
MACHINE 
LEARNING

MEI/1

University of Beira Interior, 
Department of Informatics
Hugo Pedro Proença, 
hugomcp@di.ubi.pt, 2025/2026



Machine 
Learning

[07]

3

Syllabus

• Deep Learning Architectures

• Self-Supervised Learning



CNNs: Other Layers

• Dropout Layers. This kinds of layers drops out units of a neural 
network during the learning phase. 
• Typically, a proportion (0, 1) of neurons is randomly chosen and not 

considered for a particular “forward/backward” pass.
• Dropout is an approach to regularization in neural networks which

helps to avoid interdependent learning amongst the neurons.
• Recall that regularization is way to prevent over-fitting, by adding a 

penalty to the loss function. 
• It is applied exclusively to the fully connected layers of a CNN model.



CNNs: Other Layers
• Batch Normalization Layers. To increase the stability of a neural 

network, this kind of layers normalizes the output of a previous layer by 
subtracting the batch mean and dividing by the batch standard 
deviation.
• This kind of layer can be added both after fully connected layers, but 

also after convolutional layers.
• Typically, using batch normalisation: 1) allows higher learning rates; 2) 

makes weights easier to initialise, helping to reduce the sensitivity to
the initial starting weights.
• As the activations of one layer are the inputs of the next one, each

layer in the neural network receives – at each iteration – diferente 
input distributions. This is problematic because it forces each layer to
continuously adapt to its changing inputs.
• Using Batch Normalization allows the layer to learn on a more stable

distribution of inputs (close to a standardized Gaussian distribution) 
and accelerates the training of the network.



Deep Learning Architectures

• Deep Learning architectures are now “in the eye of the 
hurricane”, and have been advancing the state-of-the-art in 
multiple Machine Learning problems (if not all…)
• Recall that the main advantage of Deep Learning-based 

solutions with respect to handcrafted approaches, is that this 
new generation of models also carries out the feature 
extraction phase in an automatic way.

Handcrafted Methods Deep Learning Frameworks



Auto-Encoders

• Autoencoders are a class of Neural Networks that try to 
reconstruct the input itself. They are unsupervised in nature.
• Typically, the general structure of an auto-encoder has two 

parts:
• The Encoder sub-network, that receives the original data and 

obtains a “latent space representation”;
• The Decoder sub-network, that receives the latent code and 

attempts to reproduce the original data.

Latent space



Auto-Encoders

• The first obvious application of auto-encoders is “Data Storage 
and Transmission”
• Starting from a high-volume amount of information (size 

m), the latent code 𝒛 ∈ ℝ𝑛 is able to reconstruct the 
original data only with minor differences;
• Obviously, n << m

• A second obvious application of using auto-encoders is to 
obtain a compact feature representations that can be used by 
Machine Learning models, for classification, regression or 
clustering purposes.
• For such, it is assumed that a similarity between 𝒛1 and 𝒛2 

(e.g., in terms of Euclidean/Co-sine distances) corresponds 
directly to the similarity of the corresponding original data



Auto-Encoders
• Subsequently, another ingenious application for auto-encoders was to 

“Generate Data”
• There is a “Generative” paradigm of Machine Learning/Pattern 

Recognition models that attempts to model the phenomena to be 
handled 
• i.e., obtain an approximation of p(C,I), with “I” representing the 

input data and C the corresponding desired response.     
• This is in opposition to the “Discriminative” family of methods, which 

typically attempt to infer p(C|I)
• The idea in auto-encoders was to change some components in the latent 

code, to perceive the corresponding changes in the reconstructed data. 

𝒛
1
3
5

𝒛′

1
3
4

How do/much
the objects

change?

...(unfortunatelly, 
in a chaotic way)



Variational Auto-Encoders
• This kind of models have arisen upon the difficulties in controlling the 

appearance/features of the reconstructed data . 
• Standard autoencoders can obtain compact representations 𝒛 and reconstruct their 

inputs well. 
• However, the main problem, for generation, is that the latent space they convert 

their inputs to and where their encoded vectors lie, may not be continuous, or 
allow easy interpolation.

• The key novelty in variational auto-encoders is a layer that explicitly 
encodes means and standard deviations of the latent representations, 
which are sampled to generate a reconstructed sample.

𝜇 = 0.5, 1.2
𝜎 = [0.1, 0.2]

Sample two values from:
[𝑋1 ∼ 𝑁(0.5, 0.1), 𝑋2 ∼

𝑁(1.2, 0.2)] 



Variational Auto-Encoders
• The (𝝁, 𝝈) values allow a 

continuity in the latent 
space, that can be used 
to generate synthetic 
elements according to 
some pre-defined 
properties and 
appearance features

In practice terms, it is assured 
that neighbor elements in the 
latent space correspond to 

similar instances in the image 
space



Adversarial Learning

•  Facebook's AI research director Yann LeCun called adversarial 
training “the most interesting idea in the last 10 years in 
Machine Learning”.
• Generative Adversarial Networks (GANs) are architectures that 

use two neural networks, competing one against the other 
(thus the “adversarial”) in order to generate new, synthetic 
instances of data that can pass for real data.
• GANs were introduced in a paper by Ian Goodfellow and other 

researchers at the University of Montreal, including Yoshua Bengio, in 
2014. 

• GANs’ potential for both good and evil is huge, because they 
learn to mimic any distribution of data. 
• GANs can be taught to create worlds eerily like our own in 

almost any domain: images, music, speech, prose… 



GANs
• The basic idea in GANs is to have one network (Generator) 

trying to fool the other one, while the later (Discriminator) tries 
not to be fooled.
• This can be seen as a Police Officerßà Thief game that, 

according to Nash Game  Theory, typically converges into an 
equilibrium state. 



GAN

• The Discriminator network is a typical binary classification 
CNN, that learns to distinguish between fake and real data.
• The Generator network receives one latent code (randomly 

generated, i.e., white noise) and produces one instance.
• The overall cost function is given by a two-player min-max 

game:

• That can be decomposed into:

Discriminator

Generator

“fool” D

“recognize fakes”“recognize genuine”



GAN

• GANs are trained in an iterative way:

1. Generate a set of Fake data F

2. Train the Discriminator (with Real data R (labelled 0) and Fake 
Data F (labelled 1)) //Learns to distinguish R from F

3. Set Discriminator.trainable =FALSE

4. Train the GAN (with Fake Data F (labelled 0)) //Learns to fool D

5.   Move to Step 1.



GANs Applications

• E.g., plausible realistic photographs of human faces:

These persons 
don’t exist!!



GANs Applications

• Image to Image Translation:

Input Input StyleStyle Result Result



Conditional GANs
• Despite the remarkable effectiveness of GANs in generating synthetic 

(artificial) instances of one specific phenomenon, they provide a limited 
control over the specific features of the output.
• Recall that the input is a random noise vector. 

•  Class-Conditional GANs (cGANs) introduce the label information to the 
learning architecture, enabling to produce instances of a specific class.
• The Discriminator reports “1” only for genuine images with correct 

labels, and “0” for all other cases (genuine images with bad labels, and 
fake images with any label).



Conditional GANs (Applications)
• “Text-To-Image Synthesis”: This is the problem of asking to a network, to 

generate images with specific features:

• “Style Transfer”: Transferring style between different kinds of objects:



Diffusion Models
• Recently (>2021), Diffusion Models have been advocated as one of the 

most relevant advances in Machine Learning (Computer Vision) domains. 
• As GANs and VAEs, they are a class of machine learning models that can 

generate new data based on training data.
• Coshesively, the rationale is to degrade training data by adding noise and 

then learn to recover the data by reversing this noising process. 
• As a result, this type of models learn to generate coherent images from noise. 



Diffusion Models
• The most common chain in Diffusion Models is composed of 2 directions:
• Reverse Diffusion, that produces a (more) degraded (noisier) image, given 

an input image: 𝒑𝜽(𝒙𝒕#𝟏|𝒙𝒕)
• Forward Diffusion, that tries to recover a less degraded image, from a 

noisier version of the data:𝒒𝜽(𝒙𝒕|𝒙𝒕#𝟏)

• The key is that if we learn a model that understands the systematic decay of 
information due to noise, then it should be possible to reverse the process and 
therefore, recover the information back from the noise. 



• Self-supervised learning is a relativelly recent type of machine learning that
can be regarded as a midle point between supervised and unsupervised
learning. 
• It is a form of unsupervised learning where the model is trained on unlabeled

data, but the goal is to learn good representations of the data that can 
belater used in a downstream supervised learning task. 

Self-Supervised Learning

Source: https://neptune.ai/blog/self-supervised-learning

Not based on 
labels!

Using labels!



• At first, Self-supervised learning starts by training a model itself to learn one 
part of the input from another part of the input. 
• This is known as pretext learning, which can assume different forms:
• For example, using unstructured 2D data, predict any part of the input from 

any other part:

Self-Supervised Learning

By doing this, 
we force the 

model to 
“understand” 

the data

IN INOUT OUT



• Still for unstructured 2D data, another very popular pretext task is to learn by 
solving Jigsaw puzzles: 

Self-Supervised Learning

Again, the 
model is forced 
to understand 

each part of the 
input, in order 

to obtain a 
realistic output

IN OUT



• It is also very common to use some Siamese architecture to obtain 
appropriate feature representations.  

Self-Supervised Learning

If both inputs are from the same image (not “class” in this case), the 
distance should be small. Otherwise, it should be large.



• Another possibility is to use three images in the input: the Anchor (A) and the 
Positive (P) that are variations of the same image, and the negative (N), that 
regards a different image.

Self-Supervised Learning

The Anchor and Positive should be near each other, while their 
distance to the Negative image should be large



• In case of 3D unstructured data (video), one can predict the predict the future 
from the past/present, or predict the present from the future.

• In case of text data, the most obvious pretext task is to predict the next word, 
based in the last “k” words.

Self-Supervised Learning



• Once the pretext task is considered solved (i.e., the model stopped to learn), 
it is time to apply “Transfer Learning” techniques
• In practice, it consists in copying (and freezing ?) the weights from the earliest 

layers of the model into the new one. 

Self-Supervised Learning

Frozen 
Layers

The final layers learn the new 
task, based on appropriate 

feature representations


