Grasping and Sorting Cutlery in an Unconstrained Environment
with a 6 DoF Robotic Arm and an RGB+D Camera

Ricardo Vermelho, Luis A. Alexandre
NOVA LINCS and Departamento Informética
Universidade da Beira Interior, Covilha, Portugal
{ricardo.vermelho, luis.alexandre} @ubi.pt

Abstract—Object manipulation is the ability to perform tasks
of grabbing, pushing or moving objects. Although this is some-
thing humans do naturally and without realizing it, for robots it
is still hard to do. Despite that, robotic manipulation has seen
an exponential evolution over the years, although there are still
many open challenges in the field. One of these challenges is
cutlery manipulation since this kind of object has features that
make them hard to manipulate, like the long and thin shape, the
metallic specular reflections and the fact that cutlery is usually
mixed in a container. In this paper, we propose a method that
sorts cutlery, which includes three main steps: the detection of the
particular object in the point cloud, the subsequent grasping that
can be helped by pushing motions powered by an algorithm that
was previously developed, and finally the placing of the object
in a particular container, according to its type. We show that we
are able to perform this sorting task in simulation using a UR3
robotic arm and a RGB+D camera. We explore different settings
and improve a previous pushing and grasping method.

Index Terms—Robotic Manipulation, Deep Neural Networks,
Object Detection, Object Grasping.

I. INTRODUCTION

Industrial and technological evolution brought robots into
our lives. They are present in factories and are beginning to
appear in our houses. However, according to [1] it is still hard
for robots to perform household chores. They evaluated a PR2
robot that had to make breakfast and clean the table. The robot
took 90 minutes to complete the task, showing that it was
feasible but very slow and prone to errors.

Manipulation is a very important capability if one wishes to
have robots performing everyday tasks. Much work has been
done in the area [2], [3], [4], but there are still many open
challenges. One of these is for the robots to be able to grasp
cutlery, since these objects have several features that make
them hard to grasp: they are thin and long, they are shiny since
they are usually metallic (this makes it difficult to visually
detect them prior to the actual grasping actions) and they are
usually lying on a flat surface or mixed together in a container.
In this paper we focus on overcoming some of these problems

This work was supported by NOVA LINCS (UIDB/04516/2020) with the
financial support of FCT — Fundagdo para a Ciéncia e a Tecnologia, through
national funds, and by project 026653 (POCI-01- 0247-FEDER-026653)
INDTECH 4.0 — New technologies for smart manufacturing, cofinanced by the
Portugal 2020 Program (PT 2020), Compete 2020 Program and the European
Union through the European Regional Development Fund (ERDF).

978-1-6654-8217-2/22/$31.00 ©2022 IEEE

and developing a system that is not just able to grasp cutlery
but also to sort it into containers. We build upon a previous
work [5], called Visual Pushing and Grasping (VPG), and
combine it with YOLO [6] to be able to detect and recognize
the different cutlery objects and their positions in the scene,
and using both pushing and grasping, enables the system to
sort cutlery into different containers, starting from a single
container. Our contributions are the following:

1) Explore the impact of using different types of networks,
such as DenseNet169, MobileNetV2, MobileNetV3-
Large, VGG19 and VGG19-Batch, and different number
of batch-normalization layers for the VPG;

2) Evaluating different number of rotations to the RGB+D
image taken from the simulation before feeding these new
rotated images to the neural networks;

3) Investigate the impact of the convolution kernel size and
biased neural networks, on the system performance;

4) We also propose two new metrics for evaluating the
sorting tasks.

II. RELATED WORK

A. Murali et al [4] state that grasping objects is still
an hard challenge, and even more if performed in cluttered
environments, thus they propose a method that plans grasps
for 6-DOF robots from partial point clouds. Their method takes
an RGB+D image as input, from which they select the target
object, compute the cropped 3D point cloud and the respective
grasping points and obtained 80.3% of grasp success. Peiyuan
Ni et al [7] demonstrated two situations where it can be
difficult to grasp objects, namely when the objects are inside
a container or box and are at the corner or edge of the box,
which makes the grasping action much harder to perform with
success. The proposed method aims to increase grasp access
by combining a forgetting mechanism in the grasp's quality
function to uphold a pushing action. They trained the algorithm
in simulation environment with YCB dataset objects [8] and
also performed real-world experiments, obtaining 86.67% of
completion using YCB objects and 83.37% of completion
using novel objects, in both environments. Andy Zeng et al [5]
showed that robotic arms can grasp objects based on location
when supported by a reinforcement learning algorithm and
a depth camera, without the need to be supervised and also
showed that sometimes performing a push action benefits the
upcoming grasping action for certain objects. Their method is

'
i
Input: Heightmap image
H representation of state st
»
S
s,
' *\
f' ’.\
’
@ @
121-layer jj 121-layer 121-layer § 121-layer
DenseNet | DenseNet. DenseNet | DenseNet,
+ +
Concatenation Concatenation
channel-wise channel-wise
Output:

i
1 |Dense pixel-wise
1 [map of Q-values

Dense pixel-wise
map of Q-values

Fig. 1. Architecture of the VPG algorithm based on the description in [5].

called VPG, (see Fig. 1) and combines two identical structures,
each of them with a convolutional neural network, pre-trained
Densenet121 [9], to process 16 different rotations of the
original RGB+D image and produce in total 32 Q-value maps
containing the locations where applying one of the possible
actions is better. In the end, only the best Q-value map is
applied and the action can be either a push or a grasp. For real-
world cluttered environments, this method obtained 83.30%
of grasp success and in cluttered simulation environments, it
obtained 77.20% of grasp success rate. Our work differentiates
from the aforementioned, as our focus is to detect and grasp
cutlery objects by type. We use YOLO version 5X for object
detection and adapt VPG [5] to grasp the targeted object and
deliver it to the desired drop point. We evaluate our method
in terms of grasp success and the ratio of successful and well
placed objects.

IIT. METHOD

Our method is illustrated in Fig. 2. We adapt [5], which
already performs push and grasp actions in objects on a
computed location based on Q-value maps that indicate how
good performing one of the actions is, in a certain location.
One contribution is the introduction of a module that contains
an object detection model, that will work together with VPG to
detect the type of objects present in the table and tell the robot
to grasp a specific object and drop it in a specific container.
We also explore different types of networks and layers for
VPG.

The pipeline of our method starts with the initialization of
the simulation's pick-place system, followed by a routine that
repeats in every epoch of the simulation (points 2 to 9). After
the objects are all placed in the simulation table, we take an
RGB image and a depth image (2nd point) to be able to create

a valid depth heightmap, that contains values for both RGB
and depth channels, in the 3rd point. In point 4, we apply
YOLO to the RGB image to obtain the labels of the objects
in simulation. These labels are composed of 6 values, the first
4 numbers indicate the starting and ending point of the box
surrounding each object in the image, the Sth number indicates
the level of confidence attributed by the object detection model
to an object as it being of a certain class and lastly, the last
number corresponds to the class to which the object belongs.
Then, we select the object with the label with best score and
crop the depth image in the position where the object is (points
5 and 6). As points 7 and 8 show, in Fig. 2, we convert the
cropped depth image to a point cloud of the object and apply
the k-means algorithm to obtain the coordinates of the object
furthest from the robot, because since the camera is in front
of the robot, the points that are further away from the camera
are closer to the robot. The conversion and application of the
k-means algorithm is explained as follows:

1) Retrieve the depth image of the current epoch/iteration
and crop it according to the bounding box of the object
with better confidence value attributed by YoLo;

2) Initialize the camera intrinsic values - [[f O w/2], [0 f
h/2], [0 O 1]], where f is the focal length, which in our
case is 618.62. w/2 and h/2 represent the central point of

the image;
3) Create point cloud from depth image, with
depth_scale=10000 and depth_trunc=10000. This

way, all the values in the point cloud are calculated in
meters;

4) Initialize camera pose using camera position, camera
orientation and camera rotation matrix, i.e., simulation
world position [z, y, 2], its orientation angles with each
axis and the rotation matrix given as a list of values in
Euler angles;

5) Convert point cloud from camera coordinate system to
robot coordinate system;

6) Apply zFar=10 and zNear=0.01 transformation to all
points in the point cloud;

7) Sort surface points of point cloud by z value;

8) Collect the point with largest z from the point cloud;

9) Apply k-means algorithm to obtain the average point
from point cloud;

10) Get average coordinates for the cluster of points obtained
from k-means.

Afterwards, we compare to the coordinates of the objects given
by one of the methods present in VPG algorithm, and the
object with coordinates closer in (x,y,z) to those obtained from
the steps 7 and 8, will be the object selected to be grasped or
pushed.

IV. EVALUATION METRICS

In section V and VI, we talk about the experiments made
with the baseline method VPG [5] and the experiments made
with our contribution with the addition of the object detection
model to this pushing and grasping algorithm. We assess

user@pop-os: $
python main.py —is_sim --push_rewards

--experience_replay --explore_rate_decay
--save_visualizations

Initialize variables 1

-

objects

camera \
IL robot
| workspace limits

training method

\ 2{Color RGB Image

Depth Image

object

3 Valid depth heightmap

and 1 4
pick-place system v‘w
= [

9 Execute grasp
on the marked

7 Generated point cloud

from depth image
Mean k neighbor
point [x, y, z] which
4~ is compared to
objects' positions
to get the closest object

6 Depth Image is cropped
according to the
bounding box present
on the label

5

Label of the object with best score:
[236, 170, 357, 220, 0.95, 0.0]

YoLo Application

Fig. 2. Pipeline of our method: initialize pick-place system (1), obtain RGB and depth images (2), create a depth heightmap containing depth values (3),
obtain labels of the objects with YOLO (4), get object with the label with best score and use it to crop the depth image (5 and 6), generate a point cloud and
obtain an average point from applying the k-means algorithm (7 and 8) and execute action on an object (9).

the whole simulations, for both VPG and our versions of
the contribution, in terms of push and grasp ratios. But our
contribution is also evaluated in terms of sorting accuracy. The
first two metrics used are related to push and grasp ratios and
the last two metrics evaluate our contribution for its sorting
accuracy, since we want to know how well the detection,
grasping and placement of the objects went:

o Mgy qsps 18 the average of the ratio between number of
successful grasps g;, and all made grasps ng;, of each
. 1 N i
simulation epoch i, given by: Myrasps = - i
where NV, corresponds to the total number of grasps made
during one experiment/simulation.

o Mpushes is the average of the ratio between number of
successful pushes p;, and all made pushes np;, of each
. . S Ny ps
simulation epoch %, given by: My, shes = N%, > fgi,
where N, corresponds to the total number of pushes made
during one experiment/simulation.

e The ratio of successful and well placed grasps in the
whole universe of all successful grasps (well placed or
not):

successful and well placed grasps

bl

ACC raspsl —
graspsl total # successful grasps

e The ratio of successful and well placed grasps in the
whole universe of all grasps (successful or not):

successful and well placed grasps
N .

g

ACCgraspsZ =

V. EXPERIMENTAL SETUP

We evaluate the baseline method for object grasping [5]
and all our proposed modifications in various simulation ex-
periments. The simulation environment used was CoppeliaSim
v4.1, with an UR3 robotic arm, 3 containers for sorted objects
and also 3 to 6 objects, in order to test non-cluttered and
cluttered environments. The experiments are made on the
Ubuntu operating system, using an AMD Ryzen7 2700X
CPU, 32GB DDR4 RAM and Nvidia Geforce RTX 3060
12GB, and since we are running an algorithm for pushing and
grasping and an object detection model, it takes up to 10GB
of dedicated video memory for computational purposes.

Our experiments are focused on checking if introducing
some changes in the two identical structures of the VPG
algorithm would produce better results and also improving
the baseline algorithm by adding an object detection model to
detect the objects available to grasp and facilitate the object
dropping decision in the right container by knowing its type.

A. Improving the Baseline Method

The first proposed changes involve trying different neural
networks and changing other configurations regarding the
networks to improve the VPG. They contemplate the following
list:

« Number of rotations applied to the RGB+D image taken
from the simulation;

e Make use of other 5 different neural networks, such
as: DenseNet169, MobileNetV2, MobileNetV3-Large,
VGG19 and VGG19-Batch;

« Different number of batch-normalization layers;

Fig. 3. Experimental setup used by our contribution. In the image: Universal
Robot 3, cutlery objects from TurboSquid [10] and the 3 containers for the
sorted cutlery (left).

o Increased size for the kernel of the convolutions;
« And, using biased neural networks.

These experiments are performed using block shaped objects
that were used in the original VPG paper. Note that these
are much easier to grasp than the cutlery objects used in
the experiments performed afterwords. The experiments are
all divided by the category of number of rotations applied
to the RGB+D image taken from the simulation and inside
that category is where we apply other changes to the method.
An image of the experimental setup similar to the one used
by VPG can be seen in Fig. 3. The first experiments made
reflected on the first 3 bar charts used block-shaped objects
for the simulations. The introduced changes are as follows:

1) 2 Batch-Normalization layers;

2) 2 Batch-Normalization layers with Bias;

3) 2 Batch-Normalization layers with Convolutional Kernel
size of 2;

4) 3 Batch-Normalization layers;

5) 4 Batch-Normalization layers.

Thus, the initial tests were made with the application of
16 rotations on the original RGB+D image taken from the
simulation.

Under the category of the 16 rotations, we changed VPG
according to the number of batch-normalization layers used.
Fig. 4 contains the results for the experiments made. We
may see 5 different values in the x axis, and that is because
we used different number of batch-normalization layers as
sub-category, inside each one of those, we performed 10
simulations for each one of the neural networks present in
the bar chart's legend and the % in the chart is the average of
those 10 simulations.

The second batch of experiments made have as category,
8 rotations of the RGB+D image and the number of Batch-
Normalization layers used are respectively 2 and 3, unbiased
and with no increase of Convolutional Kernel size. For these
tests we also simulated 10 times for each of the neural
networks and calculated the average value. The results are
presented in Fig. 5.

The last experiments made using block-shaped objects con-

50 |- 0 DenseNet121 0 MobileNetV2 —
0 VGG19 0 DenseNetl69
I VGG19-Batch [l MobileNetV3L
40 |
S
= 300 :
2 s
— . (=]
g g 2 <
sh 20 |- T V| I R
S U I B S we ne
SR EE EEEEE PHE 5
= S s sssaz |Is &S
| |wH"’ ”I ” HH"’” H" " 7
00 ©
o &~
[}
[i H
>

Fig. 4. VPG 16 rotations RGB+D tests. VPG using a 3 batch normalization
layer configuration obtained the best results of all experiments when using
pre-trained DenseNet121 and pre-trained MobileNetV3-Large.

50 | 0 DenseNet121 1 MobileNetV2 =
0 VGG19 [DenseNetl69
0 VGG19-Batch I MobileNetV3L
40 -
S
£
w 30 . -
2 z g
s 3o
) o A
= 20 5 -
3
S
10 i -
T
S
\;bﬁé

Fig. 5. VPG 8 rotations RGB+D tests. VPG using a 3 batch normalization
layer configuration obtained the best results of all experiments in this category
when using pre-trained VGG19-Batch and pre-trained MobileNetV3-Large.

template 32 rotations of the original RGB+D image and the
number of Batch-Normalization layers used are respectively
2 and 3, unbiased and with no increase of the convolutional
kernel size. Once again, for these tests we simulated 10 times
for each of the neural networks and calculated the average
value. These results appear in Fig. 6.

B. Testing with Cutlery Objects

Following the line of adjusting the VPG method to cutlery
objects, we used models taken from YCB Dataset [8] to
perform more experiments, now using cutlery.

Once more, we made experiments based on the number of
rotations applied to the original RGB+D image taken from
simulation. These rotations can be either 8 or 16 or 32.

50 | 0 DenseNet121 0 MobileNetV2 7
0 VGG19 [0 DenseNetl69
0 VGG19-Batch l MobileNetV3L
40 a
S
g © 2
z 301 : & g
o S
[72]
s = .
) o &
= 20 B . |
(=)
SR = &
R L) <
2 v 2
. © E
il HH : HH |
1 - 1
& &
SN X
'\/\){b "J\}’

Fig. 6. VPG 32 Rotations RGB+D Tests. In these experiments the best
results were obtained using pre-trained MobileNetV3-Large for both batch
normalization configurations.

TABLE I
RESULTS FOR 8/16/32 ROTATIONS OF VPG USING YCB DATASET
MODELS [8].
Rotations
8 [16 [32
Mgrasps [%]

DenseNet121 Not tested | Not tested 26.29 %

2 [MobieNetV3L | Not tested 20.99% 18.79%

Batch VGG19-Batch | Not tested | Not tested 23.39%
Norm Den§eNet121 Not tested 21.75% Not tested
Layers 3 | MobieNetV3L 26.08 % 26.96 % Not tested

VGG19-Batch 17.34% Not tested 21.99%
4 DenseNet121 Not tested 17.81% Not tested
MobieNetV3L | Not tested 24.92% Not tested

However, the number of Batch-Normalization layers applied
differs, i.e., the number of layers used for 8 rotations is dif-
ferent from those used with 16 rotations and for 32 rotations.
Also, we decided to test the baseline method with the neural
networks that showed better results in previous simulations
with the block-shaped objects, so Table I contains some cells
that say ”Not tested”, meaning that configuration wasn't tested
due to previous poor results.

Figures 4, 5 and 6 and Table I have the results for the metric
Mgrasps and not for Mpushes, because the original method
validates a push action even if it was performed in a location
where there weren't any objects, causing the Mpushes metric
to always be 100%, which is not true.

Lastly, and because it has more to do with what we propose,
we ran experiments using a combination of the baseline
method VPG [5] and the object detection model YoLo [6].
We made two versions of our proposal, where the difference
between them is the way they pre-process the image taken
from simulation with the object detection model. We call them
OursV1 and OursV2. In Oursvl it is purely based on the
object closest to the robot (distance to it) and it also makes
pushing actions when a grasp failed. However in Oursv2,

TABLE 11
RESULTS FOR 63 EPOCHS OF OUR MODEL USING 3 AND 6 CUTLERY

OBJECTS.
Mgrasps [%] Mpushes [%]
OursV1l | OursV2 | OursV1l | OursV2
TurboSquid | 3 23.49 24.24 79.78 95.24
Objects 6 18.24 34.32 86.43 63.49
YCB 3 22.81 33.58 92.70 0.0
Objects 6 22.69 7.88 68.27 80.95
TABLE III
RESULTS FOR 250 EPOCHS OF OUR MODEL USING 3 AND 6 CUTLERY
OBJECTS.
Mgrasps [%] Mpushes [%]
OursV1l | OursV2 | OursV1l | OursV2
TurboSquid | 3 22.14 32.14 98.59 87.86
Objects 6 19.71 24.46 85.65 96.27
YCB 3 13.35 26.21 80.87 68.09
Objects 6 25.77 27.42 91.70 66.72

besides looking for the object closest to the robot, we also
check if said object has other objects close to it and therefore
avoiding making a grasp when it could possibly produce a
different outcome than what we were expecting, thus applying
a push action instead. The experiments ran for 63 and 250
epochs, using cutlery object models from YCB dataset [8]
and TurboSquid [10] without using a container for the objects
that are waiting to be grasped; different number of objects per
experiment, either 3 or 6 objects; the original DenseNet121
configuration; the 16 rotations applied to the RGB+D image
and both Mgrasps and Mpushes metrics were evaluated. It is
also important to say that, both datasets were used initially
with VPG algorithm to obtain images to use in the fine tuning
process of the object detection model.

VI. DISCUSSION

From all the experiments made with the baseline method
using block-shaped objects, we see that the original configu-
ration using the neural network DenseNet121 isn't always the
one that has the best results, in fact we can improve the results
of the VPG using neural networks such as MobileNetV3-Large
and VGG19-Batch.

For example, when making use of the VPG with 16 ro-
tations of the original RGB+D image (see Fig. 4), we got
21.70% and 21.82% of average grasp success ratio Mgrasps,
for DenseNet121 and MobileNetV3-Large with a 3 batch-
normalization layer, respectively. However, when testing the
baseline method with 8 rotations of the original RGB+D
image (see Fig. 5), we see that MobileNetV3-Large and
VGG19-Batch had the best results for a 3 batch-normalization
layer configuration with 22.98% and 24.31% of Mgrasps
respectively. Meanwhile, using VPG with a 32 rotation of
the original RGB+D image configuration (see Fig. 6) proved
to be interesting, with MobileNetV3-Large having the best
Mgrasps results for both 2 and 3 batch-normalization layer
configurations, 26.96% and 28.30% respectively.

TABLE IV
ACCyrasps1 [%] RESULTS FOR OUR METHOD USING TURBOSQUID AND
YCB MODELS.

ACCg'rn,spsl [%]
OursV1 OursV2
63 epochs | 250 epochs | 63 epochs | 250 epochs
3 178 = 1734 = 12/21 = 18/65 =
TurboSquid 12.50% 2.94% 57.10% 27.69 %
6 2/5 = 3/32 = S5N7T = 2/34 =
40.00 % 9.40 % 29.40% 5.88%
3 4/9 = 3/22 = 3/17 = 7/45 =
YCB 44.44% 13.63% 17.60% 15.55%
6 3/5 = 3/36 = 2/8 = 3/13 =
60.00 % 8.33% 25.00% 23.07 %
TABLE V

ACCgyrasps2 [%] RESULTS FOR OUR METHOD USING TURBOSQUID AND
YCB MODELS.

ACCg'r'u,spsQ[%]
OursV1 OursV2
63 epochs | 250 epochs | 63 epochs | 250 epochs
3 1736 = 17142 = 12/62 = 18/227 =
TurboSquid 2.77% 0.70% 19.40 % 7.92 %
6 2/34 = 3/141 = 5/60 = 2/155 =
5.88% 2.12% 8.33% 1.29%
3 4/36 = 3/136 = 3/60 = 7/156 =
YCB 11.11% 2.20% 5.00% 4.48%
6 3/34 = 3/143 = 2/57 = 3/39 =
8.82% 2.09% 3.50% 7.69 %

Nevertheless, using VPG with cutlery objects for the previ-
ous best configurations (see Table I), showed that using a:

o 2 layer batch-normalization had the best Mgrasps result
with DenseNet121 and 32 rotations with 26.29%;

« 3 layer batch-normalization had best results for Mgrasps
using 8 and 16 rotations with MobileNetV3-Large, with
26.08% and 26.96% respectively.

In contrast (see Table II), our contribution compared to
VPG using YCB Dataset [8] objects, had the best result for
Mgrasps - 33.58%, when using only 3 cutlery objects and for
a short number of epochs. We tested the two versions of our
method with other 3D cutlery models from TurboSquid and
their best result was also obtained when using a short number
of epochs, but with a more cluttered scenery (6 objects) -
34.32% and with OursV2. There is room for improvement,
however we can think of one reason why Mgrasps percentage
was low and it contemplates the fact that these kind of objects
resemble the metallic look of the real-world objects which
makes them harder for the object detection model to detect
and also, because of their thin structure which makes them
harder to grasp, even in simulation conditions.

We were able to measure Mpushes for all experiments with
our contribution and the best result — 98.59% was achieved
with OursV1 (see Table III), when using 3 TurboSquid cutlery
object models and for 250 epochs.

As Tables IV and V show, the ratio of successful and
well placed grasps in the universe of all successful grasps
(ACCyraspst1) had its best result with OursV1 — 60.00%, using

6 YCB object models, a small number of simulation epochs

(63) and the ratio of successful and well placed grasps in the
universe of all made grasps (ACCyrqsps2) had its best result

with OursV2 — 19.40%, using 3 TurboSquid object models
and again, during a small number of simulation epochs (63).

VII. CONCLUSION

In this paper, we propose a method that contributes to the
robotic manipulation field, particularly in robotic manipulation
of cutlery, by combining a pushing and grasping algorithm
for robotic manipulation with an object detection model to be
able to detect, grasp and separate different types of cutlery in
different containers. By being able to detected the objects and
their type, i.e., if they are forks or knives or spoons, we are able
to apply pushing or grasping actions on them and tell the robot
to place them in the respective container according to their
type. We have also shown that there are convolutional neural
networks that have better performance and obtain improved
results than the original pre-trained DenseNet121 used in VPG,
such as the MobileNetV3-Large and VGG19-Batch. Finally,
we also explored the impact of the usage of different kernel
sizes, batch normalization layers and biased networks in the
performance of the VPG as an attempt to improve the overall
results and can conclude that amongst all the different configu-
rations tested, the three batch normalization layer configuration
produced the best results. We make our code available at:
github.com/RicardoVermelho/VPG-YOLO-cutlery.

REFERENCES

[11 G. Kazhoyan, S. Stelter, F. K. Kenfack, S. Koralewski, and M. Beetz,
“The robot household marathon experiment.” [Online]. Available:
https://arxiv.org/abs/2011.09792/

[2] H. Nambiappan, K. Kodur, M. Kyrarini, F. Makedon, and N. Gans,
“Mina: A multitasking intelligent nurse aid robot,” The 14th PErvasive
Technologies Related to Assistive Environments Conference, 2021.

[3] R. Lépez-Sastre, M. Baptista-Rios, F. J. Acevedo-Rodriguez, S. P.
da Costa, S. Maldonado-Bascén, and S. Lafuente-Arroyo, “A low-cost
assistive robot for children with neurodevelopmental disorders to aid in
daily living activities,” International Journal of Environmental Research
and Public Health, vol. 18, 2021.

[4] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-
dof grasping for target-driven object manipulation in clutter,” 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 6232-6238, 2020.

[5] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” 2018.

[6] Ultralytics, “Pytorch yolov5.” 2020. [Online]. Available: http://dx.doi.
org/10.5281/zenod0.3908559

[71 P. Ni, W. Zhang, H. Zhang, and Q. Cao, “Learning efficient push and
grasp policy in a totebox from simulation,” Advanced Robotics, vol. 34,
pp. 873 — 887, 2020.

[8] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa,
P. Abbeel, and A. Dollar, “Yale-cmu-berkeley dataset for robotic
manipulation research.” The International Journal of Robotics Research,
vol. 36, p. 027836491770071, 04 2017. [Online]. Available: http:
//dx.doi.org/10.1177/0278364917700714

[9] “Densenetl21 pytorch implementation.” [Online]. Available: https:
/Ipytorch.org/hub/pytorch_vision_densenet/

[10] “Turbosquid: Online 3d models website.” [Online]. Available: https:
/Iwww.turbosquid.com/

