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Attention and Transformers

* The Transformer architecture was
proposed in the paper entitled “Attention
is All You Need”

* As of March 2024, this paper had over
111,000 citations from peers

* |t was responsible for expanding the 2014
attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture.

* The paper is considered the founding
document for modern artificial
intelligence, as transformers became the

main architecture of large language (and
vision) models (e.g., Chat GPT).
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Attention and Transformers

* |t was originally proposed for “Machine translation” purposes, i.e.,
seguence-to-sequence tasks.

* The focus was on improving Seqg2seq techniques for machine translation,
but even in their paper the authors saw the potential for other tasks like
“question answering” and for what is now called multimodal Generative Al.

Main problem: Very large input sequences can be bottlenecked

Seq2Seq Architecture in the fixed-size state representation (Suppose T=1007?)
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Attention and Transformers

* Using this architecture, the encoder must encapsulate the entire input into
a fixed-size vector that is passed to the decoder.

* With Attention, the complete input sentences aren’t required to be
encoded into a single vector. Instead, the decoder attends to different
elements in the input sentence at each step of output generation.

* The previous generation of recurrent models had long paths between input
and output words. For a 50-word sentence, the decoder had to recall
information from 50 steps ago for the first word (and that data had to be
squeezed into a single vector).
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Attention and Transformers

General Architecture:

Transformers share the encoder/decoder
architecture, placing a stack of elements in
each part of the pipeline (E/D).

The original implementation used a stack of 6
elements at each side.

Each Encoder is divided into two parts: a
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also
uses an attention layer that helps the decoder
to find the most relevant parts of the input
sentence
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Attention and Transformers - Input Embedding

* The process starts (before feeding the input data to the first Encoder), by
obtaining latent representations of the input elements.

* |n practice, this first encoder begins by converting input tokens - words or
subwords - into vectors using Embedding layers.

* These embeddings should capture the semantic meaning of the tokens and
convert them into numerical vectors.

* It is a more sophisticated variant of the “one-hot encoding” previously saw.
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* As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.



Positional Encoding
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Attention and Transformers

* Most encoders receive a list of input vectors x, each of the size 512.

* After embedding the elements x; each of them flows through each of the
two layers of the encoder.

t t t
A key property is
Feed Forward that each input
element x; follows an
T T 7 independent path in
the network. There
are dependencies
T T T between these
paths in the self-
attention layer. The
Self-Attention feed-forward layer
does not have any
dependencies.

t t t
[T 1] (T 1]



Self Attention Mechanism - Encoder

* Attention enables the models to relate each element in the input with other
elements. For instance, in a given example, the model might learn to connect
the element “x;” with “x;”.

* This allows the encoder to focus on different parts of the input sequence as it
processes each token

* |t is based on 3 types of vectors: Queries (qj), Keys (k;) and Values (vj)

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on
their spines (keys) that suggest their content. We compare your query to these titles to decide how
relevant each book is, and how much attention to give each book. Finally, we can get the information
(value) from the relevant books to answer our question.

* Attention is about how much weight the query word (e.g., q) should give
each word in the sentence (e.g., k{, k, ...). This is obtained via a dot product
between the query and all the keys.

* The dot product measures how similar two vectors are.
* If the dot product between a query-key pair is high, we pay more attention to it.

* These dot products then go through a softmax which makes the attention scores
(across all keys) sum to 1



Self Attention Mechanism - Encoder

* We start by obtaining 3 vectors for each input element:

* The Query, Key and Value. They are all created by multiplying the embedding by three
matrices (the only ones trained during the learning process).

Embedding LT T[] LT T 1]
x pu—
Queries D:D D:D
Multiplying x;, by W< yields q,, by W¥ yields k, and by WV yields v,
Keys L[] LT T] B

Values D:D D:D

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (e.g., 64 << 512)



Self Attention Mechanism - Encoder

Inner Products
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Self Attention Mechanism - Encoder

Attention that the element “it”
gives to the remaining
elements, for two two

* Next, the inner product between the query q;, and all different “heads’”.
the key elements (k... k,) measures the similarity of
the query with respect to every other element (q;.k))

* Normalizing and applying a softmax for all

products gives us how much of the corresponding e e
value vector should be used in the final sum to animal_ animal_
obtain the output vector z.. . —

* Formally, this step yields the parameters of a t t
linear combination between all the vectors, that . .
will be used to represent the input x.. street_ street_

because_ because_
* The resulting vector is sent to the feed-forward layer. it . it
* The output of the final encoder layer is a set of Y:cs,: tv:::
vectors, each representing the input sequence with a “:’ 2'9

rich contextual understanding. This output is then
used as the input for the decoder in a Transformer
model.

@ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear

combination of the other elements in the space, depending on the similarity/importance of each one with respect to the
input.



Self Attention Mechanism — Matrix Form Exampl
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Input: Four 6D vectors x;

(Suppose that at the
current iteration, the
Query, Quey and Value
matrices have these
values)

Step 1. Obtain the query,
key and value
representations (by
multiplying the input
vectors by the
corresponding matrices)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/




Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Step 2. Multiply KT and Q
This is equivalent to taking the dot
product between every pair of query
and key vectors.

(4x3) x (3x4) = (4x4)

The idea is to use the dot product as
an estimate of the "matching score"
between every key-value pair.

This estimate makes sense because
the dot product is the numerator of
cosine similarity between two vectors.

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/




Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Step 3. Scale each element by the
square root of dk, which is the
dimension of key vectors (dk=3).

The purpose is to normalize the impact
of the dk on matching scores, even if
we scale dk to 32, 64, or 128.

To simplify hand calculation, we
approximate [o/sqrt(3)] with [floor(c/2)].

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/




Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Step 4. Softmax: e”x

Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e*o with 3*o.

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/




Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Step 5. Softmax: e”x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e*o with 3*o.

For each column, divide each element
by the column sum

The purpose is normalize each column
so that the numbers sum to 1. In other
words, each column is a probability
distribution of attention, and we have
four of them.

The result is the Attention Weight
Matrix (A) (yellow)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/



Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Self Attention Mechanism - Encoder

* The described process allows to map the embedding representations of each input v;
element into the attention vectors z;.

* The final encoding encoding step consists of passing the z; elements through a feed
forward (dense) layer.

t t
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Feed Forward Feed Forward
Neural Network Neural Network

t t
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[ | | ]
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Self Attention Mechanism - Decoder

* Using multiple heads, the Value matrices representations (obtained as previously lllustrated) are
concatenated into (K.pcqec aNd Vecqee) (With as many elements as the number of heads used).
* They represent the features of the whole input sequence.

* Are used in the second multi-head attention module of the decoder to relate the input sequence to the
masked output of the first multi-head decoder.

* Then, the decoder starts to produce its outputs, until a special element (<KEND>) indicates that
the process must be stopped.
* During the first iteration, only the “<start>" token is additionally given

* At each iteration, the set of previous outputs is also given as input.

* The self attention layers are only allowed to attend to earlier positions in the output sequence. This is
done by masking future positions (setting them to “ — ") before the softmax step in the self-attention

calculation.

Decoding timestep: 1 2 3 4(5)6
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Self Attention Mechanism - Decoder Cradients flow
network. i.e., all

matrices are
learned

* Note that the decoder has an roatities  Simultaneously
extra level of complexity. The —
masked multi-head attention ,
layer, that avoids to pay -
attention to “future words” ((Aggs Nom ) |

Feed
Forward v
w
e Mutti-Head
Feed Attention
Forward t } Nx

* The output of this layer is then é
fed to the “Multi-head (453 Nom ) Vasied
Attention” layer that uses the —— e
Key K., cqec and Value V,, qec 1 1
outputs given by the encoder. r . g

é Positional
Encoding
Input Output
Embedding Embedding

Inputs OQutputs
(shifted right)




Self Attention Mechanism - Decoder

* The final part of the decoder works pretty much as a standard e — l*[ N i
“classification” CNN, returning a vector with as many entries as
the number of elements in the dictionary. After a “softmax()” ( Softmax )
layer, the index o the maximum element is found and the 4
corresponding entry in the dictionary returned. L L "*' e L N
( Linear )
* Real-Life Well-Known Transformers: :

* Google's 2018 release of BERT, an open-source natural language processing framework, revolutionized
NLP with its unique bidirectional training. Pre-trained on Wikipedia, excels in various NLP tasks,
prompting Google to integrate it into its search engine for more natural queries.

* LaMDA (Language Model for Dialogue Applications) is a Transformer-based model developed by Google,
designed specifically for conversational tasks, and launched during in 2021. They are designed to generate
more natural and contextually relevant responses, enhancing user interactions in various applications.

* ChatGPT, developed by OpenAl, are advanced generative models known for their ability to produce
coherent and contextually relevant text. They are suitable for content creation, conversation, language
translation, .... GPT's architecture enables it to generate text that closely resembles human writing,
making it useful in applications like creative writing, customer support, and even coding assistance.



