
MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics
Hugo Pedro Proença,
hugomcp@di.ubi.pt, 2025/26

Machine
Learning

[10]

3

Syllabus

• Transformers

Attention and Transformers

• The Transformer architecture was
proposed in the paper entitled “Attention
is All You Need”
• As of March 2024, this paper had over

111,000 citations from peers
• It was responsible for expanding the 2014

attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture.
• The paper is considered the founding

document for modern artificial
intelligence, as transformers became the
main architecture of large language (and
vision) models (e.g., Chat GPT).

Key concepts:
embeddings,
positional encoding
and attention

A/en0on and Transformers

• It was originally proposed for “Machine translaJon” purposes, i.e.,
sequence-to-sequence tasks.
• The focus was on improving Seq2seq techniques for machine translaJon,

but even in their paper the authors saw the potenJal for other tasks like
“ques/on answering” and for what is now called mulJmodal GeneraJve AI.

Seq2Seq Architecture
Input Sequence: 𝒙!;
Output Sequence: 𝒚!;

Often 𝒄 = 𝒉𝑒𝑛𝑑

Initial decoder state

Main problem: Very large input sequences can be bottlenecked
in the fixed-size state representation (Suppose T=100?)

Attention and Transformers

• Using this architecture, the encoder must encapsulate the entire input into
a fixed-size vector that is passed to the decoder.
• With Attention, the complete input sentences aren’t required to be

encoded into a single vector. Instead, the decoder attends to different
elements in the input sentence at each step of output generation.
• The previous generation of recurrent models had long paths between input

and output words. For a 50-word sentence, the decoder had to recall
information from 50 steps ago for the first word (and that data had to be
squeezed into a single vector).

A/en0on and Transformers
General Architecture:
Transformers share the encoder/decoder
architecture, placing a stack of elements in
each part of the pipeline (E/D).

The original implementation used a stack of 6
elements at each side.

Each Encoder is divided into two parts: a
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also
uses an attention layer that helps the decoder
to find the most relevant parts of the input
sentence

Attention and Transformers - Input Embedding
• The process starts (before feeding the input data to the first Encoder), by

obtaining latent representations of the input elements.
• In practice, this first encoder begins by converting input tokens - words or

subwords - into vectors using Embedding layers.
• These embeddings should capture the semantic meaning of the tokens and

convert them into numerical vectors.
• It is a more sophisticated variant of the “one-hot encoding” previously saw.

• As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.

“Hello”
Embedding

Layer

0.1

0.7

1.4

2.1

0.4

Positional Encoding

A set of sin() and cos() functions of
different frequencies are used. This
way, each input element is combined
(added) to a vector that contains
information about the position of the
element within the sequence

0.1

0.7

1.4

2.1

0.4

+

0.1

1.7

1.4

3.1

…

=

0

1

0

1

…

P[0]

Embedding with positional context

[0]

Attention and Transformers

• Most encoders receive a list of input vectors 𝒙, each of the size 512.
• After embedding the elements 𝒙i, each of them flows through each of the

two layers of the encoder.

A key property is
that each input
element 𝒙i follows an
independent path in
the network. There
are dependencies
between these
paths in the self-
attention layer. The
feed-forward layer
does not have any
dependencies.

Self Attention Mechanism - Encoder

• Attention enables the models to relate each element in the input with other
elements. For instance, in a given example, the model might learn to connect
the element “𝒙i” with “𝒙j”.
• This allows the encoder to focus on different parts of the input sequence as it

processes each token
• It is based on 3 types of vectors: Queries (𝒒j), Keys (𝒌j) and Values (𝒗j)

• Attention is about how much weight the query word (e.g., 𝒒) should give
each word in the sentence (e.g., 𝒌1, 𝒌2 ,…). This is obtained via a dot product
between the query and all the keys.
• The dot product measures how similar two vectors are.
• If the dot product between a query-key pair is high, we pay more attention to it.
• These dot products then go through a softmax which makes the attention scores

(across all keys) sum to 1

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on
their spines (keys) that suggest their content. We compare your query to these titles to decide how
relevant each book is, and how much attention to give each book. Finally, we can get the information
(value) from the relevant books to answer our question.

Self A/en0on Mechanism - Encoder

• We start by obtaining 3 vectors for each input element:
• The Query, Key and Value. They are all created by multiplying the embedding by three

matrices (the only ones trained during the learning process).

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (e.g., 64 << 512)

Multiplying 𝒙! by 𝑾𝑄 yields 𝒒!, by 𝑾𝐾 yields 𝒌! and by 𝑾𝑉 yields 𝒗!

x

Self Attention Mechanism - Encoder

Embedding

“word” 0.1 0.2 0.1 0.4

𝒙i
0.1 0.2 0.1

𝒒i

0.1 0.2 0.1

𝑽

0.1 0.2 0.1

𝑲

0.1 0.2 0.1

0.1 0.2 0.1

0.1 0.2 0.1

.

0.1 0.2 0.1

0.1 0.2 0.1

0.1 0.2 0.1

10.1

2.3

0.1

8.4

+

0.1 0.2 0.1𝒛i

10.1

2.3

0.1

8.4

Softmax

0.7

0.05

0.0001

0.24

Inner Products
between the

interest query
element and all the
key vectors in the

dictionary

The higher the
scores, the higher

the similarity
between vectors

Softmax layer to
assure a linear

combination that
keeps the norm

Output vector
corresponding to 𝒙i

• Next, the inner product between the query 𝒒i, and all
the key elements (𝒌1,… 𝒌n) measures the similarity of
the query with respect to every other element (𝒒i.𝒌j)
• Normalizing and applying a softmax for all

products gives us how much of the corresponding
value vector should be used in the final sum to
obtain the output vector 𝒛i.

• Formally, this step yields the parameters of a
linear combination between all the vectors, that
will be used to represent the input 𝒙i.

• The resulting vector is sent to the feed-forward layer.
• The output of the final encoder layer is a set of

vectors, each representing the input sequence with a
rich contextual understanding. This output is then
used as the input for the decoder in a Transformer
model.

Self Attention Mechanism - Encoder

❤ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear
combination of the other elements in the space, depending on the similarity/importance of each one with respect to the

input. ❤

Attention that the element “it”
gives to the remaining
elements, for two two

different “heads”.

❤Self A'en)on Mechanism – Matrix Form Example

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Input: Four 6D vectors xi

Step 1. Obtain the query,
key and value

representations (by
multiplying the input

vectors by the
corresponding matrices)

(Suppose that at the
current iteration, the

Query, Quey and Value
matrices have these

values)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 2. Multiply KT and Q
This is equivalent to taking the dot

product between every pair of query
and key vectors.

(4x3) x (3x4) = (4x4)

The idea is to use the dot product as
an estimate of the "matching score"

between every key-value pair.

This estimate makes sense because
the dot product is the numerator of

cosine similarity between two vectors.

❤Self A'en)on Mechanism – Matrix Form Example

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 3. Scale each element by the
square root of dk, which is the

dimension of key vectors (dk=3).

The purpose is to normalize the impact
of the dk on matching scores, even if

we scale dk to 32, 64, or 128.

To simplify hand calculation, we
approximate [□/sqrt(3)] with [floor(□/2)].

❤Self Attention Mechanism – Matrix Form Example

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 4. Softmax: e^x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e^□ with 3^□.

❤Self A'en)on Mechanism – Matrix Form Example

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 5. Softmax: e^x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e^□ with 3^□.

For each column, divide each element
by the column sum

The purpose is normalize each column
so that the numbers sum to 1. In other

words, each column is a probability
distribution of attention, and we have

four of them.

The result is the Attention Weight
Matrix (A) (yellow)

❤Self Attention Mechanism – Matrix Form Example

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 7. MatMul
Multiply the value vectors (Vs) with the

Attention Weight Matrix (A)

The results are the attention weighted
features Zs.

They are fed to the position-wise feed
forward network in the next layer.

2 0 0 0 2 1

8 2 6

In:

Out: In practice, the first value
vector (𝑣') pays attention (is
replaced by…) to 0.2 𝑣' +

0.6 𝑣(+ 0.2 𝑣)

This yields one row of the
𝑽encdec matrix (next...)

❤Self Attention Mechanism – Matrix Form Example

Self A/en0on Mechanism - Encoder
• The described process allows to map the embedding representations of each input 𝑣$

element into the attention vectors 𝑧$.
• The final encoding encoding step consists of passing the 𝑧! elements through a feed

forward (dense) layer.

Self A/en0on Mechanism - Decoder
• Using mul*ple heads, the Value matrices representa*ons (obtained as previously Illustrated) are

concatenated into (𝑲encdec and 𝑽encdec) (with as many elements as the number of heads used).
• They represent the features of the whole input sequence.
• Are used in the second mul8-head a:en8on module of the decoder to relate the input sequence to the

masked output of the first mul8-head decoder.

• Then, the decoder starts to produce its outputs, un*l a special element (<END>) indicates that
the process must be stopped.

• During the first itera8on, only the “<start>” token is addi8onally given
• At each itera8on, the set of previous outputs is also given as input.
• The self a:en8on layers are only allowed to a:end to earlier posi8ons in the output sequence. This is

done by masking future posi8ons (seGng them to “ − ∞”) before the soImax step in the self-a:en8on
calcula8on.

1st input
2nd input
3rd input
4th input
…

3 heads in this
Illustration:

Self A/en0on Mechanism - Decoder

• Note that the decoder has an
extra level of complexity. The
masked multi-head attention
layer, that avoids to pay
attention to “future words”

• The output of this layer is then
fed to the “Multi-head
Attention” layer that uses the
Key 𝑲encdec and Value 𝑽encdec
outputs given by the encoder.

Gradients flow
across the whole
network. i.e., all

matrices are
learned

simultaneously
12 3 5 2

4 9 3 5

2 3 7 2

3 4 1 9

0 −∞ −∞ −∞

0 0 −∞ -∞

0 0 0 −∞

0 0 0 0

+

Self A/en0on Mechanism - Decoder
• The final part of the decoder works preGy much as a standard

“classifica*on” CNN, returning a vector with as many entries as
the number of elements in the dic*onary. ALer a “soLmax()”
layer, the index o the maximum element is found and the
corresponding entry in the dic*onary returned.

• Real-Life Well-Known Transformers:

• Google's 2018 release of BERT, an open-source natural language processing framework, revolu8onized
NLP with its unique bidirec8onal training. Pre-trained on Wikipedia, excels in various NLP tasks,
promp8ng Google to integrate it into its search engine for more natural queries.

• LaMDA (Language Model for Dialogue Applica8ons) is a Transformer-based model developed by Google,
designed specifically for conversa8onal tasks, and launched during in 2021. They are designed to generate
more natural and contextually relevant responses, enhancing user interac8ons in various applica8ons.

• ChatGPT, developed by OpenAI, are advanced genera8ve models known for their ability to produce
coherent and contextually relevant text. They are suitable for content crea8on, conversa8on, language
transla8on, GPT's architecture enables it to generate text that closely resembles human wri8ng,
making it useful in applica8ons like crea8ve wri8ng, customer support, and even coding assistance.

