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Feature Representation

e Raw input data (e.g., high-dimensional images, or
other kinds of signals) often contains redundant
or irrelevant information.

* Feeding high-dimensional raw data directly to the
model increases: H
* The number of parameters exponentially.
* The risk of overfitting.
* The computational cost of training.

* The effects of the Curse of Dimensionality -
sparse data in high-dimensional spaces.

H x W might lead to an
"excessive high hyperspace”

 Feature Extraction transforms “Raw Data” into a

meaningful, “Lower-dimensional “Young”

Representation”, making models more efficient, Hintensity = 154

accurate, and robust. “Long Hair’ - -
1,62m Black Hair

Features: e mmmsm oo



Feature Representation

Local Binary Patterns (LBPs) / Features
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Features

Histogram of Oriented Gradients (HOGs)
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Hu Moments, Chain codes, Shape Context, SIFT, SURF, Statistical (e.g., mean, std, kurtosis,...),....



Dimensionality Reduction

* The curse of dimensionality is one of the most
classical phenomena in the development of
Machine Learning systems.

* In short, when the dimensionality increases, the
volume of the space increases so fast that the data
become sparse.

 Sparsity is problematic for any method that requires
statistical significance, i.e., densely populated
spaces.

* For example, consider 100 evenly spaced
sample points (instances) inside a unit interval.
* On average, points will be separated around
1072=0.01
* An equivalent sampling that will yield similar
density in a 10-dimensional unit hypercube
would require 10%2°[=(10%)1°] sample points




Dimensionality Reduction

* In statistics, machine learning, and information
theory, dimensionality reduction is the process of
reducing the number of random variables under
consideration by obtaining a set of principal
variables.

* In general, there are two families of methods to
reduce the dimensionality of a data set:

* Feature Selection. The idea is to find a subset of the
original features that better represent the problem,
i.e., that minimally decrease the amount of available
information, when compared to the original dataset.

* Most approaches are based in filters (based in information
gain), wrappers (based in accuracy) and embedded (features
iteratively selected/removed according to prediction errors)

* Feature Extraction. It is often also designated as
“Feature Projection” and the idea is to transform the
original feature space into a space of fewer
dimensions, while keeping as much of the original
information as we can.

* Principal Component Analysis (PCA) is the main technique in
this family.
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The key idea is to find
the direction(s)
(vector(s)) onto which
data maximally span




PCA

* Graphically, we are interested in finding the direction (vector in the original
space) onto which the projected data p,rewdes the minimal projection error:
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This is an example of a
bad projection vector
that produces large
projection errors!!




PCA

* Graphically, we are interested in finding the direction (vector in the original
space) onto which the projected data have minimal projection error:
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Example of a much better
projection vector that produces
smaller projection errors




PCA: Covariance

* The covariance can be obtained for any two
dimensions (features) of a n-dimensional v
feature space

>

* |t is a measure of the joint variability of two \
features

* If both variables vary in a direct way, the
covariance is positive

* On the contrary, if both variables vary
inversely, the variance values will be
negative.

* The sign of the covariance shows the
tendency in the linear relationship between
the variables.

« The magnitude of the covariance is not easy Y
to interpret because it is not normalized
and hence depends on the magnitudes of
the variables.

* The normalized version of the covariance,
the correlation coefficient, however, shows

by its magnitude the strength of the linear
relation.




PCA: Covariance

* The distance between sample points and their mean is
multiplied. Then, the result is divided by the number of data
points minus 1:

n X, —X)i -Y)
n—1

cov(X,Y) =

where X, Y; are the ith data points, X, Y are the sample means
and “n” is the number of data points.

* The results is meaningful essentially by analysing it’s sign:
* Positive: Both dimensions vary directly.
* Negative: Both dimensions vary inversely.
* Zero: Dimensions are



PCA: Covariance Matrix

* The Covariance Matrix C contains all covariance pair values between every
possible dimensions of a feature space :

C =|[cij|cij = cov(Xi, Xj)]

* For e.xem.inle, considering a three dimensional space {X, Y, Z}, the covariance
matrix will correspond to:

cov(X,X) cov(X,Y) cov(X,Z)
cov(Y,X) cov(Y,Y) cov(Y,Z)
cov(Z,X) cov(Z,Y) cov(Z,Z)

* Values along the main diagonal describe the variance of the corresponding
dimension.

* Based on its definition, it is obvious that cov(X,Y)=cov(Y,X), i.e., the covariance
matrix is symetric with respect to its main diagonal.



PCA: Covariance Matrix

* Exercise. Obtain the covariance matrix for the given

data set:
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Eigenvectors and eigenvalues

* Consider the multiplication of a matrix by a vector:

1/11
(; ?) (3)=(5)

 However, there are some particularly interesting vectors:

G D G)-=(s)-+0)

* In the first case, the resulting vector is not a multiple of the original vector.

* Oppositelly, in the second case, the resulting vector (12,8) is a multiple of the
multiplier.

e As such, the latter is an eigenvector.
* The correspondong eigenvalue is “4”



Eigenvectors and eigenvalues

* By analysing the direction of the original and resultant vectors:

NNW O1 0o

1 3 12

* Considering the matrix as a transformation, it can be concluded
that in the second case, the direction was not changed. This is

the key insight the notion of eigenvector.
* The given matrix does not change the direction of its eigenvectors.



Eigenvectors and eigenvalues

* As we’ve seen, the notion of eigenvalue is strongly
related to the eigenvector.

* |t is the value that should by multiplied by the eigenvector
to obtain the original vector.

* In the above example, 4 was the eigenvalue that
corresponds to the given eigenvector.

* As such, eigenvalues and eigenvectors come in pairs
and are always inter-related.



Eigenvectors and eigenvalues

* As a summary, the eigenvectors of a matrix correspond to the directions that
are not changed by the (transformation) matrix.

* Not all matrices have eigenvectors.

* Matrices have to be square.

o_7

* A (n x n) matrix has —at most — “n” eigenvectors.

* The set of eigenvectors of a matrix (image) is widely used to describe the
spatial content of that image (feature).
* In MATLAB, this eigenanalysis is made by the “eig()” function:
* [V,D] = eig(A)
* Returns the eigenvectors (D) and corresponding eigenvalues (V) of matrix
A.
* In Python, this can simply be done by:
*V,D=LA.eig(A)



Eigenvectors and eigenvalues

* There is an important property to be stressed: the eigenvectors of a matrix
are orthogonal. This is to say that they form an orthogonal basis of the
matrix.

* We are able to express every point of a data set by linear combinations of
its basis-vectors.

* This is specially usefull for the analysis of principal components (PCA).

* It is usual to determine the eigenvectors/eigenvalues in their normalized
version, i.e., with length normalized to 1.

* As previously seen, the length of a vector does not affect its property of
being (or not) an eigenvector.

* Hence, having an eigenvector (x4, ..., X)) it is usual to divide each
component by the norm of this vector, in order to obtain length “1”:
* [1Xee Xa) | =sQrt (X% + ... + %,2)



Eigenvectors and eigenvalues

* Exercise

* Determine, from the following vectors, which are
eigenvectors of the matrix given below and, if positive,
determine the corresponding eigenvalue.

* Matrix:
'3 0 1
—4 1 2
—6 0 -2
* \Vectors:

2 [-1 [-1 [0 |3
2 0 1 1 2
-1 2] 3 o 1]



PCA: Principal Component Analysis

* The Principal Component Analysis (PCA) it’s a well
known way to detect patterns on data, by expressing it
on a way that enhances similarities or differences.

* Detecting patterns on high dimensional data is a hard
task, either for humans or machines.

* Requires huge amounts of data. An empirical rule says that
at the minimum, d?instances are required to analyze a d-
dimensional data set.

* PCA is typically used to compress data (reduce
dimensionality), without loosing substantial
information.



PCA: Principal Component Analysis

*Step 1. The analysis of principal components requires a
data set (with dimension n) and cardinality (k).

 Step 2. Removal of energy. For each dimension, the
corresponding mean is subtrated to each component.
As such, all dimensions of the data set have zero
energy.




Principal Component Analysis

* Step 3. Calculus of the covariance matrix. Here, the

relationships between independent components are
detected, together with an assessment of the data
dispersion in each dimension (by analysing the main
diagonal components).

*Step 4. As the covariance matrix is square, it is possible
to obtain the set of eigenvectors and corresp2onding

eigenvalues.

*Step 4.1. Eigenvectors normalization. All eigenvectors
are normalized to have norm equal to 1.




Principal Component Analysis

* Step 5. Selection of components. The set of
eigenvectors is sorted by decreasing order, considering
the corresponding eigenvalues. From this set, the “k,”
principal components are selected.

* This is the step that performs the reduction of
dimensionality.

*Step 6. A transformation matrix is built, by
concatenating the eigenvectors selected in the
previous step.

* This matrix will be used to represent all points in the reduced dimensionality feature space.
MAT=[ vectl, vect2, ... Vectk,]



Principal Component Analysis

* Step 7. Data Transformation. As the transformation
matrix has “d” lines (corresponding to the dimension
of the original feature space and k; columns
(corresponding to the dimension of the new feature
space), when multipling each original data point by the
transformation matrix, we obtain a vector of k,
components. These are the new representation of the
data points, in the principal components space.

[1xd]x[dxk;]=[1xk,]



Principal Component Analysis

* How to choose the value of “k”?

* The previously described process does not give any information about a strategy to select
the dimensionality of the principal components feature space.

* There is no formal rule. However, some heuristics about what is generally better exist.

* Usually, the variation in magnitude of consecutive eigenvalues (after sorting) is
measured. When changes in magnitude are higher than a threshold, the selection
process is stopped.

* But most frequently, the proportion of the data variability that is kept by the selected
components is considered as the main criterium.

* Typically, we are interested in keeping around 90, 95, 99% of the original data variability.
* The analysis can be done by measuring the proportion of the sum of eigenvalues:

k
Zi: )l'i
d
Zi=1 Ai

, ’k”: number of selected vectors, and “d”: dimensionality

* Variability:



PCA: Example

* Consider a set of 128 face grayscale images (with dimensions 64
X 64).

e Each image is represented by a 64 x 64 matrix = (4096),
where each position represents the intensity at a point (O:
black pixel, ... 255: White pixel)

e Each face can be regarded as a point represented in a 4096
dimensional feature space




PCA: Example

* We can usethe PCA to select the principal components in this
space (i.e., the directions in which the elements mostly span
(vary)) .

* In pratice, the eigenvectors (each one with dimension 4096) with the
largest corresponding eigenvalues will be selected.

* Next, each original face can be represented as a weighted
combination of the top-k eigenvalues.
* In such case, each face will actually be represented by weights a: a4, ... a;

* The PCA can be also regarded as a way to represent a face, with much less
information than the originally used, while keeping the most important
information.

e Further, the facial recognition process can be done in the new
feature space of (much more) reduced dimension, i.e., typically
k << d (original space).



PCA: Example

* Example of the 16 principal components (eigenvectors with the
largest eigenvalues) from the above data set:

(\.

What do the
brightest regions
in each vector
represent?




PCA vs. LDA

* PCA (Principal Component Analysis)
e Unsupervised (ignores class labels). ‘

* Maximizes variance in the data. \
* Produces components that best capture
overall data spread. LDA

* LDA (Linear Discriminant Analysis):
 Supervised (uses class labels).

« Maximizes class separability (ratio of between- PCA
class variance to within-class variance).

* Produces components that best discriminate
between classes.




LDA

1. Compute class statistics:

1. Mean vector for each class.
2. Overall mean of the dataset.

2. Compute scatter matrices:

1. Within-class scatter matrix (S,,): how samples
spread within each class.

2. Between-class scatter matrix (Sg): how class means
spread relative to the overall mean.

3. Solve the eigenvalue problem:
1.  Find eigenvectors w; of Sy,* Sg

2. Select top eigenvectors (theat give the most
discriminant directions.)

4. Project data:

1. Transform original data into the new lower-
dimensional space using the selected eigenvectors.




