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Abstract—Dynamic contrast-enhanced magnetic resonance of 

the breast is especially robust for the diagnosis of cancer in  

high-risk women due to its high sensitivity. However, its 

specificity may be compromised since several benign masses take 

up contrast agent as malignant lesions do. In this article, we 

propose a novel method of 3D multifractal analysis to 

characterize the spatial complexity (spatial arrangement of 

texture) of breast tumors at multiple scales. Self-similar 

proprieties are extracted from the estimation of the multifractal 

scaling exponent for each clinical case, using lacunarity as the 

multifractal measure. These proprieties include several 

descriptors of the multifractal spectra reflecting the morphology 

and internal spatial structure of the enhanced lesions relatively to 

normal tissue. The results suggest that the combined multifractal 

characteristics can be effective to distinguish benign and 

malignant findings, judged by the performance of the support 

vector machine (SVM) classification method evaluated by 

receiver operating characteristics (ROC) with an area under the 

curve of 0.96. Moreover, the study confirms the presence of 

multifractality in DCE-MR volumes of the breast, whereby 

multiple degrees of self-similarity prevail at multiple scales. The 

proposed feature extraction and classification method has the 

potential to complement the interpretation of the radiologists and 

supply a computer-aided diagnosis (CADx) system. 

 
Index Terms—Breast Cancer, Classification, Computer-aided 

diagnosis, Dynamic contrast-enhanced, Feature extraction, 

Magnetic resonance, Multifractal analysis, Texture analysis. 

 

I. INTRODUCTION 

AGNETIC Resonance Imaging (MRI) of the breast has 

been shown to be the most sensitive modality for 

imaging high-risk women, offering valuable information about 

breast conditions that cannot be obtained by other imaging 

modalities, such as mammography or ultrasound [1], [2].  
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Dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) techniques are based on the injection of an MR 

contrast agent and acquisition of T1-weighted images over 

time, which provides information on the rate of passage of the 

agent between the blood and tissues. Tumor lesions are more 

vascularized due to angiogenesis than the surrounding normal 

tissue, and therefore these areas are distinguished from the 

background [3]. 

The diagnosis is generated by visual examination of 

morphology features and contrast-enhancement kinetics 

(functional features) using descriptors established in the Breast 

Imaging - Reporting and Data System (BI-RADS) lexicon [4]. 

Malignant lesions tend to have more irregular shape, 

spiculated margins, and heterogeneous inner enhancement [5]. 

A lesion with kinetics of rapid initial rise, followed by a drop-

off with time (washout) in the delayed phase, can have a 

positive predictive value of 77% for malignancy [6], [7].  

Although BI-RADS provides useful criteria, the priority and 

weights on different morphological features are not 

standardized. In addition, the analysis of functional features by 

radiologists is a time consuming task and a bottleneck in 

diagnostic workflow [8]. Fischer et al. [9] proposed the 

combination of DCE-MRI morphological and functional 

features for a scoring system (Göttingen score) that is 

nowadays useful to assess the BI-RADS grade. The reported 

values of sensitivity are frequently higher in DCE-MRI than 

any other breast imaging modality, whereas the specificity has 

been reported to fluctuate [10]. Indeed, clinical evaluation of 

breast MRI still remains largely subjective and the reported 

findings are often qualitative, having therefore an impact on 

the consistency and reproducibility of the interpretation [11]. 

Computer assisted interpretation arises in this context as an 

approach to reduce the subjectivity in human interpretation by 

improving specificity and possibly sensitivity, through an 

objective measurement, and offering the possibility of a 

reduction of the time needed for the breast MRI analysis [12]. 

To automate lesion classification, features extracted by 

computer-based image analysis have been investigated as 

diagnostic aids, with mathematical descriptors related with the 

ones visually used by radiologists [13]. This approach can be 

developed towards the quantitative analysis of textural, 

morphological and kinetic enhancement features. 
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Considerable efforts have been put on the development of 

computer-aided diagnosis (CADx) systems that give an 

impression about the suspicion level of the lesion. The general 

approach is based on tumor characterization and the 

application of automatic or semi-automatic classification. The 

simplest heuristic model used to distinguish between 

malignant and benign lesions in DCE-MRI is known as the 

three-time-points (3TP), [3], [14], where points are selected 

along the time-intensity sequence during contrast uptake to 

characterize the enhancement slope and the washout rate. The 

enhancement patterns in the 3TP method varies depending on 

imaging protocol, but all of the first post contrast series of 

malignant tumors with wash-out behavior in late phase do not 

show the peak contrast enhancement. Nevertheless, a plethora 

of other algorithms and classifiers have been proposed. The 

automated interpretation approach based on enhancement 

variance dynamics proposed by Chen et al. [15] used linear 

discriminant analysis for lesion classification after feature 

extraction. Later in [16], Chen et al. used the fuzzy c-means 

clustering technique to identify kinetics. For quantitative 

morphology analysis, Gilhuijs et al. [17] employed radial 

gradient histogram and other shape measures. Yao et al. 

proposed in [18] a pixel-by-pixel classification method based 

on texture analysis and wavelet transform for tumor evaluation 

in breast DCE-MRI. In [19], Zheng et al. used spatiotemporal 

enhancement pattern and Fourier transform to analyze two-

dimensional images of breast tumors. Back-propagation neural 

network classification of segmented tumor regions was 

proposed by Meinel et al. [20] using a combined set of shape 

and kinetic features. The method for classification proposed 

by Nattkemper et al. [21] also includes both kinetic and 

morphological features and compares several classifiers of 

both unsupervised and supervised learning. Artificial neural 

networks have been one of the most investigated approaches 

for the classification of breast lesions in DCE-MRI [22-25]. 

However, it has been shown that support vector machine 

(SVM) lead to a better performance than a variety of other 

machine learning techniques when applied in discrimination of 

breast lesions [21], [26], [27].  

Diagnostic findings in MR images of the breast may be 

disguised with respect to the surrounding features [28], since, 

for instance, non-mass vascular structures can dynamically 

enhance as malignant masses. In addition, some of the 

aforementioned studies that use classifiers of breast lesions in 

DCE-MRI apply a region analysis based on thresholding the 

enhancement signal [29], [30]. Once the signal intensity 

depends on the particular MRI instrumentation and contrast 

agent used in data acquisition, even fitting a pharmacokinetic 

model to the rise of intensities after contrast injection, there is 

no general approach for selecting threshold values. These 

methods require careful user interaction [31], hence other 

model-free approaches may be more suitable for classification 

of lesions with therapeutic changes of tissue perfusion and 

microvascular permeability. 

Currently, the only fully-automated classification with 

reported use in the clinical practice is the one available in the 

first MRI CADx system DynaCAD® which solely relies on 

morphological analysis. The research behind this system is 

based on fractal theory as described by Penn et al. in [32], and 

focused on assessing the margin sharpness of the breast 

lesions, which is only one of the possible ways to analyze 

tissues in the breast [15], [17], [30], [33]. Moreover, a CADx 

system should also work as a second-look for the radiologist 

and therefore focus on a comprehensive set of characteristics 

of the lesions, including features that are indistinguishable to 

the human eye.  

The fractal theory and the human tissue are related since 

both can be characterized by a high degree of self-similarity. 

In this context, self-similarity refers to images that have 

several parts looking like the whole image. When self-similar 

objects are evaluated, the irregularities are then considered as 

structural deviations from the global regularity of the 

background [34], [35]. In [36], Penn et al. have shown that 

nearly two thirds of the cancers were categorized inconclusive 

in terms of fractal dimension. A potential problem with the 

fractal dimension approach is that distinct fractal sets may 

share the same fractal dimension values with different 

appearances or texture patterns [37]. Therefore, the concept of 

lacunarity was introduced as a scale-dependent measure that 

describes the texture of a spatial pattern as a counterpart 

measurement of fractal dimension. Lacunarity explicitly 

characterize the spatial organization of an image, and its 

composing sub-units, which are potentially useful in 

representing the tumor inner structure. From the anatomical 

point of view, the lacunarity helps to estimate the spatial 

heterogeneity of the lesions when the object complexity given 

by fractal dimension is not enough. Guo et al. [38] explored 

the use of fractal and lacunarity analysis independently for the 

characterization of the spatial distribution of the pixel 

intensities and classification of mammographic images. 

Lacunarity was an effective counterpart measure of texture 

analysis. Both fractal and lacunarity studies rely on a measure 

as a function of scale. However, multifractal theory introduces 

a more advanced approach that allows a deeper exploration of 

the potential of the theory for medical image analysis. The 

multifractal analysis provides a spectrum of fractal 

dimensions, characterizing multiple irregularities. This can 

potentially provide more information about the image 

compared to the single fractal dimension [39], without being 

exclusively focused on lesion margins as in [36]. To the best 

of our knowledge, there are no further conclusive results of 

multifractal-based analysis in DCE-MR images of the breast. 

The closest work uses the Multifractal Detrended Fluctuation 

Analysis (MF-DFA) method [34] applied only in 2D 

Mammography, based on the structure of fluctuations and 

detrending steps without employing the lacunarity dimension. 

In this paper, we show how multifractal analysis may depend 

on the concept of lacunarity, when used for the description of 

the spatial distribution of the pixel intensities in image 

volumes with multiscaling behaviors. 

Some studies have also been designed with the extraction of 

features in tri-dimensional (3D) volumes of interest (VOI). 

The performance is likely to improve when taking full 

advantage of the 3D nature of the MR data. In [17], a 3D 
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analysis was compared to two-dimensional (2D) analysis 

using a representative slice through the middle of the lesion. 

3D was found to result in higher performance for the majority 

of the shape-based features. However, the manual lesion 

segmentation employed there would limit the inclusion of this 

technique in an automated CAD. Automatic segmentation has 

been shown to be useful when evaluating state-of-art features 

in 2D or 3D [40]. This is mainly due to the fact that these 

features rely on lesion morphology, and segmentation reduces 

the influence of normal tissue of the breast surrounding a 

tumor on that features. On the other side, usually the 

surroundings (background) of the lesions are not included in 

the analysis of texture complexity. The possible inner 

inhomogeneity of a mass and its relation to normal 

background is frequently ignored. Besides, most of 3D 

segmentation algorithms demand the use of connected-

component labeling post-processing to remove scattered 

voxels not connecting to the main lesion [41]. This can lead to 

the modification of the original shape of the segmented tumor 

and classification errors. Moreover, sharp changes of the 

patterns of enhancement on border slices of a segmented 

tumor are known to occur with most of the techniques based 

on slice by slice assessment of the morphology. This results in 

lower specificity, probably caused by partial volume or the 

recently studied morphological blooming effect [32]. 

Blooming evaluates the transition of the margin to the 

surroundings by a progradient unsharpness of lesion borders, 

however, the spatial volumetric dependency was not 

investigated and multifractal approach has been also neglected 

as in [8]. Multifractal methods have the advantage of 

exploiting the differences in self-similarity properties between 

lesion and surrounding background. We therefore 

hypothesized that, in the task of distinguishing between 

malignant and benign breast lesions on DCE-MRI, 

multifractal texture analysis with lacunarity, as the multifractal 

measure, based on 3D isotropic volumes would yield 

improved performance than single or multi-slice 2D methods, 

whereas avoiding 3D segmentation and other post-processing.  

In this article, we investigate the use of multifractal theory 

conditioned by the 3D lacunarity measure, for classification of 

breast lesions in DCE-MR volumes. We aim to evaluate new 

features for classification which characterize in more detail the 

morphology and texture of the contrast-enhanced breast 

lesions. This aim is accomplished by automated extraction of 

features from the multifractal scaling exponent and SVM-

based classification of malignant and benign lesions. In order 

to study the irregularity patterns within a tumor relatively to 

its surroundings, the volumes selected include the normal 

background around the main lesion. The results obtained with 

the proposed method are compared within the same 

experimental setup with the MF-DFA 2D method, also based 

on multifractal characteristics, and with the 3TP, which 

represents a clinical standard for analysis of tumor kinetics. 

II. BACKGROUND AND THEORY 

This section describes the theoretical background required 

to comprehend the proposed method specified in section III. 

A. Multifractal analysis 

Fractal dimensions are estimates of object complexity. They 

were originally developed to characterize geometrical patterns 

resulting from abstract recursive procedures called fractal 

processes [37]. Although fractal dimensions were developed 

for application to abstract mathematical objects, they can be 

applied to objects that do not arise from fractal processes, such 

as MR images [42], [43]. 

Fractals are self-similar in the sense that they have the same 

scaling properties, characterized by only one singularity 

exponent throughout the entire process. This means that when 

a part of a structure is removed and compared with the whole, 

they match. Self-similarity is a demanding model with respect 

to empirical data as it requires that scaling property holds for 

all scales and that a single Hurst (H) parameter controls all the 

statistical properties of the data. This is often a too severe 

limitation for practical purposes and multifractal models are 

preferred instead, which are considered as further extension to 

scale invariance since they enable to account for a declination 

of scaling properties often observed on empirical data. 

Moreover, in the same process we may notice similarity at 

different scales, located in different areas. This means that 

multiple fractal sets lie interwoven, each one with their own 

scaling behavior. Therefore, multifractals require a larger, and 

theoretically infinite, number of indices to characterize their 

scaling properties. Scaling refers to the propagation of energy 

or intensity when for example image data is inspected at 

various resolutions.  

A multifractal object or process can be characterized 

through its spectrum by assessing which and how many fractal 

sets are associated to a certain influence (self-similarity trend) 

on time or space scale. These measures are provided with the 

dependence of the Hausdorff dimension D(h) from the Hölder 

exponent h, where D(h) represents the size of a certain trend 

with impact described by h. This multifractal spectrum 

describes the quality and quantity of irregularities in the data 

and its characteristic shape depends on periodic patterns [44].  

A detailed description of the multifractal theory is beyond 

the scope of this article, but the reader is referred to e.g., [42], 

[44]. We only restate here a few key points. Multifractal 

analysis is based on the definition of a finite measure  that 

can be considered as a mass distribution on a bounded subset 

of real numbers  , where E stands for the Euclidean 

dimension of the space (E = 1, 2 or 3). For example, the 

distribution of a handful of sand on a box in a given point 

corresponds to the , a way to assign a numerical size to sets, 

such that if a set is decomposed into a countable pieces, then 

the size of the whole is the sum of the pieces sizes. This 

measure related with scale can estimate the local irregularity 

within that subset intersecting each cell of a linear grid map of 

size , i.e., for a multifractal measure , the partition function 

X has a power law relation with scale r for variable range of 

moment order q, given by [45]: 

.)( )(q
q rrX    (1)  
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For simplicity, the parameter q can be seen as the focus 

control of a photographic lens for exploring different regions 

of irregularity. For q > 1, (q) represents the more singular 

regions, for q < 1, it accentuates the less singular regions and 

for q = 1, it represents the information dimension. The scaling 

exponent (q) has a concave shape that hence departs from the 

linear behavior qH, known as the signature of self-similarity. 

(q) can be seen as a collection of scaling exponents replacing 

the single self-similarity parameter H and, hence, conveying 

versatility in actual data analysis [46]. Multifractal analysis is 

often theoretically phrased in terms of multifractal spectrum 

D(h) rather than (q), even though both function are related by 

a Legendre transform [37]. It also requires the measurement of 

q, a range that should be carefully chosen according to the 

data in study to avoid unstable power laws.  

B. Lacunarity estimation 

Lacunarity measures the deviation of a geometric object, 

such as a fractal, from translational invariance. It is a scale-

dependent measure of heterogeneity that allows to distinguish 

between two fractals with the same fractal dimension. 

Lacunarity complements the fractal dimension that measures 

how much space is filled, by measuring how the data fills the 

space [45], [47], [48]. 

Lacunarity can be defined in terms of the local first and 

second moments (i.e., local mean and variance) measured for 

different neighbourhood sizes about every pixel within the 

image. Lacunarity as a function of neighbourhood size is 

generally presented as a double log plot, which illustrates the 

scale dependency of spatial nonstationarity in the image. 

Higher lacunarity values indicate more translational 

invariance, i.e., a wider range of sizes of structures within an 

image. The decay pattern of the lacunarity plot contains 

significant information about the spatial structure of the 

image. For example, a linear decay represents a self-similar 

fractal with no change in spatial pattern or texture with 

window size [49]. 

Based on the analysis of the mass distribution in a 

deterministic or a random set, Allain and Cloitre [50] 

proposed a gliding box algorithm for lacunarity estimation. 

This method involves the assessment of the variance of the 

box mass M at each step, where the mass is the sum of white 

pixels in a gliding box along the coordinates in the Euclidean 

space. This procedure is repeated as the box moves pixel by 

pixel through the whole region. The probability distribution, 

Q(M, r), is then calculated as the ratio of the number of 

gliding boxes with the lateral size r and mass M over the total 

number of boxes. The lacunarity at scale r is then defined by 

the mean-square deviation of the fluctuations of mass 

distribution probability Q(M, r), divided by its square mean 

[50], as follows: 
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where M can be calculated according to the purpose of 

application and problem requirements, since lacunarity 

estimation is not confined to binary configurations but can 

also be used with grayscale images [51], [52].  

III. 3D MULTIFRACTAL SCALING EXPONENT LACUNARITY 

ANALYSIS (MF-SELA) 

In this section, the method proposed to characterize the  

tri-dimensional complexity, or spatial arrangement of texture 

roughness of breast tumors, is described. 

Through the theory it is stated that the dynamics of scaling 

can be used as discriminatory descriptors, providing an 

additional perspective of the data when inspected at various 

resolutions. Furthermore, in this study it was attempted to 

confirm that selected VOIs from breast MRI have multiple 

degrees of scaling by the prevalence of a multifractal spectrum 

D(h) or a non-linear multifractal scaling exponent (q). 

Fig. 1 illustrates the flowchart of the model for the decision-

support in the diagnosis of breast cancer with  

DCE-MRI. The cases and respective clinical reports are the 

input of the model. The analysis scheme proceeds to the  

pre-processing and selection of a grayscale VOI in which the 

multiscale extraction of features related with self-similarity, 

the core of the model, takes place. Herein the framework of 

the implementation is a gliding cube, which is an extension 

from the efficient estimation of the gliding box lacunarity 

presented in [47]. The features are extracted from the 

estimation of the scaling exponent, taking advantage of using 

3D lacunarity as the measure to feed the multifractal 

characterization of the VOI, which includes the lesion and 

surroundings, at multiple scales.  

In addition, it is worth notice that in the present work the 

pixel intensity is not considered as extra dimension, as in [53], 

[54]. Dong et al. [48] shown that spatial patterns of 3D points, 

not images, with different degrees of heterogeneity can be 

separated using lacunarity, and those that cannot be 

discriminated from each other at one scale can be separated at 

some other scales. Also distinct is the work in [55], since a 

multifractal modeling used to validate an experimental method 

of lacunarity estimation should not be confused with the 

multifractal analysis of images proposed here. Our estimation 

of a scale-dependent degree of heterogeneity given by the 

lacunarity emerges as the multifractal measure of complexity 

that will allow the multiscale extraction of features, namely 

texture and its distribution in each DCE-MRI case.  

The entire procedure of the 3D Multifractal Scaling 

Exponent Lacunarity Analysis (MF-SELA) includes four 

major steps: (A) Pre-processing and VOI selection, (B) 3D 

lacunarity estimation with gliding cube, (C) Multifractal 

analysis with 3D lacunarity, (D) Self-similarity and scaling 

dynamics as descriptors.  

A. Pre-processing and VOI selection 

Voxels are usually anisotropic in breast DCE-MRI, i.e., the 

spatial resolution in the cross-slice direction is poorer than in 

plane. Thus, a bi-linear interpolation was used to yield 

isotropic voxels in the volume image. This pre-processing step 
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is a requirement for the multifractal method proposed, as 

described below. 

A cubic VOI of lateral size between 32 and 64 pixels was 

cropped from each 3D MRI, according to the location and size 

of the lesion defined in the BIRADS report by the radiologists. 

This was performed in a subtraction image, of the first post-

contrast acquisition after contrast arrival subtracted from the 

pre-contrast image. In order to study the inherent properties of 

the lesions relatively to its surroundings, the VOI includes not 

only the lesion but also the normal tissue. The effect of the 

amount of non-lesion background on multifractal analysis was 

assessed by selecting variable VOI sizes centered in the same 

lesion point. This coordinates are inputted manually and the 

remaining stages are fully automated. 

BIRADS report

Isotropic 

interpolation

Biopsy report

Selection of VOI 

and crop size

ROI coordinates

Cropped VOI
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mapping

where the 

cube glides

Repeat for each scale r

Calculation of the 

mass Mi within 

each sub-cube

Set Mi to mass 

interval

Gliding 

cube

Count of the number of cubes 

of mass M and size r

All moves completed

Move to the 

next position

3D 

Lacunarity 

calculation

Next scale r

Probability 

function Q(M,r)

Multifractal scaling 

exponent (q) 
estimation

(with 3D(r) as (r))

3D(r)

q range

(according to 

crop size)

Log-cumulants 

estimation

Legendre 

transform

DCE-MRI case

Self-similarity 

estimation

Multifractal 

Spectrum D(h)

  

Fig. 1.  Flowchart of the model for Multifractal Scaling Exponent Lacunarity 

Analysis (MF-SELA).  

 

B. 3D lacunarity estimation with gliding cube  

As a base level, we start by mapping a 3D uniform grid 

where the cube glides. Based on (2) and using accumulated 

statistical moments as the cube glides through the VOI [47], 

the gliding cube estimation of lacunarity is proposed herein by 
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where for each gliding along every grid position, the mass M 

within the ith cube is carried as well as the running sums 

needed to calculate n(M, r), here extended to number of cubes 

with mass M and lateral size r, being N(r) the total number of 

cubes of size r. This required a partition of mass intervals for 

counting purposes and, therefore, an extra parameter of 

interval precision in our proposed method of lacunarity 

analysis. M was calculated for each cube by adding the 

grayscale intensity values of the voxels contained in the cube 

divided by the cube volume. This approach revealed better 

discrimination power in the last steps of the MF-SELA, with 

our validation experiments, when compared with other 

alternatives like the relative intensities used in [54], [55]. The 

reason why isotropic voxels were required and the images 

were interpolated is due to the usage of a cubic neighborhood, 

that constrains the expression of the spatial heterogeneity to 

translational invariance, in a similar way to [56], [57] for  

self-similarity estimation. 

As r increases with respect to the base level grid, the 

procedure raises its efficiency while the number of gliding 

cubes tends to one and the 3D(r) measure tends to zero. 

Since we are not working with exactly pure self-similar 

fractals, it is important to calibrate the range of scales 

according to the empirical data. This problem was already 

raised in Section II.A concerning multifractal analysis. Too 

small or too large limits of r can cause disturbance of linearity 

in the lacunarity function, as it is common with fractals [58]. 

Therefore, after calibration with DCE-MRI data, the MF-

SELA was parameterized with r ranged from 6 to VOI size/4. 

Finally, the complexity of the fundamental operation of 3D 

lacunarity estimation is (n), where n is the dimension of the 

interpolated VOI.  

C. Multifractal analysis with 3D lacunarity 

Multifractal analysis exploits both the local irregularity 

(often seen as texture roughness or complexity) of a given 

object and the global distribution of this irregularity, as 

reported in [34]. The next step of MF-SELA is the core 

multifractal analysis of the VOI, to obtain the scaling 

exponent and multifractal spectrum. 

Fractal and multifractal analysis often involves partitioning 

the space of study into subsets to build samples with multiple 

scales. The number of the samples at a given scale is limited 

by the size of the partitioning space and data resolution 

(sampling resolution), which is usually the main factor 

influencing statistical estimation. Several techniques have 
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been developed for estimating multifractal D(h) by means of 

the box-counting algorithm [39]. Gliding box methods can be 

integrated into the existing multifractal techniques such as the 

moment method. Here the multifractal analysis begins with the 

estimation of (q) that controls how the moments of measure  

scale with r. Cheng et al. [59] proposed a gliding box 

alternative for implementing the moment method in 

multifractal analysis as follows: 
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where  stands for statistical moment with measure  ≠ 0. 

This method was generalized for 3D in our implementation. 

Consequently, it is possible to obtain larger sampling 

resolution, precisely one of the common drawbacks of DCE-

MR volumes, leading to better statistical results [59].  

The measure  in the scope of MF-SELA is defined as the 

mass distribution given by 3D(r) as  
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Accordingly, by using (4) and (5) it is possible to obtain the 

scaling exponent (q) that can later be used for estimating the 

multifractal spectrum D(h) as explained in Section II.A. This 

approach of a scaling exponent with a gliding box estimation 

of 3D lacunarity end-up being the key point for multifractal 

characterization of a VOI, by 

.
log

)(3
)(

1
log

lim)(
0 r

rD
rN

Eq

q

r













  
(6)  

D. Self-similarity and scaling dynamics as descriptors 

The existence of a distribution or spectrum D(h) may 

confirm the presence of multifractality, as multiple degrees of 

self-similarity can be estimated at multiple scales. Given (q) 

and D(h) outcome of multifractal analysis of a VOI, the last 

step of MF-SELA is the extraction of features related with the 

spatial arrangement of voxel intensities (texture) in the images 

of breast tumors. This can be achieved by studying the 

dynamics of the scaling as multifractal descriptors that may be 

linked with morphology and internal spatial structure of the 

enhanced lesions to discriminate. 

Different spectral characteristics are quantified from D(h), 

that is directly related with the irregularity of the analyzed 

object. The higher D(h), the more frequently we can find 

intensity changes of a specific type h. One important 

descriptor studied is precisely the h where the spectrum is 

maximum. It shows at which Hölder exponents is positioned 

the most statistically significant part of the VOI, i.e. the 

subsets with maximum fractal dimension. Hurst parameter (H) 

is often associated with this exponent reminding the 

monofractal theory where there is only one fractal dimension. 

Curve width (W) can be a descriptor related to how far from 

monofractal a ROI is. Multifractal analysis focuses on 

exploring and understanding the nature of the irregularities in 

the image, and not on a single, most prevalent irregularity, or 

global trend. Other important descriptors can be right slope 

(RS) of the curve, from the rightmost Hölder point (Rα) to the 

maximum D(h). On the other side, LS represents the slope of 

the distribution of the collection of Hölder exponents below H, 

where large fluctuations from the global irregularity (most 

prevalent) are exploited.  

A unique parameter that combines the previous ones has 

been introduced to better differentiate the MR cases. This 

suggestion of a single parameter was introduced by [60], with 

a distinct use of descriptors and with application in brain 

imaging. The combined spectral parameter (CP) proposed in 

this work for multifractal analysis of DCE-MRI of the breast, 

is determined as a ratio between H and LS. This specific 

combination leads to low values for simple random noise 

intensities of the VOI, and result in high CP for VOIs 

containing more complex properties due to tumor presence in 

self-similar background. Hence, we raise the hypothesis that 

CP can be a reasonable measure for distinguishing likelihood 

of malignancy of breast cancers. 

Moreover, an empirical scaling analysis of the multifractal 

scaling exponent (q) has been suggested to be studied as a 

polynomial expansion of order p [61] 
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instead of measuring (q) by estimation for all q. The  

log-cumulants cp can be obtained from the scale dependence 

of C( j,p), the cumulant of order p  1 and scale j, of a random 

variable X. Equation (7) implies that C( j,p) must satisfy [62] 
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Therefore, the study of (q) and hence D(h) can be 

rephrased in terms of the log-cumulants. This is interesting 

since a process is said to be multifractal when (q) departs 

from linear behavior with c2 ≠ 0. The most practically used 

Log-normal multifractal can be characterized only by c1 and c2 

≠ 0, but more complex multifractal models may involve 

polynomials of higher order than 2. The log-cumulants can be 

estimated by linear regression, with c1 being related with the 

location of the H, while c2 with its width, and c3 possibly 

characterizing the asymmetry of D(h). 

This article aims to evaluate if the VOIs from the DCE-MRI 

of the breast can be represented or not by p  2, cp ≠ 0 and 

thus reveal a simple or more complex multifractal behavior, 

by rephrasing (q) in terms of the log-cumulants estimated by 

linear regression as 
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We retain the characteristics that allow differentiating 

tumoral tissues from healthy tissues. The ranges of 

multifractal descriptors and log-cumulants which correspond 

to malignant areas will be set, and classifiers will be obtained. 
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IV. EXPERIMENTAL SETUP AND PERFORMANCE ASSESSMENT 

The validation of the MF-SELA proposed was carried out 

using the following experimental setup. Here we provide 

details about how the images were acquired, what type of 

lesions were diagnosed by the radiologists and followed by a 

biopsy intervention resulting in a histological proof, as 

illustrated in the beginning of the flowchart in Fig. 1. The 

section ends with the description of a SVM-based supervised 

learning technique for classification of malignant and benign 

lesions.  

A. Image acquisition 

Experimental data was acquired using a Siemens Trio 3T 

MR Scanner at the health institution Clínica João Carlos 

Costa, Viana do Castelo, Portugal. Written informed consents 

were obtained from the patients as well as the approval from 

the institution’s research ethics committee for this study. 

Dynamic imaging was performed using a T1-weighted 

FLASH 3D (FL3D) pulse sequence with fat saturation. The 

patients were scanned in prone position using a standard 

double breast coil. The acquisition protocol parameters were 

3.76 ms of repetition time, 1.38 ms of echo time with flip 

angle = 12º. Each slice contains 448 × 448 pixels and has a 

typical field of view of 30 × 30 cm2, yielding an in-plane 

spatial resolution of 0.65 × 0.65 mm2 and a slice thickness of 

0.6 mm for the generated 3D volumes. Imaging is performed 

before and after a bolus intravenous injection of 0.1 mmol/kg 

of Gadopentetate dimeglumine (Gd-DTPA). Five bilateral 

axial acquisition series were taken per patient at intervals of 1 

min and 51 seconds. The first post-contrast images acquired 

after contrast arrival were used for the analysis of the 

enhanced lesions since it was found that the information from 

the initial portion of the time was the most predictive of 

malignancy as reported in [41] and [63]. 

B. Tumor collection and diagnosis 

The initial database of 130 consecutive clinical cases was 

collected from August 2009 to May 2011 and retrospectively 

analyzed, not including vascular structures, architectural 

distortions and other non-masses. It is important to note that in 

this work “case” refers to a physical lesion, not a patient. 

Patients were previously checked for renal function as part of 

clinical routine for MR contrast administration. No pregnant 

women were included and patients with breast implants posed 

additional difficulties and they were excluded from the present 

analysis in breast DCE-MR. There was no exclusion criterion 

concerning the type of benign or malignant tumor.  

A diagnosis report was processed by radiologists with a  

BI-RADS grade assigned for each case, depending on the 

morphology (see Fig. 2) and dynamic enhancement (Fig. 3) of 

each finding. A total of 35 lesions had biopsy recommendation 

and underwent to histological examinations. According to 

these pathology-proven cases, the clinical positive predictive 

value for biopsy was only 62% and, for that reason, these 

cases were included in our analysis. Consequently, the 

working dataset is composed of 15 malignant and 20 benign 

lesions. Table I shows the histopathology and disease state of 

the clinical cases analyzed. The most prevalent type of benign 

lesion was the fibroadenoma, being the invasive ductal 

carcinoma the most prevalent among the malignant 

histological proofs. The sizes of the lesions are evenly 

distributed among the malignancy (see Fig. 4). The longest 

diameter was estimated by radiologists using an electronic 

ruler, where the lesion was best visualized. Focus and foci are 

enhancements measuring less than 5 mm in diameter that are 

too small to be characterized in MR data and cannot be 

otherwise specified.  These lesions are typically stable on 

follow-up, may result from hormonal changes and are 

considered to be a part of the normal background enhancement 

pattern in the breast [4], [6]. The final cohort of patients had 

an average age of 47  9 years and an average weight of  

66  6 kg. 

 

    

  
Fig. 2.  Morphology features of lesions in the dataset. Representation of tumor 

VOIs (top). A sliced region of interest of a typical: benign case (bottom left), 

with oval shaped mass smooth, margin and homogeneous enhancement; 

malignant case (bottom right), with irregular shaped mass, spiculated margin 

and heterogeneous enhancement 

 

 

 
Fig. 3.  BI-RADS grade of the lesions in the dataset plotted against the kinetic 

curve types of contrast enhancement as determined by radiologist. 
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TABLE I 

CLINICAL CASES IN THE DATASET  

Case 

ID 

Patient 

ID 

Longest 

dimension 

(cm) 

BIRADS Histopathology 
Disease 

state 

01 P01 2.5 5 IDC Malignant 

02 P02 2.8 3 Fibroadenoma Benign 

03 P03 1.9 4 Sclerosing Adenoma Benign 

04 P04 1.6 4 DCIS Malignant 

05 P05 1.8 3 Fibrocystic changes Benign 

06 P06 1.4 6 DCIS Malignant 

07 P07 2.8 2 Fibroadenoma Benign 

08 P08 1.7 3 PASH Benign 

09 P09 0.8 4 Myoepithelial cells Benign 

10 P10 6.8 6 IDC Malignant 

11 P11 4.2 4 PASH Benign 

12 P12 2.9 2 Fibrocystic changes Benign 

13 P13 0.5 4 IDC Malignant 

14 P14 3.8 6 IDC Malignant 

15 P15 1.4 6 DCIS Malignant 

16 P16 1 4 Fibroadenoma Benign 

17 P17 0.9 3 DCIS Malignant 

18 P18 2 4 Stromal fibrosis Benign 

19 P19 2.9 2 Fibroadenoma Benign 

20 P19 1.5 3 Lymph node Malignant 

21 P20 4.1 5 IDC Malignant 

22 P20 7.8 5 DCIS Malignant 

23 P21 1.3 4 LCIS Malignant 

24 P21 0.8 4 IDC Malignant 

25 P22 1 4 Fibroadenoma Benign 

26 P23 2.5 2 Fibroadenoma Benign 

27 P23 1.5 2 Fibroadenoma Benign 

28 P23 1.8 2 Fibroadenoma Benign 

29 P24 2.4 6 IDC Malignant 

30 P25 0.7 2 Fibroadenoma Benign 

31 P26 2.3 2 Fibrocystic changes Benign 

32 P26 1.3 4 Fibroadenoma Benign 

33 P26 1.8 4 DCIS Malignant 

34 P27 0.7 3 Fibrocystic changes Benign 

35 P27 0.6 4 Fibrocystic changes Benign 

Ductal Carcinoma In Situ (DCIS), Invasive Ductal Carcinoma (IDC),  

Lobular Carcinoma In Situ (LCIS), Pseudo-angiomatous Stromal Hyperplasia 

(PASH). 
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Fig. 4.  Histogram of the longest diameter of the lesions in the dataset. The 

longest diameter was measured where the lesion was best visualized as 

determined by radiologist.  

C. SVM-based classification 

Classification of tumors as malignant or benign was 

performed by applying SVMs with the extracted  

multifractal-based features, each SVM using just a single 

feature. The role of multifractal descriptors and log-cumulants 

are still and open problem for the characterization of tumors. 

The single feature independent classification was adopted 

instead of using all features jointly to better understand ROC 

curve differences, among all of these features with distinct 

theoretical meaning. SVM-based classification was performed 
using the SVMlight [64] open source package for its efficient 

optimization algorithm, which allows choosing multiple kernel 

functions and its parameters to obtain a different classification 

hyperplane. Radial Basis Function (RBF) that requires the 

parameter gamma γ was the kernel used in this work. The 

condition for optimal hyperplane also includes a regularization 

parameter C that controls the trade-off between maximization 

of the margin and minimization of the training error. Small C 

tends to emphasize the margin while ignoring the outliers in 

the training data, while large C may tend to over fit the 

training data. 

In order to determine which type of kernel function to use, 

its associated parameters, and C in the structural risk function, 

i.e. to select the possibly optimal model for our classification 

problem, we applied Leave-one-out (LOO) cross-validation to 

the working dataset [64]. This LOO technique involves 

training the machine learning algorithm for estimating the 

likelihood of malignancy from all cases but one, testing 

classification on that single case. This procedure is repeated 

until each case has been tested individually. The cross-

validation ensures that all elements of the dataset are may be 

used for both training and testing. Misclassification errors 

were averaged to obtain an estimate of the generalization error 

of the SVM classifier. Our approach to yield the best 

classification based on each feature was to choose the 

parameters of SVM that produce the model with smaller errors 

in the cross-validation and use it for testing in order to 

maximize the accuracy. 
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D. ROC analysis 

The capability of the features in distinguishing between 

malignant and benign lesions are further examined and 

evaluated by receiver operating characteristics (ROC). The 

area under the ROC curve (  ) was used as a performance 

measure of the discrimination power of the individual features 

and of the SVM classification in a LOO scheme. 

In order to more accurately place our method in the 

landscape of breast lesions classification, we applied a clinical 

standard protocol, the 3TP technique, to our dataset. On the 

other hand, we sought to evaluate the effect of skipping the 

lacunarity measure in the multifractal analysis to better 

understand the source of our performance. As lacunarity is 

intrinsically associated to the 3D analysis in the method 

proposed, we used a previously implemented 2D multifractal 

analysis (MF-DFA 2D) for comparison in the same setup, also 

evaluated with ROC analysis. 

V. RESULTS 

The first major validation of the applicability of the 

methodology was achieved by verifying that the data possess 

multiple scaling properties. Fig. 5 shows the multifractal 

spectra of the analyzed VOIs where several degrees of scaling 

prevail for all the cases, as they are not limited to a single 

Hölder exponent. We can see that the D(h) curves are quite 

similar in shape and span. However, looking solely at the 

spectra the distinction between benign and malignant tumors 

remains unclear. In order characterize the multifractal spectra 

of the VOIs from the clinical cases studied, the 

aforementioned (see Section III.D) spectral descriptors were 

quantified. Another verification of the multifractality resulted 

from studying scaling exponent (q) (see Fig. 6) through the 

estimation of log-cumulants, as it may be confirmed in Fig. 7 

that c1 and c2 ≠ 0. The concavity of (q) in Fig. 6 implies non-

normalized values of c2  0. 

All features investigated in this study show moderate 

potential for distinguishing between benign and malignant 

lesions, relating the measurements in Fig. 7 (top) directly with 

likelihood of malignancy. However, false negatives arise as 

represented by the outliers from the top in the benign boxes. 

Those report cases with a strong enhancement and all 

morphological characteristics of malignancy. In addition, false 

positives occur in-between zone of the box-plots from benign 

and malignant groups. This had reinforced the need for a 

better multifractal descriptor. A statistical analysis was further 

conducted by One-way analysis of variance (ANOVA) 

followed by a Post-Hoc Tukey test corrected for multiple 

comparisons (see Fig. 7, bottom). CP was proposed as several 

descriptors (with statistically significant differences) were 

combined and H (strongest irregularity) against LS (inner 

enhancement) resulted better than the others. 

Fig. 8 and Table II present the performance of the proposed 

method evaluated by the area under the ROC curve for the 

SVM classifiers using each feature. Smoothed ROC curves 

were generated according to the binormal model [66]. The    

of the discrimination was calculated varying a threshold level 

on each feature to separate benign and malignant groups. For 

all features analyzed, it is observed that SVM classification 

produced higher    values than the discrimination alone. The 

combined parameter CP and the individual LS and RS stand 

out as better features with higher    and lower testing error 

(TE) with SVM. The complementary shape of the ROC curves 

from H and LS justifies the maximum    obtained with CP. 

Statistically significant differences (p-value < 0.05) were 

found between    corrected for multiple pairwise comparisons 

(using MEDCALC): CP vs. H, W, c1 and c3. 

It is also worth noting that for the estimation of (q) several 

ranges of q were tested (results no shown), leading to an 

optimal discrimination power of lesions with -4.3 < q < 2.1 for 

the problem in study. The chosen q range includes interval 

steps adapted for the multiple sizes of VOI tested according to 

our DCE-MRI data to avoid unstable power laws and 

statistical errors leading to better ROC performance, without 

compromising the computational performance. The average 

execution time per case of the entire MF-SELA is 7.89s, on a 

2.53-GHz Intel® Core™ i5 M540 workstation. 

 

Fig. 5.  Multifractal spectra D(h) of the VOIs of the cases in the dataset. 

Benign cases in gray. Malignant cases in black.  

 
Fig. 6.  Multifractal scaling exponent (q) of the VOIs of the cases in the 

dataset. Benign cases in gray. Malignant cases in black. 
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Fig. 7.  Comparison of multifractal descriptors and log-cumulants as features. 

Top: For each feature normalized by its mean value, benign cases in gray and 

malignant cases in black. Bottom: Pooled features values tested for 

statistically significant differences with One-way ANOVA resulting in  

F-statistic = 588.32 and p-value < 0.05. Statistically significant differences 

among descriptors are identified by letters according to Post-Hoc Tukey test. 

 

TABLE II 

AREA UNDER THE ROC CURVE    IN DISCRIMINATING MALIGNANT FROM 

BENIGN LESIONS WITH MULTIFRACTAL-BASED FEATURES.    OF THE SVM 

CLASSIFIER USING EACH FEATURE (LEAVE-ONE-OUT CROSS-VALIDATION)  

 Discrimination 
 

SVM classification 

Feature     (± STD)      (± STD) γ C TE 

CP 0.868 0.050  0.960 0.027 6 10 0.1429 

LS 0.896 0.050  0.901 0.055 6 10 0.2286 

H 0.786 0.076  0.795 0.076 6 10 0.2286 

RP 0.617 0.097  0.873 0.062 8 10 0.1714 

W 0.643 0.091  0.760 0.081 6 100 0.2571 

RS 0.726 0.091  0.898 0.063 6 1000 0.1714 

c1 0.672 0.079  0.685 0.086 0.6 10 0.3143 

c2 0.695 0.087  0.800 0.061 6 100 0.2286 

c3 0.736 0.087  0.763 0.076 2 1000 0.2571 

Gamma γ and regularization parameter (C) as associated kernel parameters 

and corresponding expected testing error (TE). 
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Fig. 8.  ROC curves comparing the classification performance of the 

multifractal features and the combined parameter (CP) using SVM with a 

leave-one-out testing. 

 

Table III presents the    obtained when applying three 

different methods to our dataset: 3TP, another multifractal 

approach MF-DFA 2D and MF-SELA 3D. The    obtained 

with the multifractal methods is well above the 3TP 

performance. 
 

TABLE III 

ROC    OF 3TP AND TWO MULTIFRACTAL METHODS  

ON OUR DATASET OF 35 CASES 

Method 3TP MF-DFA 2D MF-SELA 3D 

   0.71 0.87 0.96 

VI. DISCUSSION 

DCE-MRI is useful in evaluating lesions that appear 

morphologically benign on conventional imaging studies. 

Diverging results were published concerning the diagnostic 

value of the lesion enhancement rate in the time course data 

[3]. Radiologists identify cancers with benign-like kinetics and 

normal tissues that exhibit cancer-like morphology. Therefore, 

we suggest that further features might be beneficial for the 

diagnosis of a breast cancer. In the early post-contrast period, 

it is established that the enhancement serves as a differential 

diagnostic criterion, with malignant lesions exhibiting stronger 

and faster enhancement than benign changes do [4]. In fact, 

this was verified in our preliminary experiments in [35] and 

confirmed in this work. We found that the information from 

the initial portion of the time was the most predictive of 

malignancy and, consequently, the first post-contrast images 

acquired after contrast arrival were used for the analysis of the 

enhanced lesions.  

The proposed MF-SELA (see Fig. 1) establishes a 

multifractal analysis with a tri-dimensional lacunarity 3D(r) 

as measure to obtain the scaling exponent and multifractal 



IEEE Transactions on Image Processing 11 

spectrum. 3D(r) is estimated using the gliding cube method, 

with the advantage of large sample size that usually leads to 

better statistical results. Self-similarity features of the (q) and 

D(h), automatically generated for each early post-contrast 

volume image acquired after contrast arrival, were analyzed 

quantitatively. This quantification of features values should 

not be confused with the quantification of signal intensity 

values of voxels. 

For our working dataset, the radiologists from the medical 

institution where the images were acquired reported 60% of 

specificity at 87% of sensitivity as diagnostic performance. 

Experimental results shown here by ROC curves reveal higher 

specificity at the same level of sensitivity with five features 

(CP, LS, RS, RP and log-cumulant c2) derived from 

multifractal theory. SVM-based classification of the likelihood 

of malignancy of breast tumors showed good performance 

with VOIs containing mass lesions and their surroundings. 

Results suggest that CP and LS are the most appropriate 

feature for characterizing the inner texture heterogeneity of a 

VOI at different scales, with higher values for malignant 

cases. ROC analysis demonstrated that approximations of the 

(q) by the log-cumulants does not provide a complete 

characterization of the texture with sufficient discrimination 

power. However, the SVM classifier using the feature c2 

produced the best performance among the log-cumulants, with 

higher    than its theoretically related W. The main benefit of 

the log-cumulant triplet (c1, c2, c3) was to emphasize the 

difference between (q) that departed from linear in q. This 

was confirmed in practice by approximating the function (q) 

with limited number of cp that could simplify the classification 

task based on multifractal analysis.  

For the computer-extracted features to be accepted, the link 

with morphology descriptors defined in BI-RADS lexicon 

needs to be established. Concerning lacunarity nothing should 

be discussed as its value was not directly used as a feature, but 

as a multifractal measure to compute the spectra D(h). 

However, regarding self-similarity, it was found that H was 

related with the most prevalent irregularity in the VOI, namely 

shape and margins.  

The descriptor W and log-cumulant c2 are related to 

inhomogeneous degree of enhancement regularity (texture) 

and theoretically how far from monofractal a ROI is. W is 

generally bigger in malignant cases that represents richer 

scaling behavior compared to benign lesions. In addition, the 

more negative unnormalized value of c2 the stronger the 

experimental evidence in favor of multifractality. Negative 

findings (no enhancement, results not shown) wherein there is 

nothing to comment on, W and c2 tend to zero. False negative 

detection of findings can be depicted based on this criterion.  

The descriptor Hurst parameter (H) shows at which Hölder 

exponents (h) is positioned the most statistically significant 

subsets of VOI voxels with maximum fractal dimension. This 

is directly related with the irregularity of the analyzed VOI, 

and it was slightly lower for the benign cases. Besides this 

prevalent scaling behavior, a multitude of other scalings might 

be present although occurring much less frequently.  

Smaller slopes of LS reveal further scaling of large 

fluctuations from the H. Benign lesions with lower slopes 

show more sharp transitions of intensities that are different 

from the global irregularity. The RS descriptor represents the 

slope of the distribution of the collection of Holder exponents 

above H, where small fluctuations from the global irregularity 

could be analyzed. Thus, the higher RS of malignant cases can 

be seen as a weaker scaling pattern of the smooth variability 

relative to the most prevalent characteristic irregular H. On the 

other hand, for the associated scale parameters (q and r) 

chosen, the role of RP translates into the limit where it is 

possible to define a smooth variation from the global 

regularity. The bigger the limit for a case, the larger multi-

scale heterogeneity is present.   

In a general interpretation, the malignant cases are more 

globally inhomogeneous, show higher contrast-enhanced 

changes that are anti-persistent, and lower contrast-enhanced 

changes with persistence. However, the false-positives in each 

individual descriptor had lead to a new proposed descriptor 

(CP), which combines previous ones intending to improve the 

differentiation of the tumor cases. 

In computer-aided diagnostics, it is very important to obtain 

a machine learning model with good generalization, i.e., with 

good results of predicting the unseen samples. The results 

obtained in this work suggest that the SVM is an effective 

method with great potential for classification in DCE-MRI of 

the breast. SVM improved the classification by producing 

higher    using each of the nine features than the 

discrimination power of the features alone. 

LOO cross-validation has been shown to give an almost 

unbiased estimator of the generalization properties of 

statistical models, and therefore provides a sensible criterion 
for model selection and comparison [65]. The purpose of 

using model complexity controlled by the regularization 

parameter C in SVM, to constrain the optimization of 

empirical risk, is to avoid overfitting, a situation in which the 

decision boundary too precisely corresponds to the training 

data, and thereby fails on data outside the training set. 

After comparing 3TP, MF-DFA 2D and MF-SELA 3D in 

Table III, we attribute the good performance of the proposed 

working scheme to the employment of the 3D and multifractal 

analysis in DCE-MRI of the breast. This is the main difference 

to the closest works with fractal theory that obtained lower 

classification performance (see [32], [33], [36]).  

Table IV presents a comparison of the performance results 

from previous breast MRI CAD studies [8], [15], [17], [20], 

[26], [40], [41] in which    ranged from 0.74 to 0.97, on their 

private datasets. In comparison with those studies, the 

performance of MF-SELA with SVM feature classification 

appears to be in high level (0.96 with CP). However, the 

patient population differs in each study among the literature, 

due to the lack of a public DCE-MRI breast lesions database. 

Since the    is presumably expected to vary depending on the 

lesion characteristics, the    comparison can be regarded as 

less convincing. Moreover, the effects contributing to    

variation across populations are diluted in very large 

databases. Despite the fact that our sample size is small, it is 

composed solely of cases that underwent biopsy, which 
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usually raise doubts in diagnosis. Therefore, we believe that it 

represents a good sample and the comparison of MF-SELA 

with the studies in Table IV is meaningful.  

The developed framework raises the possibility of using 

measures other than lacunarity in 3D. The discriminatory 

potential of different 3D measures is yet to be assessed leaving 

an open topic to explore in the future. Moreover, it would be 

interesting to study the relation between multifractal 

parameters and tracer kinetic parameters, as kinetic texture 

features without having to lose the 3D information of lesions. 

The proposed method could be applied to roughly any kind 

of tumor. A correspondence between the general anatomical 

structure and the possible feature-based classification of VOI 

is natural, by the multifractality that may prevail in medical 

images. The main limitation of it is to assess if the data 

possess multiple scaling properties or not. It is also predictable 

that imaging modalities with lower spatial resolution than 

MRI would lead to inferior discrimination power using similar 

scaling descriptors. In this case, the method should be 

calibrated with respect to the lateral size r of cubic VOI to 

maintain linearity in the lacunarity function. Moreover, several 

ranges of q should be tested for multifractal analysis to avoid 

unstable power laws and statistical errors. 
 

TABLE IV 

ROC    AMONG STATE-OF-ART STUDIES ON THEIR DATASETS 

Reference [8] [15] [17] [20] [26] [40] [41] 

Dataset 

size 
111 121 28 80 94 121 71 

Classifier SVM LDA RR BNN SVM LRA ANN 

   0.88 0.80 0.96 0.97 0.74 0.86 0.86 

Support vector machines (SVM), linear discriminant analysis (LDA), 

Round-robin (RR), backpropagation neural network (BNN), linear regression 

analysis (LRA), artificial neural network (ANN). 

VII. CONCLUSION 

In this study, we contribute by investigating the feasibility 

of applying multifractal analysis using 3D lacunarity as a 

measure to the characterization of image texture. The VOI of 

the enhanced lesions revealed multiple degrees of scaling, i.e., 

the prevalence of a multifractal spectrum and a non linear 

multifractal scaling exponent. After testing the hypothesis that 

multifractal spectral characteristics could be related with 

likelihood of malignancy, our results are in line with 

histological ground-truth. This work suggests that the 

quantitative assessment of multifractal features, as proposed 

here, can be translated into a new and more efficient method 

for classification that could potentially be integrated in a 

computer-aided diagnosis (CADx). 
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