MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2025/2026

Syllabus

Machine
Learning

* Unsupervised Learning
* K-Means
* DBScan
* Self Organized Maps
* Deep Clustering

Unsupervised Learning

* This concept is associated to learning without a “supervisor”
* It also known as self-organization, or cluster analysis

* The basic idea is that, instead of attempting to mimic the behavior of the
supervisor, to identify commonalities in the data

Data is provided Groups
without class (clusters) should
be identified

information]
automatically

* The notion of "cluster" cannot be objectively defined, which justifies different
clustering algorithms.

Unsupervised Learning

* There are different families of methods to perform clustering:
* Connectivity models, in which models are built based on distance connectivity
* Hierarchical clustering

* Centroid models, that represent clusters by mean vectors (i.e., centroids)
* K-means

 Distribution models, where clusters are modelled according to statistical distributions
 DBSCAN

* Neural models, where networks implement a form of PCA that finds appropriate feature
subspaces

* Self-Organizing Map (SOM)

* Clusters Evaluation
* Internal Evaluation, when the model is evaluated based on the data that was clustered

itself
. el o 6 . :_1 N . _0it0;
Davies-Bouldin index: DB y =1 Max; L—Ld(ci,cj)

where “c” represents one centroid, “o” is the average distance of the elements in one cluster to its
centroid and “N” is the number of clusters
* External Evaluation, when the model is evaluated based on new data, typically with
class labels
W o laum mnNnd
* Purity: P = Tvzi:l max g _p | |

where “M” represents the set of clusters, and “D” is the labeled data

K-Means

* It is the most used clustering algorithm,
due to its effectiveness and easiness of
implementation.

* Aims to partition “n” observations into “k”
clusters

* Each observation belongs to the nearest

cluster centroid, which is the prototype of the
cluster.

* This results in a partitioning of the data space
into Voronoi cells.

* A Voronoi diagram is a partitioning of a plane into
regions based on distance to points in a subset of
the plane.

* These points (a.k.a. prototypes) determine the
shape of the corresponding Voronoi cell.

* For each prototype there is a corresponding region
consisting of all points closer to that seed than to
any other. These regions are called Voronoi cells.

Positions in each cell

(color) are closest to
the corresponding
centroid than to any
other

K-Means

* For K-Means, the value of “K” must be given beforehand

* There are diferente heuristics to automatically find the optimal value of “K”, but
depend of the specific problema considered

* Having a data set X: {x{, x5, ..., X}

1. Initialize (randomly) “K” centroids p: {ft1, U>, ..., Wi}
2. While (= stopping_criterium(u, X))

1. Foreveryx;:
¢, =arg min;d(x; w) //cluster assignment

2. Forevery u;:
— n . .
pi = 2 Xx; | xjassignedtoc; //centroid update

K-Means

» Stopping criteria. There are a number of diferent possibilities
* Simplistic: Predefine a number of iterations
* Might be “too many”, or “too few”, depending of the complexity of the feature space

* Elaborate 1: Evaluate clusters stationarity and stop when the changes in clusters
positions between consecutive iterations is less than a small threshold.

* Elaborate 2: Evaluate samples assignments and stop when no samples (or a very
small number) of samples changes its centroid between consecutive iterations.

 Choose the value of “K”

* Elbow method.

* Define a cost function J() and repeat the clustering procedure for a growing
number of clusters. Define “K” as the value where the curvature of J() is
maximal

JO

K-Means

* Distance Functions

 Different functions can be used, as long as they met the properties of being a
“metric”

* Ametriconaset Xisafunctiond:XxX —> [0, o), where forallx,y, z€X, the
following conditions are satisfied:

e d(x,y)=0 // non-negativity or separation axiom
e dix,y)=0=x=y //identity of indiscernibles
* d(x, y) =dly, x) //symmetry
o d(x,z)<d(x,y)+d(y, 2) //triangle inequality
* Examples:

* Euclidean distance: d(x,y) = /X.(x; — yi)?
* Manhatan distance: d(x,y) = X.(|xi — yi|)

* Chebyshev distance: d(x,y) = max |xi — yi|

K-Means: Example

» Consider the following synthetic dataset:

e Random initialization of 2 clusters:

X X
X
X XX
XX X X
x % x
X 5 X
x%’;g(><>?<><><
X
X 5 X X X
3& KR x
¥ x X X
b3
K& ek X x
X x XXX
><><><X§
X

% Zx
X X
X
X %xx%xxx %

X W B x X

x XX g?’z(x&x x X

K-Means: Example

* K-Means: Iteration 1

* K-Means: Iteration 2

K-Means: Example

* K-Means: Iteration 3

* K-Means: Iteration 4

: Example

K-Means

5

ion

lterat

* K-Means

10

P O

p O

b N~

b ©

P LO

suolisod plosuad
ul sebueyo Jo wng

o™ o v o v o v o o oV
wn < < (sp] [sp] N N - ~—
juswubisse
pabueyo jey)
S9oue)sul JO JaquINN
_ 2
-
L ® 00
L
L [X(]
-
L p <t
H 1
. , L . L o
™ 0 N 0 - To) o
AN -~ o

Iteration

Iteration

Unsupervised Learning

There is a variety of clustering algorithms available for multiple
languages.

JAs an example, the “sklearn.cluster” library offers:

MiniBatch Affinity Spectral Agglomerative Gaussian
KMeans Propagation MeanShift Clustering Ward Clustering DBSCAN OPTICS BIRCH Mixture

l
S, .33S

.14s .16s|

Unsupervised Learning

dThe existing clustering algorithms can be broadly divided into two families:
UHard Clustering: Here, each data point either belongs to a cluster completely or not.

LSoft Clusterinﬁ: Instead of putting each data point into a separate cluster, a probability or
likelihood of that data point to be in those clusters is assigned.

Elldn terfmsdof the techniques used in clustering algorithms, four main families can be
identified:

U Connectivity models: Models are based on the notion that the data points closer in data
space exhibit more similarity to each other than the data points lying farther away. These
models are easy to interpret but lack scalability for handling big datasets. Examples are
hierarchical clustering algorithm and its variants.

UCentroid models: These are iterative algorithms, in which the notion of similarity is derived
by the closeness of a data point to the centroid of the clusters. K-Means clustering algorithm
is a popular algorithm that falls into this category. In these models, the no. of clusters is
required at the end have to be mentioned beforehand, which makes it important to have
prior knowledge of the dataset.

UDistribution models: Based on the notion of how probable is it that all data points in the
cluster belong to the same distribution (e.g., Gaussian). A popular example of these models is
Expectation-maximization algorithm which uses multivariate normal distributions.

LDensity Models: These models search the data space for areas of varied density of data
points In the data space. They isolate different density regions and assign the data points
\C/)vliat%igsthese regions in the same cluster. Popular examples of density models are DBSCAN and

DBSCAN

JThe DBSCAN algorithm is a particularly interesting example.

It was proposed by Martin Ester et al. in 1996. DBSCAN is a
density-based clustering algorithm that works on the assumption
that clusters are dense regions in space separated by regions of
lower density.

It groups ‘densely grouped’ data points into a single cluster.

It can identify clusters in large spatial datasets by looking at the
local density of the data points.

dThe most exciting feature of DBSCAN clustering is that it is
robust to outliers. It also does not require the number of clusters
to be told beforehand, unlike K-Means, where we must specify
the number of centroids..

Martin Ester, Hans-Peter Kriegel, J6rg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD'96). AAAI Press, 226-231.

DBSCAN

(L DBSCAN requires only two parameters: “epsilon” and “minPoints”.

“Epsilon” is the radius of the circle to be created around each data point to
check the density

d“minPoints” is the minimum number of data points required inside that circle
for that data point to be classified as a Core point.

Qin high dimensions the circle most be understood as an hypersphere, where
“epsilon” is the radius of that hypersphere, and minPoints is the minimum
number of data points required inside that hypersphere.

DBSCAN

k-means

DBSCAN

Let us consider a 2D example with 10 points. In this case, it will
correspond to 10 instances, each one represented with two
feature values.

DBSCAN

The algorithm starts by defining a neighborhood of radius € around each
point, and classifies them into one of three families:
(dCore: A point is considered a “Core” if it has at least “minPoints” in its neighborhood.

: A point is considered a “Border” if it has some neighbors, but less than
“minPoints”

Noise: A point is considered an outlier (noise) when there are no neighbors in its
neighborhood.

dIn the example below, “minPoints=3"

DBSCAN

dThe key concepts in DBSCAN are “Reachability” and
“Connectivity”.

(JReachability states if a data point can be accessed from another data
point directly or indirectly;

JConnectivity states whether two data points belong to the same
cluster or not.

dGenerally, two points can be referred in DBSCAN as:
Directly Density-Reachable
(A Density-Reachable
dDensity-Connected

DBSCAN: Directly Density-Reachable

A point X is density reachable from Y when Y is a “Core” point
and dist(X,Y) < €.

Here dist(,) is typically the Euclidean distance, but other distance metrics can be
used.

directly
density-reachable

DBSCAN: Density Reachable

A point X is density-reachable from point Y w.r.t epsilon, minPoints if
there is a chain of points p4, p,, P3, -, P,, and p;=X and p,=Y such that p,,,
is directly density-reachable from p..

in practice terms, there is the concept of “transitivity” here. If we can move “step-
by-step” between points p; and p,,, then the latter ¢point is said to be density
reachable from the former.

directly
density-reachable

DBSCAN: Density-Connected

dFinally, a point X is density-connected from point Y w.r.t epsilon
and minPoints if there exists a point O such that both X and Y are
density-reachable from O w.r.t to epsilon and minPoints.

in the example below, X and Y are both density reachable from O. Hence, we say
that X is density-connected to Y

DBSCAN

DBSCAN is very sensitive to the values of the parameters.

It is very important to understand how to select the values of € and
minPoints.

A slight variation in these values significantly changes the results
produced by the DBSCAN algorithm.

In practice, the value of minPoints should be at least one greater than the
number of dimensions of the dataset, i.e.,

minPoints>=Dimensions+1.

It does not make sense to take minPoints as 1 because it will result in each point
being a separate cluster.

dTherefore, it must be at least 3. Generally, it is twice the dimensions. But domain
knowledge also decides its value.

The value of epsilon can be decided from the K-distance graph.

dThe point of maximum curvature (elbow) in this graph tells us about the value of
epsilon. If the value of epsilon chosen is too small then a higher number of clusters
will be created, and more data points will be taken as noise. Whereas, if chosen
too big then various small clusters will merge into a big cluster, and we will lose
details.

DBSCAN

dFinally, if p is a core point, then it forms a cluster
together with all points (core or non-core) that are
reachable from it.

(JEach cluster contains at least one core point; non-core
points can be part of a cluster, but they form its "edge",
since they cannot be used to reach more points.

JAccording to this definition, clusters satisfy two
properties:
JAIl points within the cluster are mutually density-
connected.

JIf a point is density-reachable from some point of the
cluster, it is part of the cluster as well.

DBSCAN Exercise

JApply the DBSCAN
algorithm with € = 1.9 and
minPoints=3

Start by discriminate

between “Core”, “Border”
and “Noise” points.

dFinally, indicate the clusters
obtained.

L 4

A1 N
N

(=)

.

A\ &

(=)
3

P,

@
\

o (&)
56

p

DBSCAN Exercise: Solution

Unsupervised Learning: SOMs

* The Self-Organizing Map (SOM) algorithm was one of the earliest neural
network models (proposed by Kohonen in 1984), as a way to explain the
spatial organization of the brain's functions, as observed especially in the
cerebral cortex.

* As an example, sound signals of different frequencies are mapped to the primary
auditory cortex in which neighboring neurons respond to similar frequencies.

* Following the ideas of spatially ordered line detectors (Von der Malsburg,
1973) and the neural fields (Amari, 1980), the key points in SOMs were:
* introduce a model composed of two interacting subsystems of different natures, where
the key is a competitive neural network that implements the winner-take-all function,

* Design a synaptic plasticity model for the neurons in learning. In practice terms, the
learning is restricted spatially to the local neighborhood of the most active neurons.

Unsupervised Learning: SOMs

* Computationally, a Self-Organizing Map (SOM) is an artificial neural network,
trained according to the unsupervised learning paradigm

* The topology of the network lies typically in a low dimensional hyperspace:
e 1D Lines: e.g., 5 cells

o O O o &
Prototypes JJ

e 2D Grids: e.g., 3 x5 cells

1D Neighborhood

2D Neighborhood

* 3D Spaces: ...

Unsupervised Learning: SOMs

* The cells of SOMs form the set of prototypes (clusters), and are autonomously
inferred, according to a competitive learning paradigm
* Having a set of input instances (learning set), each one lying in a (typically) high
hyperspace, the idea is:

* To find the SOM prototype that best represents each instance and “assign the prototype to it”".
* Called the BMU (Best Matching Unit)

* Move (organize) the cells in the SOM, such that the BMU and its neighbors adjust their
configurations (weights) towards the input instance

e Conceptually, there are only two entities in SOMS:

Inputs are compared to

all cells, to obtain the
BMU

Cells

Inputs

Unsupervised Learning: SOMs

* SOM Learning Algorithm

1. Initialize the weights of the cells (c;) randomly
2. While ! Stop_criterium()
1. For each inputinstance x) € R"
1. For each cell ¢, get the distance between x/ and c;

e.g., Euclidean

dixf,ci)\/ Distance
2. Find the BMU

4 = argmin; d(x/, c;)
Learning Rate
3. Update the weights of the BMU cell/
06=0+ y (0 —x)

5. Update the weights of the neighbour cells (c¥):

0=0+ yexp(—d(c—zc"’))(e—x)

Neighborhood Constant

Unsupervised Learning: SOMs

* The shape of the neighbood function determines how much (and how
many) cells adjacent to the BMU are updated.
* If the value is high, each BMU will imply movements in a large number of neighbors.
The manifold will be “smooth”.
* If the value is low, there is a short number of movements for each BMU, and the
resulting manifold will be “peaked”.

Many cells updated Few cells updated

Adjustement Rate
o o o
N o [o2)

o

e

o°
~

o
)

o
o

Adjustement Rate

0.2

o°
~

o
o) -

o
o

Adjustement Rate

027 |

o
~

Unsupervised Learning: SOMs

* More than just clustering, SOMs build a low dimensional manifold, where
high dimensional input samples are projected.

* The relevant advantage of manifolds is the topological space property, i.e.,

neighbor elements “look-alike”, in opposition to elements that are farther in the
destiny-space.

) ™
I
] e
-20\

=T

Close in terms of

distance, but very far in
the manifold

Machine Learning: SOM Exercise

* Consider the “AR.tar” dataset, available at the course web page.

* It contains 3.315 [48 x 64] face images
* We will use it to distinguish between “Male” and “Female” genders

* Implement a “Python” that:

* Loads the set of images

* Divide the set into two disjoint parts: “learning” and “test”
* 90% for learning, 10% for test, randmly chosen

e Builds a SOM manifold

* Check which SOM topology is more appropriate for distinguishing between...
* |dentities
* Gender

Deep Clustering

* The basic idea of Deep Clustering is to obtain a compact representation that
simoultaneously:

* Is able to reconstruct the original data Lrec(Xa X)

e Separates the dataset into homogenous groups £ lipal (X b d)
clus embe

Lclust (Xembed)

\
NS

[T

SR N> - A“t“'ﬂ#

L XX £\ AN
[]

Deep Clustering

Alternating iteratively optimization between clustering and
autoencoder:

1) K-Means
2) Autoencoder Step (Reconstruction + Compression losses)

£7‘66(X7X) 551' — Xjl?

Distance between input
element (x;) and its
reconstruction (X;)

»Cclust (Xembed) ‘Zl' — Ui ‘2

Distance between each
latent code (z;) and the
centroid assigned by K-
Means (u;)

