for what is now called multimodal Generative Al.

Main problem: Very large input sequences can be bottlenecked

Seq2Seq Architecture in the fixed-size state representation (Suppose T=1007?)
Input Sequence: x;;
Output Sequence' Vi, estamos comiendo pan [STOP]
- Vi,
Initial decoder state i £ Vs Ya
h, = h, =9 h, —P h, P s, » s, =P s, —P| 5, —P> s,
X4 X, X3 X, > Yo 2 Y, Y,

we are eating bread Often ¢ = h,,, [START] estamos comiendo pan
en

Attention and Transformers

* Using this architecture, the encoder must encapsulate the entire input into
a fixed-size vector that is passed to the decoder.

* With Attention, the complete input sentences aren’t required to be
encoded into a single vector. Instead, the decoder attends to different
elements in the input sentence at each step of output generation.

* The previous generation of recurrent models had long paths between input
and output words. For a 50-word sentence, the decoder had to recall
information from 50 steps ago for the first word (and that data had to be
squeezed into a single vector).

estamos comiendo pan [STOP]
Y Ys Y3 A
h, = h, =9 h, =P h, P s, P s, —P s, —P 5, —P> s,
X1 X2 X3 X4 ¢ yO y1 y2 y3

we are eating bread [START] estamos comiendo pan

Attention and Transformers

General Architecture:

Transformers share the encoder/decoder
architecture, placing a stack of elements in
each part of the pipeline (E/D).

The original implementation used a stack of 6
elements at each side.

Each Encoder is divided into two parts: a
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also
uses an attention layer that helps the decoder
to find the most relevant parts of the input
sentence

t

Feed Forward

4

Self-Attention

Y[)

-

—/

t

ENCODERS

DECODERS

\\

\S

=%

$

Feed Forward

4

Encoder-Decoder Attention

4

Yo

Self-Attention

N W W

t

Attention and Transformers - Input Embedding

* The process starts (before feeding the input data to the first Encoder), by
obtaining latent representations of the input elements.

* |n practice, this first encoder begins by converting input tokens - words or
subwords - into vectors using Embedding layers.

* These embeddings should capture the semantic meaning of the tokens and
convert them into numerical vectors.

* It is a more sophisticated variant of the “one-hot encoding” previously saw.

0.1

0.7

Embedding

v

“Hello”

1.4

v

Layer

2.1

0.4

* As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.

Positional Encoding

= pO p1 p2 p3

0.000 | ’ 0.841 ‘ I 0.909 | ’ 0.141 l i=0

[=]
[=]

n
=y

1.000 | 0.540 ‘ I -0.416 ‘ ‘ -0.990 l i

(]
?zo \M ‘ 0.638 ‘ I 0.983 ‘ | 0.875] i
[ae]

0.8 1.000 | 0.770 ‘ I 0.186 ‘ I -0.484 I i

Il
N

3

iy ; : : T B b b T 7 2 A set of sin() and cos() functions of
-4l Q different frequencies are used. This
sl way, each input element is combined
g o~ (added) to a vector that contains

el O information about the position of the
ool element within the sequence

0.2
000 T T T T T T T)
02 2 4 6 8 10 12 14 16 8 20

e [0] P[0]

-1.0

1.00Q
byt 0.1 0 0.1

0.6

0.4
0.2 le) 0.7 1 1.7

0.0
024 2 4 6 8 10 12 14 16 18 20

-0.4 4
jond o 1.4 + 0

-0.8

1.4

-1.0-

2.1 1 3.1

0.4

Embedding with positional context \JA

Attention and Transformers

* Most encoders receive a list of input vectors x, each of the size 512.

* After embedding the elements x; each of them flows through each of the
two layers of the encoder.

t t t
A key property is
Feed Forward that each input
element x; follows an
T T 7 independent path in
the network. There
are dependencies
T T T between these
paths in the self-
attention layer. The
Self-Attention feed-forward layer
does not have any
dependencies.

t t t
[T 1] (T 1]

Self Attention Mechanism - Encoder

* Attention enables the models to relate each element in the input with other
elements. For instance, in a given example, the model might learn to connect
the element “x;” with “x;”.

* This allows the encoder to focus on different parts of the input sequence as it
processes each token

* |t is based on 3 types of vectors: Queries (qj), Keys (k;) and Values (vj)

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on
their spines (keys) that suggest their content. We compare your query to these titles to decide how
relevant each book is, and how much attention to give each book. Finally, we can get the information
(value) from the relevant books to answer our question.

* Attention is about how much weight the query word (e.g., q) should give
each word in the sentence (e.g., k{, k, ...). This is obtained via a dot product
between the query and all the keys.

* The dot product measures how similar two vectors are.
* If the dot product between a query-key pair is high, we pay more attention to it.

* These dot products then go through a softmax which makes the attention scores
(across all keys) sum to 1

Self Attention Mechanism - Encoder

* We start by obtaining 3 vectors for each input element:

* The Query, Key and Value. They are all created by multiplying the embedding by three
matrices (the only ones trained during the learning process).

Embedding LT T[] LT T 1]
x pu—
Queries D:D D:D
Multiplying x;, by W< yields q,, by W¥ yields k, and by WV yields v,
Keys L[] LT T] B

Values D:D D:D

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (e.g., 64 << 512)

Self Attention Mechanism - Encoder

Inner Products
between the
interest query

xi element and all the
key vectors in the
& ? 0.1 0.2 0.1 0.4 1 1 U
2.3
Embedding 0.1
Softmax layer to 8.4
assure a linear)
combination that The higher the
keeps the norm v scores, the higher
the similarity
between vectors
10.1 0.7
2.3 0.05
0.1 » Softmax » 0.0001
8.4 0.24 +
Z

Output vector
\/ corresponding to x;

Self Attention Mechanism - Encoder

Attention that the element “it”
gives to the remaining
elements, for two two

* Next, the inner product between the query q;, and all different “heads’”.
the key elements (k... k,) measures the similarity of
the query with respect to every other element (q;.k))

* Normalizing and applying a softmax for all

products gives us how much of the corresponding e e
value vector should be used in the final sum to animal_ animal_
obtain the output vector z.. . —

* Formally, this step yields the parameters of a t t
linear combination between all the vectors, that . .
will be used to represent the input x.. street_ street_

because_ because_
* The resulting vector is sent to the feed-forward layer. it . it
* The output of the final encoder layer is a set of Y:cs,: tv:::
vectors, each representing the input sequence with a “:’ 2'9

rich contextual understanding. This output is then
used as the input for the decoder in a Transformer
model.

@ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear

combination of the other elements in the space, depending on the similarity/importance of each one with respect to the
input.

Self Attention Mechanism — Matrix Form Exampl

Self Attenti

9 G Q3 Gs

: 2/ofo]2
eatures ol1lolo
o|l2]|1]o0
olof1[1] k'
2|ofofo]| k'
1]of1]1] W'
T
9: 92 Q3 Q¢ ks
olo|o|o S
0
o
011 _
dk
ky k; ks ke
1|{o|o|o
= Softmax
olo|o]1 eo
MatMul
WV Vi V2 V3 Vg
10{o(o|o|o|o
o|o|olio]o]o
o|io/o|ofofo
$

© 2024 Tom Yeh

Z;

Z

Attention
Weight
Matrix (A)

Attention
Weighted
Features

FFN

Input: Four 6D vectors x;

(Suppose that at the
current iteration, the
Query, Quey and Value
matrices have these
values)

Step 1. Obtain the query,
key and value
representations (by
multiplying the input
vectors by the
corresponding matrices)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Self Attention Mechanism — Matrix Form Exampl

Self Attention

9: 92 93 Qs
2(1|0|2
.9 H [oo S B BT
3|l

@z | [

Xy X3 X3 Xg

2l0|0]2

Features ol1lolo

ol2]|1]0

olo|1]1

2|/0|0]0

1{of1]1

Waq A A

1/1|o|ofo|o|s|2|V|0O|2

0 1 0[]
olo|1fo|1|1|223|t]|2]!} 55
Vd,

Wy ky ky ks kg
030} 101010 o0 21O Softmax

ol1]|ofo|o|o|?|o|)|0]|0O
1{ololojof1|s]|t]|O]-1]1 eC
MatMul

WV Vi Vo V3 Vy

10{0(0|0|0|0|+|20|0]| 0|20

ojo|o|i0jlo|o|»|O| O[O0

ol|io{o|o|o|0|»|O|(0|O]|O

© 2024 Tom Yeh

Z

Z; I3

Zy

FFN

Attention
Weight
Matrix (4)

Attention
Weighted
Features

3

Step 2. Multiply KT and Q
This is equivalent to taking the dot
product between every pair of query
and key vectors.

(4x3) x (3x4) = (4x4)

The idea is to use the dot product as
an estimate of the "matching score"
between every key-value pair.

This estimate makes sense because
the dot product is the numerator of
cosine similarity between two vectors.

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Self Attention Mechanism — Matrix Form Exampl

Self Attention

91 92 93 Qs
X3 X3 X3 Xz 02
2lolol2 MatMul (?SI‘|‘
Features T
o[1]|ofo (K'Q) N
ol2]1]o0 AL e
olof1]12] |K"|O|OfJ[3]3]|1]|2]]
2(o0fofo] |K"|2|t|[0O]z|4|3|I |5
1lolalal [k |oO]-1[3]-v]O[-2])
R G e
Wq S A N0E R0 2 G 2
1|1|/ofolo]o|s|2]|1 |02 Scale
0|1 ol0|=3|O| 1|l]I D
olof1|o|1f1]|2|2|t|2]! —
Vd,
Wy e
olo|1|o|of0 o
o 2l Softmax
o|1]/o|o|ofo|>|o|})|o]|0
1/olofolo|-1]s| v |O]-1]1 eC
@: 1]
MatMul
WV Vi Vp V3 Vg Zy I I3 I,
10/0({0|o|o0|o|+|20[0|0 |20
olo|o|iojo|o|>|0|O]|I0]|10
oli0lo|o|ofo|»|0Of(0|O]|O
© 2024 Tom Yeh FFN

Attention
Weight
Matrix (A)

Attention
Weighted
Features

4

Step 3. Scale each element by the
square root of dk, which is the
dimension of key vectors (dk=3).

The purpose is to normalize the impact
of the dk on matching scores, even if
we scale dk to 32, 64, or 128.

To simplify hand calculation, we
approximate [o/sqrt(3)] with [floor(c/2)].

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Self Attention Mechanism — Matrix Form Exampl

Self Attention

92 93 94
X; X3 X3 X EER]=2
F 21002 BERK
eatures ol1lolo ‘ll
0(2)1(0 L 4
0o(0|1(1 F =21
2/10|01(0 3|5
1/]0(1]1 01|-2|)
PR R
Wq di g O3 da SRR
1(1 o|o|o|=»|2|!'|0]|2 Scale LTol(]0
of1|o|1]ofo|=2fOft |1 = 0. r2lrlolz
olo|1fo]2{1]|2|3] 1|2} —Q——J
va, Y[z [e]e]]o
Wy G ke ks ke ([o]]o
k:
040 HIO010{510.f 24710 Softmax 3(1]13]1
1 <>
of1|o]o|o]o 1lolo NEOENE
1{of{ofofof-1|al1|O]|-\]1\ el]gg i Toly
3(1]3]1
@: [F
MatMul
WV Vi Vp V3 Vg ; I I3 Z4
10{0|0|0|0|0|>|20| 0|0 |20
ololo|i0/l0(0|>|O|O|IC|1Q
0|10{0|0f0]|0 of(ojo|0O
© 2024 Tom Yeh FFN

Attention
Weight
Matrix (A)

Attention
Weighted
Features

6

Step 4. Softmax: e”x

Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e*o with 3*o.

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Self Attention Mechanism — Matrix Form Exampl

Self Attention

91 92 93 Ga
X; X; X3 X Ol 2
21 02 ;; MatMul (2): =15
Features T
ol1|ofo (K'Q) 31zl
ol2]|1]0 TP P,
olofafa] [KT[O]Q] S |s[3]1]|2]]
2(0|ofo| |K'|2|t|OPp|4|3]|I]|5
1lofafa][K[L]O]-1]7-V]0O]-2])
R T
Wq e oSN EO A 2
1/1/0]0 -)2!02 Scale ToliTo
ol1]0]1 -;31!: o o [2[i]o]z
oloj1|o|1|1]> 1|2 \/d_k"LzJOO~IO
Wy k1k2k3k4d3 (o]0
k=
22103330212 Softmax |3]) |3]|
:)° o 1113119
1/0 -1 L MR} el]/:?, L Tol
>3}
@z [1e]6]7]12
2[4l
'6.4‘-2-7
0l.2|10].1
MatMul ARIK
Wv Vi Vo V3 Vg Z, 7, I3 I
10/0|0]|0 »|20|/ 0| 0|20
olo|o|i0lolo|2|0|0O|i0f10
ol|10lo|o|o|o|»|Of(0o(O|O
© 2024 Tom Yeh FFN

Attention
Weight
Matrix (A)

Attention
Weighted
Features

8

Step 5. Softmax: e”x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e*o with 3*o.

For each column, divide each element
by the column sum

The purpose is normalize each column
so that the numbers sum to 1. In other
words, each column is a probability
distribution of attention, and we have
four of them.

The result is the Attention Weight
Matrix (A) (yellow)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Self Attention Mechanism — Matrix Form Exampl

Self Attention

91 92 93 9a
X1 X X3 X4 Z B2
eatures ol1lolo (KTQ) 3 l 5 l
of[2]1]o0 o P %
ofo|1]1] |k"|O]O]I|s[3]|1]2]]
2[lofofo] |K'|2]|t|Op|4]|3]I]|5
1fofafa] k[]O]-1]2-\]0O]-2])
v v iU T
Waq g o & G,/ oo tPp[3]]2]l Step 7. MatMul
1|1]/o0j0|0j0f3[2|!|0O|2 Soale (lol(l0 Multiply the value vectors (Vs) with the
oj1]|o|1]0 -): BE : o o [2li]o]2 Attention Weight Matrix (A)
e L va, (] [e]o]-fo Th Its are the attenti ighted
W, e ol o e results are the attention weighte
T c; dk=3 features Zs.
001000:02| Softmax |3) [3]|
Sl MERLE e R Na A o 1313119 They are fed to the position-wise feed
S RATRERDEE AN A e B RREREEE forward network in the next layer.
31 3]
® 2 [16[6]7]12]
2[2[4
Attenti
6[.4[2]7] feneen
O|.2|0 | .|| Matrix (A)
MatMul 2l.20.4] 1
y
WV Vi Vy V3 Vg gé’zzsh
10{0|0|0|0|0]+[20/0[0|20| ——— | 8| 8|(6]| 4| Attention
olofofwofofof+[o]o]oft0] — > [2[4[4]2] peiamed Out: In practice, the first value
oliojofofofo|»|Of(0j]0|0| — | 6|4|2|7 Ut- vector (v4) pays attention (is
o e e X replaced by...)t0 0.2 v; +
+
© 2024 Tom Yeh FFN q 0.6 v, +0.2v,

This yields one row of the
Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/ V encdec Matrix (next...)

Self Attention Mechanism - Encoder

* The described process allows to map the embedding representations of each input v;
element into the attention vectors z;.

* The final encoding encoding step consists of passing the z; elements through a feed
forward (dense) layer.

t t
[TTT] LT

| 1

Feed Forward Feed Forward
Neural Network Neural Network

t t
(11 (T
[| |]
t t

Self Attention Mechanism - Decoder

* Using multiple heads, the Value matrices representations (obtained as previously lllustrated) are
concatenated into (K.pcqec aNd Vecqee) (With as many elements as the number of heads used).
* They represent the features of the whole input sequence.

* Are used in the second multi-head attention module of the decoder to relate the input sequence to the
masked output of the first multi-head decoder.

* Then, the decoder starts to produce its outputs, until a special element (<KEND>) indicates that
the process must be stopped.
* During the first iteration, only the “<start>" token is additionally given

* At each iteration, the set of previous outputs is also given as input.

* The self attention layers are only allowed to attend to earlier positions in the output sequence. This is
done by masking future positions (setting them to “ — ") before the softmax step in the self-attention

calculation.

Decoding timestep: 1 2 3 4(5)6

3 heads in this
[llustration:

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT I am a student <end of sentence>

N f

(¥ (Linear + Softmax 5

ENCODERS DECODERS]

X o,
D t ¥

4 4 4 t
(10 [OT0 O L "%————1sﬁnput

2" input
3 input

4t input>

5 5 5 5 o 0 B

PREVIOUS l

OUTPUTS

X ¥

Self Attention Mechanism - Decoder Cradients flow
network. i.e., all

matrices are
learned

* Note that the decoder has an roatities Simultaneously
extra level of complexity. The —
masked multi-head attention ,
layer, that avoids to pay -
attention to “future words” ((Aggs Nom) |

Feed
Forward v
w
e Mutti-Head
Feed Attention
Forward t } Nx

* The output of this layer is then é
fed to the “Multi-head (453 Nom) Vasied
Attention” layer that uses the —— e
Key K., cqec and Value V,, qec 1 1
outputs given by the encoder. r . g

é Positional
Encoding
Input Output
Embedding Embedding

Inputs OQutputs
(shifted right)

Self Attention Mechanism - Decoder

* The final part of the decoder works pretty much as a standard e — l*[N i
“classification” CNN, returning a vector with as many entries as
the number of elements in the dictionary. After a “softmax()” (Softmax)
layer, the index o the maximum element is found and the 4
corresponding entry in the dictionary returned. L L "*' e L N
(Linear)
* Real-Life Well-Known Transformers: :

* Google's 2018 release of BERT, an open-source natural language processing framework, revolutionized
NLP with its unique bidirectional training. Pre-trained on Wikipedia, excels in various NLP tasks,
prompting Google to integrate it into its search engine for more natural queries.

* LaMDA (Language Model for Dialogue Applications) is a Transformer-based model developed by Google,
designed specifically for conversational tasks, and launched during in 2021. They are designed to generate
more natural and contextually relevant responses, enhancing user interactions in various applications.

* ChatGPT, developed by OpenAl, are advanced generative models known for their ability to produce
coherent and contextually relevant text. They are suitable for content creation, conversation, language
translation, GPT's architecture enables it to generate text that closely resembles human writing,
making it useful in applications like creative writing, customer support, and even coding assistance.

