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Interaction with Large Scale Models 
 

Practical Sheet 4 
 

Tutorial 

 

Some platforms (like Hugging Face Inference API) provide access to LLaVA models without 
needing local setup. 

Option 1: Using LLaVA via an Online API 

Step 1: Get API Access 

1. Sign up on Hugging Face. 
2. Go to LLaVA models. 
3. If there's an API endpoint, obtain the token. 

Step 2: Use Python to Call the API 

 

 

 

 

 

Option 2: Using LLaVA Locally 

Step 1: Install Dependencies 

Ensure you have PyTorch installed:  

 

 

Install other dependencies: 

 

import requests 
API_URL = "https://api-inference.huggingface.co/models/liuhaotian/llava-v1.5-7b" 
HEADERS = {"Authorization": "Bearer YOUR_HF_API_KEY"} 
def query_llava(text): 
    payload = {"inputs": text} 
    response = requests.post(API_URL, headers=HEADERS, json=payload) 
    return response.json() 
print(query_llava("Describe the content of an image.")) 

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 
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Step 2: Download and Load LlaVA 

 

 

 

 

Run the following Python script:  

 

 

Exercises 

1. Multi-1. Prompt Evaluation. Implement an automated evaluation pipeline to compare different 
prompts. You should implement a Python script that automates prompt evaluation and reports the 
best-performing prompt. 

1. Choose three different prompts designed to extract similar information from an LLM (e.g., 
“Explain quicksort” in different phrasings). 

2. Use a local LLM API (LLAVA or QWEEn-vl) to generate responses for each prompt. 
3. Obtain reference answers from reliable sources (e.g., textbooks, official documentation). 
4. Compute similarity between generated responses and reference answers using cosine 

similarity with sentence embeddings (e.g., sentence-transformers). 
5. Rank the prompts based on similarity scores. 
6. Interpret the results and discuss why certain prompts performed better than others. 

2. Preventing Hallucinations. Compare LLM responses with and without external knowledge 
retrieval. For such, develop a a Python script implementing RAG and comparing response accuracy 
should be obtained. 

1. Select a set of fact-based queries requiring precise answers (e.g., “What is the latest 
breakthrough in deep learning?”). 

2. Run these queries through an LLM without additional context and analyze the responses. 
3. Use FAISS to create a vector database with relevant documents (e.g., research papers, 

Wikipedia extracts). 
4. Implement a retrieval-augmented generation (RAG) system:  

o Convert queries into embeddings. 
o Retrieve relevant documents from FAISS. 

pip install transformers accelerate bitsandbytes 
pip install git+https://github.com/huggingface/transformers.git 

from transformers import AutoProcessor, AutoModelForCausalLM 
import torch 
model_name = "liuhaotian/llava-v1.5-7b" 
device = "cuda" if torch.cuda.is_available() else "cpu" 
processor = AutoProcessor.from_pretrained(model_name) 
model = AutoModelForCausalLM.from_pretrained(model_name, 
torch_dtype=torch.float16).to(device) 
def llava_inference(prompt): 
    inputs = processor(text=prompt, return_tensors="pt").to(device) 
    output = model.generate(**inputs, max_new_tokens=100) 
    return processor.batch_decode(output, skip_special_tokens=True)[0] 
print(llava_inference("Hello, LLaVA!")) 
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o Inject retrieved documents into the prompt before sending it to the LLM. 
5. Compare responses before and after RAG and assess hallucination reduction. 

3. Quantitative and Qualitative Metrics for Prompt Output. Measure LLM responses using 
BLEU, ROUGE, and human evaluation, and develop a Python script calculating BLEU/ROUGE 
scores, along with a brief report comparing them to human evaluations. 

1. Generate responses for at least three different prompts. 
2. Collect reference responses for each prompt. 
3. Compute BLEU and ROUGE scores using nltk.translate or rouge_score in Python. 
4. Conduct a human evaluation:  

o Rate responses on coherence, fluency, and informativeness (scale of 1–5). 
5. Compare automated metrics with human ratings. 
6. Discuss cases where metrics and human ratings diverge. 

4. Logical Consistency. Detect contradictions in LLM-generated responses. The goal in this 
exercice is to implementa Python script detecting contradictions and a summary of findings. 

1. Create a set of logically structured prompts (e.g., “If A is true, what follows?”). 
2. Generate multiple responses from an LLM. 
3. Use a pre-trained Natural Language Inference (NLI) model (e.g., facebook/bart-large-mnli) 

to classify contradictions. 
4. Implement a script that flags responses contradicting prior statements. 
5. Analyze which prompts produce the most inconsistencies and why. 

5. Diversity. Evaluate response diversity using embedding similarity. Implement a Python script 
measuring response diversity and a refined prompt. 

1. Write prompts that request diverse outputs (e.g., “List three applications of reinforcement 
learning”). 

2. Generate multiple responses from an LLM. 
3. Convert responses into embeddings using sentence-transformers. 
4. Compute cosine similarity between different responses. 
5. If similarity is high (e.g., >0.9), refine the prompt to encourage diversity. 
6. Repeat the process until the responses are sufficiently varied. 

6. Coverage. Ensure responses contain key concepts and implement a script evaluating coverage 
and an improved prompt. 

1. Choose a topic with well-defined subtopics (e.g., “Explain the TCP/IP model” should 
cover layers, protocols, and security concerns). 

2. Generate LLM responses to an initial prompt. 
3. Define a checklist of essential concepts. 
4. Implement a keyword-matching script to verify concept coverage. 
5. Compute a coverage score (e.g., % of expected keywords present). 
6. Modify the prompt to improve coverage and test again. 

7. Prompt Refinement. Iteratively improve a suboptimal prompt. At the end, obtain a document 
showing the original and refined prompts with output comparisons. 

1. Start with a vague prompt (e.g., “Explain blockchain”). 
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2. Analyze its shortcomings (e.g., lack of depth, missing aspects). 
3. Apply refinement techniques:  

o Specify required details (e.g., “Explain blockchain focusing on consensus 
mechanisms”). 

o Use delimiters (e.g., “Provide a structured response: Introduction | Key 
Components | Challenges”). 

o Add role-based instructions (e.g., “Act as a cybersecurity expert”). 
4. Compare responses before and after refinement. 
5. Repeat until an optimal prompt is achieved. 


