MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2025/26




Syllabus

Machine
Learning

* Reinforcement Learning




Reinforcement Learning

* This is the area of Machine Learning concerned with how a
computational agent should take the best actions in an
environment, so to maximize its cumulative reward.

* The most intuitive analogy is “pet training”. Suppose that we

have a dog that, upon our request, can “sit”, “lay down” or “do
nothing”.

* Each time we give an order to the
dog, and he makes the right
action (i.e., obeys) leads to a
reward.

» After a while, the dog starts to —
“understand” that the best thing [.
is to act according to our
command



Reinforcement Learning

* In this analogy, the owner is the environment, which gives to the dog a
current state (S,;). The dig is the agent that sees the state and should take
a corresponding action (A,).

* The owner reacts to the action taken with a reward (R,,;) and s new state

(St+1)-
',l Agent l
state reward acfion
S, R, A
E¢ Rz+l (
S k Environment ]4

* Reinforcement Learning is one of the three major paradigms of Machine
Learning, along with Supervised Learning and Unsupervised Learning.

* Though both supervised and reinforcement learning use some kind of mapping
between the input/output, in supervised learning the feedback provided is the
explicit set of actions for performing a task. Instead, Reinforcement Learning
uses rewards and punishment as signals for positive and negative behavior.



Q-learning Algorithm

* The most classical solution for Reinforcement Learning is the
Q-learning algorithm, which gives to the agent a knowledge

set, in form of a Q-table.

* A Q-table is a bidimensional structure with size “#total states”
X “H#total actions”, storing the value for each pair state/action

(Q-values)

e Each Q-value represents the
“guality” of an action taken at that

state.

* Higher Q-values correspond to
higher chances of getting greater
rewards in the future

Actions :

Start

Nothing / Blank

Power

Mines

5 possible states

END

4 possible actions

1= | =
O O O] O
O o] O O
OO0y 0] O
O 0| O] O
O O O] O




Q-learning
e Q-values are calculated according to the formula:

Quew(spat) « (1 — a)Q(s, at) + a(Rt +y maxa Q(S, +1 a))

7 )

Old value Immediate reward Discounted estimate of optimal future reward

* The y parameter controls the balance between the
immediate/future rewards weight.

* It is important because we want our agent to focus more on
the immediate rewards while not fully ignoring the future
rewards.

* The a parameter is the learning rate, and determines how fast
the values in the Q-table change.



Q-learning

e Supposing that at the beginning, all Q-values were set to O, there is
no best action in the start.

* In these circumstances we have to choose randomly.

* That will be problematic once a positive Q-value was found, as the agent
will perform that action indefinitely.

 We don’t want that solution, as there might be even higher Q-
values in the future, if that momentaneous optimal action is not
taken at the first place.

* That’s where the ¥ comes into play.

* |t decides whether we should take the best local action (exploitation) or
should instead take a risky random sample of the space of actions
(exploration).

* This exploitation/exploration strategy has the advantage of never
stopping to explore.

* Typically, we set a high exploration rate at the beginning, and then
decrease it gradually.



Q-learning

* The Q-Learning algorithm is
pretty simple to run, and is
composed of one
initialization plus 3 iterative
steps

» After a sufficient number of
iterations, a good Q-Table is
ready, and the agent has
learned how to behave in a
particular problem.

* This “naive” approach works
well in practice for problems
where it is realistic to keep a
list of all possible states

Initialize Q-Table

Update Q-table




Q-learning Example

» Suppose we want to learn an agent able to find the best path between
two positions in a rectangular grid, avoiding the “red” positions, which
will “kill” the agent.

The >
initial
position

Considering “N, S, E, W’ movements, there
are only 4 actions

The board has 12 positions. Hence we have
12 different states

The Q-Table will have dimensions 12 x 4



Q-learning Example

» We start by defining some reward/penalty values for each type of cells.
Let’s consider that blank cells have a small penalty (-1, to assure that
we will not move indefinitely between cells), while red cells should be
avoided (penalty=-100). Finally, the goal cell has a positive reward

(100).

* We start by initializing all cells to O. 1.1
1,2
1,3
* As we are starting the training now, 2,1
2,2
we simply perform a random action. 2.3
1
* Suppose we move “EAST”. 2’2
* We will update the [1, 3] cell 3,3
. 4,1
: Immediate I\:::g:t'“:: 4.2
Learnlnuard (\':) future reward 4.3

N

NSEW

mumn

Q[1,3] = Q[1,3] + a[R[1,3] + ymaxQ'[s’,a’] — Q[1,3]]

\

The process is repeated
(depth N), with each
move being either the
max Q value action
(exploitation factor) or a
random move
(exploration, i.e., 1-
exploitation)

Discount rate



Q-learning Example 2

* Now, suppose we want to learn an agent able to find the best path
between two positions in a rectangular grid, avoiding the “red”
positions, which will “kill” the agent.

The
initial
position




Q-learning Example

* The Q-table will have 48 rows (# states) and 4 columns (# actions:
LEFT, RIGHT, UP, DOWN).

* Initially, we should incorporate all the physical constraints in this
problem and create a Reward Matrix R (of size 48 x 48), that provides
the R values for all possible transitions between states.

* For example, from State 1, only States 2 and 7 can be reached.

* Hence the first row of the Reward Matrix will have “0” value in positions (1,2)
and (1,7) and “-1” in all others.

 We should define an infinite reward to all transitions between states that led
to State 48 (our goal).

* Also, we should define a large penalty to all transitions that led to a red
position.
* Finally, as we are interested in finding the short path, every transition

between states should have a small penalty, to avoid unnecessary
movements.

* Next, we initialize all the values in the Q-table to “0”.

* Note that some actions are not possible for some states. For instance, for
state “1”, only “RIGHT” and “DOWN” actions are valid.



Q-learning Example

* When the process starts, suppose that by random selection,
we choose State 7.

* The next step will be to predict what can happen if the agent
was in State 7:

* [t can move to State 13 ("DOWN” action)
* [t can move to State 8 (“RIGHT” action)

* The transition 7 to 13 R(7,13) has cost -1

* However, R(7,8) has a much worse penalty (—inf), as it
corresponds to a dangerous position.

* This way, the future component of the equation will have value
equal to “-1”, i.e., max ([-1, -inf]).

* The following update in the Q-table should be done:

Qpew(L,“DOWN”) « (1 —a)Q(1,”DOWN”") + a(-1+y — 1)



Q-learning Example

* The most sensitive issue in Q-learning is the definition of
“state”. What characterizes a state?
* If we are too vague, and consider a broad definition of state, the
algorithm will have difficulties to simulate an intelligent behavior.
* E.g., in the previous example, consider simply the “type of cell” as state.

e That will imply to have only three rows in the Q-Table, which will reduce the
complexity.
* However, the algorithm will produce the same action for all “blue cells”, “red

Cells”".' -.

* At the opposite side, we can consider each actual cell in the board as a state,
which will yield 48 rows in the Q-Table and a 48x48 reward matrix.

* What would happen in case of a board with 1,000,000 cells?
* There are intermediate solutions for defining a state, such as the
current position and a neighborhood of radius “r”
* Enables to infer the correct behavior in a more
sophisticated way.
* Augments the computational complexity (each of the free
8 positions can have 3 types, i.e., 38 = 6561 states




Deep Q-learning

* Q-learning is known to be able to attain decent results in
problems with small dimension in terms of the “space of all
states”.

* The problem is that even relatively simple problems have an
intractable number of possible states, where Q-learning cannot
be applied.

* A possible solution is the Deep Q-learning algorithm, where the
idea is to use a CNN to analyze the current state of the world

and return the policy of actions. The CNN will have as

many neurons in the output
Reward 1 layer as possible actions

Agent

state Take action a Environment

The optimal action
ObserNtes corresponds to the most

S~ activated output neuron




Deep Q-learning

* In practice terms, the main difference between using a CNN
for Reinforcement Learning purposes and the traditional way
classification CNNs work is the fact in the latter models, the
target variable does not change over the time.

* For a specific instance (state), the ground truth (or desired label) is
always the same.

* In the Reinforcement Learning setting, we depend on the
policy or value functions to sample actions. However, this
policy changes as we continuously learn what to explore.
During the learning process, we start to know more about the
ground truth values of the states/actions and hence, the
desired output should also change accordingly.

* At the end, we are trying to learn a map for a constantly
changing input/output. Is this feasible?



Deep Q-learning

* The solution is to use slightly different two twin networks,
from slightly different learning generations.

Target
estimation

/\ Loss

r+ ma‘(Q(\ a0 )—

Q(s,a: 0;)

)

Target Network

]

Predicted
Action

Prediction Network

Q

7

Input

Copy parameters

(13 7

every ‘n
iterations



