
MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics
Hugo Pedro Proença,
hugomcp@di.ubi.pt, 2025/26

Machine
Learning

[04]

3

Syllabus

• Non-Linear Discrimination

•Multi-layer Perceptrons

• Consider the following truth tables, corresponding to the classical “AND”,
‘’OR’’ and “XOR” problems:

• Suppose we want to learn three logistic regression classifiers that
appropriatelly discriminate between the ”0”|”1” classes

Linear Discriminants: Exercise

X1 X2 Y

0 0 0

0 1 0

1 0 0

1 1 1

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 1

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0

AND OR XOR

✓ ✓ ✗

• As we previously saw, the logistic regression is only able to find hyperplanes
(straight lines, in 2D data) that separate the subspaces of each class, which
happens in the “AND/OR” problems.

• These are called linear discriminants

Linear Discriminants: Exercise

X2

X1

AND 𝑔 ℎ𝜃 𝒙 = 𝑔(𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃0)

1
1 + 𝑒!"

One appropriate “AND” solution could
be: (𝜃1, 𝜃2, 𝜃0) = (0.8, 0.8, -1.5)

ℎ(𝑥) ≈ 0
ℎ(𝑥) > 0

ℎ(𝑥) < 0
= #

#$%!(#!$!% #"$"% ##)

• In short, one logistic regression model is effective only
in linearly separable problems, where there is a
hyperplane that appropriately separates the feature
space.

Linear Discriminants: Summary

𝟏𝐃 𝟐𝐃 ...n𝐃

• However, for the “XOR” problem, there is no possible configurations for 𝜽 that
satisfy the requirements:

• XOR appears to be a very simple problem. However, Minksy and Papert (1969)
showed that this was a big problem for neural network architectures of the
1960s, known as perceptrons.
• The inefficiency of Perceptron networks to solve this problem caused the “NN

winter” (period up to the early 90s, when NN were almost abandoned by the ML
community)

Linear Discriminants: Exercise

X2

X1

XOR

?

• Among the three classical approaches for machine learning (pattern
recognition) models, this kind of methods aims at replicate the way
the human brain works:

• In practice terms, this functioning model has remarkable similarities
to the way our previous models were defined:

• “Mixing” the values from a set of inputs, followed by one non-linear
activation function”.

Neural Networks

Inputs
Output

Core

• A logistic regression classifier is defined by:

𝑓𝜽 𝒙 =
1

1 + 𝑒!(($)$* (%)%* (&)

• A Rosenblatt’s perceptron is defined as:

Neural Networks

Inputs: x1, x2,...

Phase 1:
Convolution
between x and 𝜽

Phase 2: Non-linearity

• When designing a neural network, there are different parameterizations that
have to be chosen, with might determine the system effectiveness:
• The number of neurons in the input/output layers result directly of the problem

considered:
• Input Layer = Dimension of the Feature Space
• Output Layer = Number of classes (hot encoded)

• In the hidden layers, the number of neurons can vary:
• A too short number might not be enough to model the decision surface desired;
• A too high value might lead to overfitting
• In practice, values between half and the double of the number of neurons in the

input layer are tested

Neural Networks

• Regarding the number of hidden layers:
Networks with one layer have the ability to
approximate any linear decision surface
Networks with two layers approximate any
continuous decision surface
Networks with three layers approximate any
decision surface

1
2
3

0 0 1
0 1 0
1 0 0

• Considering that:

𝐴 "𝐵 = ¬ ((𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵))

• For example, how to infer the weights for a “NOT” neuron, i.e., a neuron that replicates
the functioning of a logical “NOT” operation.
• In this simple case, there are various weight configurations that will work

Machine Learning: NN Exercise

A ¬

1

W0=0.5

W1=-1

out

• Considering that:

𝐴 "𝐵 = ¬ ((𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵))

• Now, how to infer the weights for a “OR” neuron, i.e., a neuron that replicates the
functioning of a logical “OR” operation.
• Again, there are various weight configurations that will work:

Machine Learning: NN Example

B

⋁

1

W0=-0.5

W1=1

out

A

W2=1

• Considering that:

𝐴 "𝐵 = ¬ ((𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵))

• Next, in a similar way, if we want to infer the weights for a “AND” neuron, i.e., a neuron
that replicates the functioning of a logical “AND” operation.
• As in the previous cases, there are various weight configurations that will work:

Machine Learning: NN Example

B

⋀

1

W0=-0.5

W1=0.4

out

A

W2=0.4

• Considering that:

𝐴 '𝐵 = ¬ ((𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵))

• Design a multi-layer network, with the corresponding weights 𝜽, able to solve the
“XOR” problem.

Machine Learning: NN Exercise

A

B

⋁

⋀

¬

?

?

?

• Considering that:

𝐴 '𝐵 = ¬ ((𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵))

• Design a multi-layer network, with the corresponding weights 𝜽, able to solve the
“XOR” problem.

• This will be a network “specific” to reproduce this function.
• However, the big question remains: How to automatically obtain the 𝜽 values?

Machine Learning: NN Exercise

A

B

⋁

⋀
¬

¬

⋀

• The key concept of the most classical kind of neural networks (feed-
forward) is to define multiple layers, in which neurons of one layer
receive the input of all neurons in the previous layer.

• These are called neurons in hidden layers
• Neurons in the first layer receive the x input

• They are called neurons in the input layer
• Neurons in the last layer provide the result of the model

• They are called neurons in the output layer

Neural Networks: MLP Architecture

classes# inputs

inputs /2 à # inputs * 2

• Let’s start by the easiest part: (implementation)
• How can I create one “Multi-Layer Perceptron” (MLP) network in Python and

apply it to my problem?
• Step 1: Import the corresponding library:

• Step 2: Have a X data set with shape (n, 2) and y with shape (n,)
• In practice, X will be a “list of lists” and y will be a list.

• Step 3: Create the network:

• Step 4: Start learning:

• Step 5: Use it, to predict on new instances:

Machine Learning: Python MLP

from sklearn.neural_network import MLPClassifier

X = [[0., 0.], [1., 1.]]
y = [0, 1]

clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
 hidden_layer_sizes=(5, 2), random_state=1)

clf.fit(X, y)

clf.predict([[2., 2.], [-1., -2.]])

• And, using Keras...

Machine Learning: Keras MLP

import keras as K
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Softmax

tot_classes = 5

model = Sequential()
model.add(Dense(7, input_shape=(X.shape[1],)))
model.add(Activation('sigmoid'))
model.add(Dense(6))
model.add(Activation('sigmoid’))
model.add(Dense(tot_classes))
model.add(Softmax())

def J(y_true, y_pred):
 squared_difference = K.square(y_true - y_pred)
 return K.mean(squared_difference, axis=-1)

model.compile(optimizer='adam', loss=J, metrics=['accuracy’])

model.fit(X_train, y_train, epochs=100, batch_size=8, verbose=1)

neurons
Input Layer

neurons
Hidden Layer

neurons
Output Layer

Neural Networks: Learning

• In case of multilayered networks, the closed-form equation for the whole
network cost function and its corresponding derivatives might not be easy to
obtain.

• Exercise:
• Obtain the function that describes the functioning of the following network,

considering that the transfer functions of all nodes.

W1

W2

W3

x1

x2

NN Learning
W1

W2

W3

x1

x2

1

1

1

 J(w) = *
+
∑𝐶𝑜𝑠𝑡(𝑁𝑁 𝜔, 𝑥 𝑖 , 𝑦 𝑖)

• Cost (NN(w, x(i)), y(i))= -log (NN(w, x(i))), if y(i)=1

 -log (1 - NN(w, x(i))), if y(i)=0

• Therefore, as we did before for the logistic regression classifier, the
cost function is combined in a single function:

J(w) = − +
,
∑- y(i) log (NN(w, x(i))) + (1−y(i)) log (1 − NN(w,x(i)))

Backpropagation

Backpropagation

•Using the gradient descent (delta rule) learning
strategy previously described, it will be required to
obtain:

…and this is a tiny network...

Backpropagation and the Chain Rule
• “Backpropagation” is the short

name for "backward propagation
of errors”
• It is an algorithm for supervised

learning of multi-layer artificial
neural networks, based in gradient
descent
• The key concept is the chain rule:

𝝏𝒚
𝝏𝒙
= 𝝏𝒚

𝝏𝒈
. 𝝏𝒈
𝝏𝒇

 . 𝝏𝒇
𝝏𝒙

• Calculates the gradient of the
error function with respect to the
neural network's weights;
• It is a generalization of the delta

rule for perceptrons to multilayer
feed-forward neural networks.

