MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2025/2026

Syllabus

Machine
Learning

* Deep Learning Architectures

* Self-Supervised Learning

CNNs: Other Layers

* Dropout Layers. This kinds of layers drops out units of a neural
network during the learning phase.

* Typically, a proportion (0, 1) of neurons is randomly chosen and not
considered for a particular “forward/backward” pass.

* Dropout is an approach to regularization in neural networks which
helps to avoid interdependent learning amongst the neurons.

e Recall that regularization is way to prevent over-fitting, by adding a
penalty to the loss function.

* It is applied exclusively to the fully connected layers of a CNN model.

CNNs: Other Layers

* Batch Normalization Layers. To increase the stability of a neural
network, this kind of layers normalizes the output of a previous layer by
subtracting the batch mean and dividing by the batch standard
deviation.

* This kind of layer can be added both after fully connected layers, but
also after convolutional layers.

* Typically, using batch normalisation: 1) allows higher learning rates; 2)
makes weights easier to initialise, helping to reduce the sensitivity to
the initial starting weights.

* As the activations of one layer are the inputs of the next one, each
layer in the neural network receives — at each iteration — diferente
input distributions. This is problematic because it forces each layer to
continuously adapt to its changing inputs.

* Using Batch Normalization allows the layer to learn on a more stable
distribution of inputs (close to a standardized Gaussian distribution)
and accelerates the training of the network.

Deep Learning Architectures

* Deep Learning architectures are now “in the eye of the
hurricane”, and have been advancing the state-of-the-art in
multiple Machine Learning problems (if not all...)

* Recall that the main advantage of Deep Learning-based
solutions with respect to handcrafted approaches, is that this
new generation of models also carries out the feature
extraction phase in an automatic way.

AN

Handcrafted Methods Deep Learning Frameworks

Auto-Encoders

* Autoencoders are a class of Neural Networks that try to
reconstruct the input itself. They are unsupervised in nature.

* Typically, the general structure of an auto-encoder has two
parts:

 The Encoder sub-network, that receives the original data and
obtains a “latent space representation”;

* The Decoder sub-network, that receives the latent code and
attempts to reproduce the original data.

Input Output
P Latent space :
W < _ 7
\ S P //

\ / N Code PR \ /

/ \ / \ / \ /
\/ \< >/ v
A / \ / \

/7 \ / \ / \ / \

/ N\ / -~ \ / \
// \ /- >~ / \
/! 7 SO\
/_~ ~ N\
“ J “ J

Encoder Decoder

Auto-Encoders

* The first obvious application of auto-encoders is “Data Storage
and Transmission”

e Starting from a high-volume amount of information (size
m), the latent code z € R"is able to reconstruct the
original data only with minor differences;

* Obviously, n <<m

* A second obvious application of using auto-encoders is to
obtain a compact feature representations that can be used by
Machine Learning models, for classification, regression or
clustering purposes.

* For such, it is assumed that a similarity between z, and z,

(e.g., in terms of Euclidean/Co-sine distances) corresponds
directly to the similarity of the corresponding original data

Auto-Encoders

* Subsequently, another ingenious application for auto-encoders was to
“Generate Data”

* There is a “Generative” paradigm of Machine Learning/Pattern

Recognition models that attempts to model the phenomena to be
handled

* i.e., obtain an approximation of p(C,l), with representing the
input data and C the corresponding desired response.

* This is in opposition to the “Discriminative” family of methods, which
typically attempt to infer p(C|1)

llI”

* The idea in auto-encoders was to change some components in the latent
code, to perceive the corresponding changes in the reconstructed data.

!

Z
Z Al

How do/much
the objects
change?

\1 1 7

-/

Y 4.@
5

...(unfortunatelly,
in a chaotic way)

| LTI]
LIl

Variational Auto-Encoders

* This kind of models have arisen upon the difficulties in controlling the
appearance/features of the reconstructed data .
e Standard autoencoders can obtain compact representations z and reconstruct their
inputs well.

* However, the main problem, for generation, is that the latent space they convert
their inputs to and where their encoded vectors lie, may not be continuous, or
allow easy interpolation.

* The key novelty in variational auto-encoders is a layer that explicitly
encodes means and of the latent representations,

which are sampled to generate a reconstructed sample.

u=[0.5,1.2]

o =[0.1,0.2]
Sample two values from:
[X; ~ N(0.5,0.1), X, ~
N(1.2,0.2)]

Variational Auto-Encoders

* The (u, o) values allow a
continuity in the latent
space, that can be used |
to generate synthetic \
elements according to
some pre-defined : \
properties and
appearance features

2

™

In practice terms, it is assured
that neighbor elements in the
latent space correspond to
similar instances in the image
space

00

Adversarial Learning

 Facebook's Al research director Yann LeCun called adversarial
training “the most interesting idea in the last 10 years in
Machine Learning”.

* Generative Adversarial Networks (GANs) are architectures that
use two neural networks, competing one against the other
(thus the “adversarial”) in order to generate new, synthetic
instances of data that can pass for real data.

* GANs were introduced in a paper by lan Goodfellow and other
researchers at the University of Montreal, including Yoshua Bengio, in
2014.

* GANs’ potential for both good and evil is huge, because they
learn to mimic any distribution of data.

* GANs can be taught to create worlds eerily like our own in
almost any domain: images, music, speech, prose...

GANS

* The basicidea in GANs is to have one network (Generator)
trying to fool the other one, while the later (Discriminator) tries
not to be fooled.

* This can be seen as a Police Officer&—> Thief game that,
according to Nash Game Theory, typically converges into an
equilibrium state.

[|
| realdata | 4

\ V fake
sample L @
——— discriminator :

O sample O
O | ‘
| :. | generated +/' real
O generator .
O

random noise

GAN

* The Discriminator network is a typical binary classification
CNN, that learns to distinguish between fake and real data.

* The Generator network receives one latent code (randomly
generated, i.e., white noise) and produces one instance.

* The overall cost function is given by a two-player min-max
game:

mC%n max V(D,G) = Epnpgu(z) 108 D(x)] + Epnp, (2)llog(l — D(G(2)))]

* That can be decomposed into:

‘recognize genuine” “recognize fakes”
Discriminator max V(D) X Eanpu(a) log D(z)] }GEiszz(z) [log(1 — D(G(z)))]:)
.- T T T T TS R
Generator ménV(G) = (]Ez’\’pz(z)[log(]' = D(G(z))u’

—y -
e o omm = ==

GAN

* GANs are trained in an iterative way:
1. Generate a set of Fake data F

2. Train the Discriminator (with Real data R (labelled 0) and Fake
Data F (labelled 1)) //Learns to distinguish R from F

3. Set Discriminator.trainable =FALSE
4. Train the GAN (with Fake Data F (labelled 0)) //Learns to fool D

5. Move to Step 1.

GANSs Applications

e E.g., plausible realistic photographs of human faces:

These persons
don'’t exist!!

GANSs Applications

* Image to Image Translation:

Input Style Result Input Style Result

Conditional GANs

* Despite the remarkable effectiveness of GANs in generating synthetic
(artificial) instances of one specific phenomenon, they provide a limited
control over the specific features of the output.

e Recall that the input is a random noise vector.
* Class-Conditional GANs (cGANS) introduce the label information to the
learning architecture, enabling to produce instances of a specific class.

* The Discriminator reports “1” only for genuine images with correct
labels, and “0” for all other cases (genuine images with bad labels, and
fake images with any label).

Real data

Random noise —»{ Generator)|Discriminator

Y Y

Conditional GANs (Applications)

» “Text-To-Image Synthesis”: This is the problem of asking to a network, to

generate images with specific features:

This flower has small, round violet
petals with a dark purple center

This flower has small, round violet
petals with a dark purple center T .=

S”'»_lw)

ﬁ- ___________ i' o - 3 iy,

Discriminator Network

Generator Network
» “Style Transfer”: Transferring style between different kinds of objects:

Diffusion Models

* Recently (>2021), Diffusion Models have been advocated as one of the
most relevant advances in Machine Learning (Computer Vision) domains.

* As GANs and VAEs, they are a class of machine learning models that can
generate new data based on training data.

* Coshesively, the rationale is to degrade training data by adding noise and
then learn to recover the data by reversing this noising process.

* As a result, this type of models learn to generate coherent images from noise.

Original Image Some Noise Added Noising Process Completed

Diffusion Models

* The most common chain in Diffusion Models is composed of 2 directions:

* Reverse Diffusion, that produces a (more) degraded (noisier) image, given
an input image: pg(x;—1|x¢)

* Forward Diffusion, that tries to recover a less degraded image, from a
noisier version of the data:qg(x¢|x;—1)

Po(X¢e—1]|x¢)

q(x¢|xi—1)

* The key is that if we learn a model that understands the systematic decay of
information due to noise, then it should be possible to reverse the process and
therefore, recover the information back from the noise.

Self-Supervised Learning

* Self-supervised learning is a relativelly recent type of machine learning that
can be regarded as a midle point between supervised and unsupervised
learning.

* It is a form of unsupervised learning where the model is trained on unlabeled
data, but the goal is to learn good representations of the data that can
belater used in a downstream supervised learning task.

Not based on

dataset (no labels) labels!
= pre-training
model
pretext
task

knowledge

transfer
- target ﬂ
L»J . task . I

Using labels!

target model

Source: https://neptune.ai/blog/self-supervised-learning

Self-Supervised Learning

* At first, Self-supervised learning starts by training a model itself to learn one
part of the input from another part of the input.

* This is known as pretext learning, which can assume different forms:

* For example, using unstructured 2D data, predict any part of the input from
any other part: IN OUT IN ouT

By doing this,
we force the
model to
“understand”
the data

Self-Supervised Learning

* Still for unstructured 2D data, another very popular pretext task is to learn by
solving Jigsaw puzzles:

Again, the
model is forced
to understand
each part of the
input, in order
to obtain a
realistic output

Self-Supervised Learning

* |t is also very common to use some Siamese architecture to obtain
appropriate feature representations.

If both inputs are from the same image (not “class” in this case), the
distance should be small. Otherwise, it should be large.

Image #1

Image #1
Encodings

T

Shared weights

Image #2

E—»[ConvNet

—

—/

Image #2

h(imagel)

euclidean_distance(hl, h2) ——» sigmoid —» (.98

similarity

h(image2)

Encodings

Self-Supervised Learning

* Another possibility is to use three images in the input: the Anchor (A) and the
Positive (P) that are variations of the same image, and the negative (N), that
regards a different image.

Negative m
Anchor LEARNING
Negative
Anchor

Positive Positive

The Anchor and Positive should be near each other, while their
distance to the Negative image should be large

L(4,P,N) = max(|[£(4) — £(P)[l, - |[£(4) = £(N)]l; + o, 0)

Self-Supervised Learning

* In case of 3D unstructured data (video), one can predict the predict the future
from the past/present, or predict the present from the future.

* In case of text data, the most obvious pretext task is to predict the next word,
based in the last “k” words.

books

/ / laptops

\\ exams

minds

the students opened their

Self-Supervised Learning

* Once the pretext task is considered solved (i.e., the model stopped to learn),
it is time to apply “Transfer Learning” techniques

* In practice, it consists in copying (and freezing ?) the weights from the earliest
layers of the model into the new one.

Transfer Learning

Task 1
R
l Data1 Model1 Head Predictions1
Knowledge transfer
Task 2

New
' Data2 Model1 e

The final layers learn the new
task, based on appropriate
feature representations

Frozen
Layers

