MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2025/26

Syllabus

Machine
Learning

e Non-Linear Discrimination

* Multi-layer Perceptrons

Linear Discriminants: Exercise

* Consider the following truth tables, corresponding to the classical “AND”,
“OR"” and “XOR” problems:

* Suppose we want to learn three logistic regression classifiers that
appropriatelly discriminate between the “0”|”1” classes

AND XOR
nn nn- nn-
0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

Linear Discriminants: Exercise

* As we previously saw, the logistic regression is only able to find hyperplanes
(straight lines, in 2D data) that separate the subspaces of each class, which
happens in the “AND/OR” problems.

* These are called linear discriminants

. AND g(hg(x)) = g(91x1 + 92X2 + 90)
. p .
h(x) >0 1
h(x) 0 14+e™*
\ . .
h(x) <0 - 1+€_(91x1+ 0,x,+6,)
L
;(:) One appropriate “AND” solution could

be: (61, 92, 80) = (08, 0.8, -1 5)

Linear Discriminants: Summary

*In short, one logistic regression model is effective only
in linearly separable problems, where there is a
hyperplane that appropriately separates the feature
space.

1D 2D ...nD

1@ o we

class '1'

0.5

class '0'

Linear Discriminants: Exercise

* However, for the “XOR” problem, there is no possible configurations for 8 that
satisfy the requirements:

XOR

« XOR appears to be a very simple problem. However, Minksy and Papert (1969)
showed that this was a big problem for neural network architectures of the
1960s, known as perceptrons.

* The inefficiency of Perceptron networks to solve this problem caused the “NN

winter” (period up to the early 90s, when NN were almost abandoned by the ML
community)

Neural Networks

« Among the three classical approaches for machine learning (pattern
recognition) models, this kind of methods aims at replicate the way
the human brain works:

NEURON

|
: Dendrites {2 A
#- Axon Terminals (receivers)|-._ ’_\ Y
(tramsmitters) [‘ / !

Core

Schwann's
| Cells

{they make
the myelin)

Node of
Ranvler

/
Output

AXOH

(the conducting ~ Myelin Sheath
fiber) (insulating fatty layer that

speeds transmission)

T Inputs

EnchantedLearning.com

* In practice terms, this functioning model has remarkable similarities
to the way our previous models were defined:

* “Mixing” the values from a set of inputs, followed by one non-linear
activation function”.

Neural Networks

* A logistic regression classifier is defined by:

Inputs: X4, Xo,...

1
X)= ———F
fo(x) 1 + 6=(01x,+ 0,0, +6) .2

\ﬁ

Phase 1: /

Convolution Phase 2: Non-linearity
between x and 6

* A Rosenblatt’s perceptron\is defined as:

Inputs Weights Net input Activation
function function

Neural Networks

* When designing a neural network, there are different parameterizations that
have to be chosen, with might determine the system effectiveness:

* The number of neurons in the input/output layers result directly of the problem
considered: 1 001

* Input Layer = Dimension of the Feature Space 2 010
* Output Layer = Number of classes (hot encoded)_______—" 3 100

* In the hidden layers, the number of neurons can vary:
* A too short number might not be enough to model the decision surface desired;

* A too high value might lead to overfitting

* In practice, values between half and the double of the number of neurons in the
input layer are tested

 Regarding the number of hidden layers:
Networks with one layer have the ability to
approximate any linear decision surface
Networks with two layers_approximate any
continuous decision surface

Networks with three layers approximaté
decision surface

Machine Learning: NN Exercise

A ®B=ﬁ((A /\B)V (=4 /\ﬁB))

* For example, how to infer the weights for a “NOT” neuron, i.e., a neuron that replicates
the functioning of a logical “NOT” operation.

* In this simple case, there are various weight configurations that will work

1

* Considering that:

—— W0=O.5

A i > > out

Machine Learning: NN Example

A ®B=ﬁ((A /\B)V (=4 /\ﬂB))

* Now, how to infer the weights for a “OR” neuron, i.e., a neuron that replicates the
functioning of a logical “OR” operation.

* Again, there are various weight configurations that will work:

* Considering that:

1

W,=-0.5

v

out

Machine Learning: NN Example

A ®B=ﬁ((A /\B)V (=4 /\ﬁB))

* Next, in a similar way, if we want to infer the weights for a “AND” neuron, i.e., a neuron
that replicates the functioning of a logical “AND” operation.

* As in the previous cases, there are various weight configurations that will work:

1

* Considering that:

—— W0='O.5

A

N\

W,=0.4

v

out

Machine Learning: NN Exercise

A ®B=ﬂ((/l /\B)V (=4 /\ﬂB))

* Design a multi-layer network, with the corresponding weights 0, able to solve the
“XOR” problem.

* Considering that:

Machine Learning: NN Exercise

* Considering that:

A ®B=ﬂ((/l /\B)V (=4 /\ﬂB))

* Design a multi-layer network, with the corresponding weights 0, able to solve the
“XOR” problem.

e This will be a network “specific” to reproduce this function.

 However, the big question remains: How to automatically obtain the 0 values?

Neural Networks: MLP Architecture

* The key concept of the most classical kind of neural networks (feed-
forward) is to define multiple layers, in which neurons of one layer
receive the input of all neurons in the previous layer.

* These are called neurons in hidden layers
* Neurons in the first layer receive the x input
* They are called neurons in the input layer

* Neurons in the last layer provide the result of the model
* They are called neureris in the output layer

inputs # classes

inputs /2 2 # inputs * 2

Machine Learning: Python MLP

* Let’s start by the easiest part: (implementation)

* How can | create one “Multi-Layer Perceptron” (MLP) network in Python and
apply it to my problem?

* Step 1: Import the corresponding library:

from sklearn.neural _network import MLPClassifier

» Step 2: Have a X data set with shape (n, 2) and y with shape (n,)
* In practice, X will be a “list of lists” and y will be a list.

X=[[0.,0.],1[1.,1.0]
y =10, 1]
 Step 3: Create the network:
clf = MLPClassifier(solver='Ibfgs’, alpha=1e-5,
hidden_layer sizes=(5, 2), random_state=1)
* Step 4: Start learning:

clf.fit(X, y)
* Step 5: Use it, to predict on new instances:

clf.predict([[2., 2.], [-1., -2.]])

Machine Learning: Keras MLP

* And, using Keras...

: # neurons
import keras as K Inbut Laver
from tensorflow.keras.models i P y
from tensorflow.keras.layers ipiport Dense, Activation, Softmax
tot_classes =5
model = Sequential()
model.add(Dense(7, input_shape=(X.shape[1],))) # neurons
model.add(Activation('sigmoid')) Hidden Layer
model.add(Dense(6))
model.add(Activation(W
model.add(Dense(tot_classes))
model.add(Softmax())
def J(y_true, y_pred):

squared_difference = K.square(y_true -y _pred)

return K.mean(squared_difference, axis=-1) i [EUEIE

Output Layer

model.compile(optimizer='adam’, loss=J, metrics=['accuracy’])

model.fit(X_train, y_train, epochs=100, batch_size=8, verbose=1)

Neural Networks: Learning

* |n case of multilayered networks, the closed-form equation for the whole
network cost function and its corresponding derivatives might not be easy to
obtain.

* Exercise:

e Obtain the function that describes the functioning of the following network,
considering that the transfer functions of all nodes.

NN Learning

1

1 + e~ W1,0—W1,1%T1—W1,2%2

1
tg =

o 1 + e~ W2,0~W2,1T1—W2,2T2

t1 =

1

[2 e—W3,0—ws,1t1—wW2,2t2

NN =

1

1 . 1
14e~ W1,07W)1,1%) ~W)] 272 Ws,2 14e W2,07W2,1¥F17W2,2%2

—W3,0—W3,1

Backpropagation

J(w) = % D Cost(NN(a), x(i), y(i)))

* Cost (NN(w, x1), y()= [-log (NN(w, x1)), if yi=1

L -log (1 - NN(w, x)), if y()=0

* Therefore, as we did before for the logistic regression classifier, the
cost function is combined in a single function:

J(w) = — — %,y log (NN(w, xV) + (1-y®) log (1 - NN(w,x)

Backpropagation

* Using the gradient descent (delta rule) learning

strategy previously described, it will be required to
obtain:

o . o 3
8’(1)1,0 . a’wz,o & a'wB,O .
2 =7 o ’ —7
8’(1)1,1 . a’wz,l o awB,l .
b =7 o s =7
8’(1)1,2 . awz,z - a'w3,2 .

...and this is a tiny network...

Backpropagation and the Chain Rule

* “Backpropagation” is the short
name for "backward propagation “local gradient”
=~ 0z

” 0z
of errors o | |os

* It is an algorithm for supervised f

learning of multi-layer artificial
neural networks, based in gradient

descent - .
4 Y gradients
* The key concept is the chain rule:

dy dy adg 9df
dx dg " of " ox y=g(f(x))
 Calculates the gradient of the |
error function with respect to the /y
neural network's weights;

* |t is a generalization of the delta /
rule for perceptrons to multilayer , g

feed-forward neural networks. X §

oL
0z

IR

