MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2025/26

Syllabus

Machine
Learning

* Convolutional Neural Networks

Convolutional Neural Networks (CNNs)

* CNNs are a type of Neural Networks that have been
augmenting their popularity in most tasks related to Computer
Vision

e E.g., Image Segmentation, Classification.

* The property of shift invariance gives them the biological
inspiration of the human visual system and keeps the number
of weights relatively small, making learning a feasible task.

* In opposition to traditional Feed-forward nets, neurons in
CNNs are arranged in three dimensions.

y

Convolutional Neural Networks (CNNs)

e Each layer of a CNN transforms a 3D input into a 3D output.

* This pioneering work in CNNs was due to Yann LeCun (LeNet5)
after many previous successful iterations since 1988.

* Initially, the LeNet architecture was used mainly for character
recognition tasks such as reading zip codes, digits...

* The efficacy of CNNs in visual tasks is the main reason behind
the popularity of deep learning. They are powering major
advances in computer vision, with applications for robotics,
security and medical diagnosis.

y

Convolutional Neural Networks (CNNs)

* The most typical structure of a CNN is:
Pooling

Fully Connected

Soee ~—w._ dog(0.01)
cat (0.04)
boat (0.94)
bird (0.02)
) I f

Softmax

Convolutions +
Non-linearities

These operations are the basic building blocks of most CNNs, so understanding
how these work is an important step to understand the functioning of these
powerful models.

Computer Vision @ UBI, 22/23, hugomcp@di.ubi.pt

Signals and Systems

dWhat is a signal?

It can be regarded as a description how a parameter varies
(dep%rlld)ent variable) with respect to another (independent
variable

JE.g., the voIta§e of an electric charge varies with respect to
time (1D signals

JdE.g., the |nten5|ty of a pixel varies with respect its location in
image (2D signals);

dTipically, signals are denoted by upper case letters.
dDiscrete signals are denoted by []:
UE.g., X[n], Y[K]
dContinuous signals are denoted by ()
QE.g., X(i), Y(j)

Convolution

It is a mathematical operation that describes the relationship
between three signals:
(JOne input signal;
(JOne impulse response;
dYielding the output signal.

It can be seen as “extracting a specific feature from a signal,
depending on the filter used”.

JAs it combines addition (+) with multiplication (x), it is usually

denoted by “*”. AN /

M-1

QY[KI=HIKI*XIK] y[i] = Y. h[i1x[i-7]
J=0

Convolution: Exercise

(JObtain the result of the convolution of the following signals:

x[n] h[n]
3T 3
)__,... 2_‘..:.
NN B Ny

2R :’- * "L,
SR TP RATATE T I ST FR TR
o 2400,
34+———1—1—+—+— -3 T

Convolution: Exercise (cont.)

(JObtain the result of the convolution of the following signals:

o e 3 L e

P SRS S 2.k 24t bbb bbbl
RN X NN o R
O -zoo e s eenaen i) * 0T gmnm — b B ..:.
- .-' 14.8 .. EN R SR LN ¥ RN
2_<, L R 2“"':'"f"j"f"j"j"f" """"
34— 3 34— ;

Convolution: Examples

JLow-pass filtering:

3

008 4
d...;..,.-;.-.'...'....ﬁ.",.. . . R S S T P T I " TR I Y
i S Sk 006 --5--%-- ! : ! ‘ ‘
T S . T 2 ™ R paleelectetoad ot celacdena
L) .
-S : . LA - -gl,(kd-#-.,...- g
T SRR o KN SR W SEAE = o e —_— Ff JopsadaachoataadanggifitacdanahaRBacdana
'E. . . 4 . . v E. - . — —d
E . - . un - E”(p-: l. E
0 Secles-s feeotecatenan — . . 0 M) ¢ S SR DR R
<Y M <_|s: : % R
T YR 000F--+--r--3 Y S A S S A U S S
2 | | 1 1 1 | | 0.02 1 | o T ¥ L] L] L T L) T T T
0 10 20 30 & S 60 N 80 0 10 2 30 O 10 20 30 4 S0 & 0 80 %0 100 110

Sample number Sample number Sample number

Convolution: Examples

JHigh-pass filtering:

Amplitude
Y
<.

PR

2 T T T T Al T 1
0 10 20 30 4 SO & T =

Sample number

*

125
1003 = =7 o
v -
-gu.;.v.g.‘...j.......
—?“g)- cebenten
D254 -+t
< Lo
I"-l'()-«W
025 1

0 10 20 X
Sample number

Amplitude

[=) N

J

.
-
T T T T T T T T
0 0 20 3 40 SO 60 N 80 % 100 10

Sample number

Convolution: Examples

Discrete derivative:

3 200
N R Y AR '
R sepesge “wesssechogpes o : :
0 o A~ g 100 --te
B 24--i-- doadaas »oa-er-2-- = :
&= . ‘“ . ,.. . = '
= 4. N = D v v
D..] : . % . b v * ;I‘Ifl,ﬂ——»
E-. . - - - - E . .
()~ I e — - .)
< ! : v . Il || SRS,
l_..bv ‘' '
2 T T T T T T T 200 LA

0 10 20 3 & S & v = 0 1w 2 X
Sample number Sample number

L
=
=
b —
=
-
=
o

X . . . ’ . ' . . '

-]] T I T ¥] T L T

o 0 20 3 40 S & 80 S0 o 10

Sample number

Convolution: Caution!!

dWhen an input signal is convolved with an impulse response
of length “M”, then the first and last “M-1" components are

not fully reliable.

dWhy is this?

Input signal

'ﬁ..' -n.c '.ﬁ' . e

.........................

T LA
0 1w 2 3N & W QO 0 W

Sample number

*.

Impulse response

1.5
'8 104 - - 2w e e
S X
= P
=084l da
(=4 ' '
=
= '
- . '
T —— aa—

0.5 -
0 0 X

Sample number

Output signal

T I
unusable usable ' unusable
T e R R SR
= N .
= l.'.‘. :“. ~ 4'. .
Pl R L . I P L B i
(=% ! . 1
E N v, Vv Ow vV rd
- e R R EEEEEE Prrrrrs s ‘
1 [
T 1 L L L T L] T 1]
{ 0 20 30 40 50 L) N 8 €10 1

Sample number

Filters: Examples

)
)
1
W

a. Pillbox

L)
.N

)
\
)

{

b. Gaussian

A)
o:o°
W
W

y

|
y

()
‘0
Y)

)

OO

OO
LK
0L

value
1=
h
XX

d. Edge enhancement e. Sinc

4+ A
3 3
' g
- 377
14 < . S
~~~ - .<
— - =N 2
0- < 04 7 }22};',;}_\:', II A AA VK723
8 755/ i, I' .'0'-. . ,-‘.-9“ \\\\
¢ 4 i BRI s
2 i '.,ff""0‘0‘?‘?“““2‘?&"\\
TOW 2 4 0 5 ") - 0
6 row 4 col




Convolutional Neural Networks (CNNs)

 Convolution

* This block computes the convolution between an input map
X with a bank of k multi-dimensional filters f, to obtain the
resultsy.

/ / 144 144 144 144
X € RHxWxD f c RH XW'xDxD y & RH xW"xD ,

) )

* Formally, the outputs y are given by:

H W' D

yi”j"d” — bd" —I— E E E fi'j'd X xi"-}-i’—l,j"—{-j’—l,d',d"'

i'=1 j'=1 d'=1



Convolutional Neural Networks (CNNs)

* Convolution (padding and stride)

* Usually it is possible to specify top, bottom, left, right
paddings (P, P,*, P, , P,*) of the input array and
subsampling strides (S,,S,,) of the output array.

H W' D
y’l:”j”d" — bd// + ;J ;J ;J f'l,’j’d X xsh(i,/_1)+i/_P’l—’Sw(j//_1)+j/_P1;’d/’d//.

=1 j'=1d'=1

The output size is given by:

HY =14 {H_H’E’P’:+P:J'
h




Convolutional Neural Networks (CNNs)

 Spatial Pooling
* The typical blocks are the max and sum pooling,

respectively computing the maximum and the summed
response of each feature channel in a H x W’ patch.

* Pooling progressively reduces the spatial size of the input
representation.

* This reduces the number of parameters and, therefore,
controls over fitting;

* Also, it makes the network invariant to small transforms,
distortions and translations in the input image (a small
distortion in input will not change the output of pooling).

1 Z
yi"j”d = 1<i/<g}?§j,<Wl xi"—{-i’—l,j”-{-j/—l,d' y’i"j"d = W/H/ xi”—{-i’—l,j"-{—j’—l,d'
SUSHLISY S 1<¥/<H'1<j'<W'



Convolutional Neural Networks (CNNs)

* Pooling
* Note that Pooling down samples the input volume only
spatially;
* The input depth is equal to the output depth;

* The pooling operation is often considered deprecated. To
reduce the size of the representation, in is possible to use
larger strides in the convolution layers.

224x224x64
112x112x64 Single depth slice
Bom! | EEN 2 | 4
max pool with 2x2 filters
SN 7 | 8 and stride 2
3 | 2 .
| | -1
~ S 112 y
224 downsampling ,2

224 Example: max() pooling




Convolutional Neural Networks (CNNs)

* Non-Linearity
* There are two basic non-linear activation functions used in
CNNS: “ReLU” (Rectified Linear Units) and “Sigmoid”.

1
Yijd = max{0, xijd}' Yija = G(CEijd) B 1 + e %ijd

* As advantages with respect to each other, Sigmoid is
consider not to blow up activation, while ReLU does not
vanishes the gradient

* In the case of Sigmoid, when the input grows to infinitely large,
the derivative tends to O.

* However, in the case of RelLU, there is no mechanism to

constrain the output of the neuron, as the input is often the
output)



Convolutional Neural Networks (CNNs)

* Fully Connected layers

* Neurons in a fully connected layer have full connections to all
activations in the previous layer, as in a regular feed-forward network.

* |n practical terms, these neurons resemble pretty much the neurons in
”Convolution” layers.

* The only difference between fully connected and Convolution layers
is that the neurons in the former layer are connected only to a local
region in the input, and that many of the neurons in a CONV volume
share parameters.

 However, the neurons in both layers still compute dot products, so
their functional form is identical.

* For example, an FC layer with K=4096 that is looking at some input
volume of size 7x7x512 can be expressed as a Convolution layer with
F=7 x 7 x 4096 (padding O, stride 1).

* |n other words, we are setting the filter size to be exactly the size of the
input volume;

* Hence the output will simply be 1x1x4096.



Convolutional Neural Networks (CNNs)

e Softmax

* Can be seen as the combination of an activation function
(exponential) and a normalization operator.

* It is usually applied as the transfer function of the last layer
of the CNN, where the idea is to push up the maximum
value of the responses to “1”, and all the other values to
IIOH.

* In practice, it simulates the probability of the input
corresponding to each category, represented by a neuron in
the output layer.

exmk

Yijk —



Convolutional Neural Networks (CNNs)

* Most of the data memory used by CNNs is used in the early Convolutional
layers (where spatial resolution is maximal), whereas most of the
parameters of the network are in the fully connected layers.

* Example VGGNet, one of the well known and succeeded architectures:

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456 POOL2: [56x56x128]
memory: 56*56*128=400K weights: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0

FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000



Convolutional Neural Networks (CNNs)

* VGGNet:
* The total memory used is about 4 bytes * 24,000,000 = 93 MB
* This is required only for the forward step
* |n practice, the backward step requires around the double memory;
* The network has 138,000,000 parameters to be tuned by the back-
propagation algorithm.
* |t should be noted that the conventional paradigm of a linear list of layers
is not the state-of-the-art anymore.

* Google’s Inception architectures and also Residual Networks from
Microsoft Research Asia.

* Both of these feature more intricate and different connectivity
structures.

* Most of the COTS (commercial off-the-shelf) models have complex graph-
based architectures.



Convolutional Neural Networks (CNNs)

e Accuracy vs. Number of operations for a single forward step.
Circumference radii corresponds to the number of parameters

Inception-v4
80 4 :
Inception-v3 ’ : ResNet-152
;5 |ResNet-50 ‘ 5 VGG-16 VGG-19
1 ResNet-101
’ ResNet-34
= 70 - ResNet-18
9 O
@ GooglLeNet
E ENet
Y 65
'é‘ ° BN-NIN
© 60 5M 35M  65M  95M 125M  155M
BN-AlexNet
35 AlexNet
50 v r v ) v v v v
0 5 10 15 20 25 30 35 40

Operations [G-Ops]
Source. https://towardsdatascience.com/neural-network-architectures-156e5bad51ba



Convolutional Neural Networks (CNNs)

* An illustration of the most popular deep learning architectures

IS prOV|dEd IN http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/

L SUE BOE T B

m

@m

4 Hp

[ Bl

AlexNet VGG GoogLeNet |nception Resnet



CNNs: Example

* How to create (and instantiate) one CNN (Sequential):

def cnn_model(input_shape=(32, 32, 3)):
model = Sequential()

model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=input_shape))
model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))

return model
# HHAHBBBHARBBHAHBRHHBBRRHRRBRRABUBRBH BB BB R BB B BH BB BB HHHRBHHRBRHH
# Instantiate model
model = cnn_model()

model.summary ()

# Compile model
model.compile(optimizer="'rmsprop’, loss='categorical_crossentropy’, metrics=['accuracy'])

(“Sequential” objects provide the simplest way. “Functional”
objects enable additional functionalities)



CNNs: Example

 How to use (or fine tune) one well known CNN model:
* Example: Inception.V3

def create_inception(tot_classes):
imgs_input = Input((args['image_height'], args['image_width'], 3))

if args['fine_tuning'] == 0:
model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3),
weights=None, include_top=False)
else:

model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3),
weights="'imagenet', include_top=False)
model_tmp.trainable = False
x = model_tmp(imgs_input, training=False)

x = keras.layers.GlobalAveragePooling2D() (x)
outs = Dense(tot_classes, activation='linear') (x)

md = Model(inputs=imgs_input, outputs=outs)
md. compile(optimizer=RMSprop(learning_rate=args['learning_rate']), loss=tf.keras.losses.MeanAbsoluteError())
return md

* This is typically the approach that attains the best results.

* Not only the architecture was coherently designed, but also the
weights were optimized based in huge datasets.



CNNs: Example

* How to train one CNN:

# For small datasets
history = model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1, validation_split=.3)

# For large datasets
for i in range(tot_batches):
[X_batch, y_batch] = get_input_batch(i)
loss = model.train_on_batch(X_batch, y_batch)

* Typical preprocessing steps:

# Images are typically normalized to the range [0, 1].
X_train = X_train.astype("float32") / 255
X_test X_test.astype("float32") / 255

# In classification problems, labels are typically converted to one-hot encoding.
y_train = to_categorical(y_train)
y_test to_categorical(y_test)



Example CNN: Argument Parsing

ap = argparse.ArgumentParser()

ap.add_argument('-d', '--dataset’, required=True, help="'CSV learning dataset file')
ap.add_argument('-o', '--output_folder', required=True, help='Output folder')
ap.add_argument('-b', '--batch_size', type=int, default=100, help="'Learning batch size')
ap.add_argument('-iw', '--image_width', type=int, default=512, help="'Image width')
ap.add_argument('-ih', '--image_height', type=int, default=128, help='Image height')
ap.add_argument('-I', '--learning_rate', type=float, default=1e-3, help='Learning rate')
ap.add_argument('-de', '--decay_rate', type=float, default=1e-2, help="'Decay rate')
ap.add_argument('-dr', '--dropout_rate', type=float, default=0.25, help='Dropout rate')
ap.add_argument('-e', '--epochs’, type=int, default=1000000, help='Tot. epochs')
ap.add_argument('-pl', '--probability learn', type=float, default=0.7, help="'Probability Learning set')
ap.add_argument('-pv', '--probability validation', type=float, default=0.15, help="'Probability Validation set')
args = ap.parse_args()

The script is then executed by: “python3 script.py —d ‘data.csv’,...



Large Dataset Loading

def read_csv(dataset):
# Load Data in '.csv' format: [ [filename_1, label_1], [filename_2, label 2],...]
samp =[]
with open(dataset) as f:
csv_file = csv.reader(f, delimiter=',")
for row in csv_file:
samp.append(row)

random.shuffle(samp)
return samp

The “csv” file should be in the format:
/path/image_1.jpg 1
/path/image_2.jpg O
/path/image_3.jpg 2



Dataset Splitting

def split_dataset(dt):
dt_I =]
dt_v=1{]
dt_t=1]
onehot_encoder = OneHotEncoder(sparse=False)
onehot_encoder.fit(np.asarray([x[-1] for x in dt]).reshape(-1, 1))
out = onehot_encoder.transform(np.asarray([x[-1] for x in dt]).reshape(-1, 1))

dt = list(zip(dt, out))

for el in dt:
Divides the available data into three

X = random.random() _ _ _
sub-sets: learning + validation + test

if x < args.probability_learn:
dt_l.append([el[0][0], el[1]])

elif x < args.probability_learn + args.probability_validation:
dt_v.append([el[0][0], el[1]])

else:

dt_t.append([el[0][0], el[1]])

return dt_|, dt_v, dt_t



Data Batch Loading

def get_input_batch(gt, idx, augm, tot_c):

tot = min(args.batch_size, len(gt) - idx)

imgs = np.zeros((tot, args.image_height, args.image_width, 1)).astype('float')

labels = np.zeros((tot, tot_c)).astype('float’)

foriin range(tot):
img = cv2.imread(gt[idx + i][0])
if augm is not None:
img = augm.augment_image(img)

img = cv2.resize(img, (args.image_width, args.image_height))

imgsli, :, :;, 0] =imgl[:, :, 0] / 255
labels[i, :] = gt[idx +i][1]

return imgs, labels

Load one batch of (maximum)
"batch_size” images and the
corresponding ground truth



Create CNN

def create_cnn(tot_c): conv16 = Conv2D(512, kernel_size=3, strides=2, padding="same")(drop15)

imgs_input = Input((args.image_height, args.image_width, 3)) convl6_bn = BatchNormalization(momentum=0.8)(conv16)

convl6_a = LeakyReLU()(conv16_bn)

convl2 = Conv2D(64, kernel_size=3, strides=2, padding="same")(imgs_input) drop16 = Dropout(args.dropout_rate)(conv16_a)

convl2_bn = BatchNormalization(momentum=0.8)(conv12) pooled = Flatten()(drop16)

convl2_a = LeakyReLU()(conv12_bn)

drop12 = Dropout(args.dropout_rate)(conv12_a) densel = Dense(128, activation="relu’, kernel_constraint=None)(pooled)

dropl = Dropout(args.dropout_rate)(densel)
convl3 = Conv2D(128, kernel_size=3, strides=2, padding="same")(drop12)

convl3_bn = BatchNormalization(momentum=0.8)(conv13) dense2 = Dense(64, activation="relu’, kernel_constraint=None)(drop1)

convl3_a = LeakyRelU()(conv13_bn) drop2 = Dropout(args.dropout_rate)(dense2)

drop13 = Dropout(args.dropout_rate)(conv13_a)

outp = Dense(tot_c, activation="'sigmoid’, kernel_constraint=None)(drop2)

convl4 = Conv2D(256, kernel_size=3, strides=2, padding="same")(drop13) out = Softmax()(outp)

convl4_bn = BatchNormalization(momentum=0.8)(conv14)

convl4_a = LeakyReLU()(conv14_bn) md = Model(inputs=imgs_input, outputs=out)

#dropl4 = convl4_a md.compile(optimizer=SGD(Ir=args.learning_rate, momentum=0.8),

drop14 = Dropout(args.dropout_rate)(conv14_a) loss=tf.keras.losses.CategoricalCrossentropy())

md.summary()
convl5 = Conv2D(512, kernel_size=3, strides=2, padding="same")(drop14) return md

convl5_bn = BatchNormalization(momentum=0.8)(conv15)

convl5_a = LeakyReLU()(conv15_bn)

drop15 = Dropout(args.dropout_rate)(convi15_a) Creates a CNN of 27 Iayers



Train() + Validate()

i=0
while i < len(l_s):
[imgs, gt] = get_input_batch(l_s, i, augmenter, tot_c)
lo = md.train_on_batch(imgs, gt) One training epoch
lo_l.append(lo)
i += args.batch_size
print("\r Learn [%d - %d/%d]...' % (epoch, i, len(l_s)), end="

i=0

while i < len(v_s):
[imgs, gt] = get_input_batch(v_s, i, None, tot_c)
lo = md.test_on_batch(imgs, gt) One validation GDOCh
lo_v.append(lo)

i += args.batch_size
print("\r Valid [%d - %d/%d]...' % (epoch, i, len(v_s)), end=")



Plot()

ep = range(1, epoch + 1)

fig_1 = plt.figure(1, figsize=(18, 8))
plt.clf()

gs = gridspec.GridSpec(2, 2, figure=fig_1)

ax = fig_1.add_subplot(gs[O, 0])

ax.plot(ep, losses_learn, '-g') Plot intermediate results
ax.plot(ep, losses_valid, '-r')

ax.grid(True)

ax.title.set_text('Losses’)



