INTERACTION WITH LARGE SCALE MODELS

LIACD/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2024/2025

INTERACTION WITH LARGE SCALE MODELS

Syllabus

- Tokenization: How text is processed into tokens
- Embeddings: How models understand word meaning

- **Tokens** are the fundamental unit, the "atom" of Large Language Models (LLMs). Tokenization is the process of translating strings and converting them into sequences of tokens.
- In practice, it regards breaking the input into smaller units (tokens) that models can process
 - Word-based: Splitting by words (e.g., "Prompt Engineering" → ["Prompt", "Engineering"])
 - Subword-based (Byte-Pair Encoding BPE): Splitting into frequent character sequences (e.g., "Engineering" → ["Eng", "ineering"])
 - Character-based: Splitting into individual characters (e.g., "Engineering" → ["E", "n", "g", "i", "n", "e", "e", "r", "i", "n", "g"])

Tokenization has evident impact in input size and model efficiency

Also, it determines context length and processing speed

Tokenization - Example

Tiktokenizer		gpt-4o \diamond	•
System v You are a helpful assistant	×	Token count	
User v Content	×	14	
Add message This is an example of an input to be given to a LLM		This <mark>is</mark> an example of an input to be given to a LLM	Compare the tokens used for different LLMs
	li	2500, 382, 448, 4994, 328, 448, 3422, 316, 413, 4335, 316, 261, 451, 19641	

Source: https://tiktokenizer.vercel.app/

- Most of the recent SOTA models make use of Byte-Pair Encoding (BPE), Word Piece, Unigram, and Sentence Piece.
- Word Based Tokenization
 - As the name suggests, in word-based tokenization methods entire words separated by either punctuation, whitespaces, delimiters, etc. are considered as tokens.
 - The simplest approach might consider whitespaces as delimiters only.
 - However, using it on a bigger dataset this method would result in a huge vocabulary as innumerable groupings of words and punctuations would be treated as different tokens from the underlying word.

- Rule-based words tokenizers.
 - Consider the semantics of each specific language, to define rules for breaking words into tokens
- SpaCy offers a great rule-based tokenizer which applies rules specific to a language for generating semantically rich tokens. Interested readers can take a sneak peek into the rules defined by spacy.
- Character Based Tokenization
 - Has the main advantage of reducing drastically the complexity and size of the vocabulary (up to almost 200 tokens)
 - However, the tokens no longer carry meaningful semantics. To put this into context, representations of "king" and "queen" in word-based tokenization would contain a lot more information than the contextual-independent embeddings of letter "k" and "q". This is the reason why language models perform poorly when trained on character based tokens.

Sub-word Based Tokenization

- Aim to represent all the words in dataset by only using as many as N tokens, where N is a hyperparameter and is decided as per your requirements. Generally, for base models, it hovers around ~30,000 tokens. Thanks to these methods, without needing an infinite vocabulary we're now well equipped to capture context-independent semantically rich token representations.
- There are four main algorithms used for this type of tokinzation
 - Byte-Pair Encoding (BPE)
 - Word Piece
 - Unigram
 - Sentence Piece

Byte-Pair Encoding

- It requires the input to be pre-tokenized which can be a simple whitespace tokenization or a rule-based tokenizer such as SpaCy.
- Next, a base vocabulary is created which is a collection of all unique characters in the corpus. We also obtain the frequency of each token and represent each token as a list of individual characters from base vocabulary.
- Then, merging begins. Tokens are added to our base vocab if the maximum size is not reached
 - The pair of tokens occurring the most times is merged and considered as a new token. This step is repeated until we reach the configured maximum vocab size.

Word Piece

- Word Piece and Byte-Pair Encoding (BPE) are very similar in their approaches of achieving sub-word tokenization.
- The BPE's primary criterium is to select the candidate pair with the maximum frequency.
- Word Piece, instead, focuses on maximizing the likelihood of a candidate pair (ab), with "a" and "b" being tokens.
- Intuitively, WordPiece is slightly different to BPE in that it evaluates what it loses by merging two symbols to ensure it's worth it.

$$\frac{P(ab)}{P(a) P(b)}$$

Sentence Piece

- Surprisingly, it's not actually a tokenizer
- It's actually a method for selecting tokens from a precompiled list, optimizing the tokenization process based on a supplied corpus.
- We start by assessing the probability P(Y|X) of a target sentence Y given an input sentence X.

$$P(Y|X;\theta) = \prod_{i=1}^{n} P(y_i|\mathbf{x}, y_{< i};\theta)$$

- Note that X and Y can be formed by a very large number of sub-word sequences.
 - For instance, 'translation' can be tokenized in many different ways (e.g., [t, r,an, s, l, a ti, o n] or [t, r, a, ns, la, ti, o n], ...
- This algorithm not only considers this fact, but it takes advantage from it.

Sentence Piece

• The cost function is given by:

$$\mathcal{L}(\theta) = \sum_{s=1}^{|D|} \mathbb{E}_{\substack{x \sim P(\mathbf{x}|X^{(s)}) \\ y \sim P(\mathbf{y}|Y^{(s)})}} \log P(\mathbf{y}|\mathbf{x};\theta)$$

- Where |D| is the number of possible tokenizations (segmentations), and "x" and "y" and drawn from their distributions over all possible segmentations.
- In practice, we remove the expectation E[...] and just use "x" and "y" as a single randomized segmentation.
- However, the main problem is to build a probability distribution over an exponential number of states.
 - As in most optimization problems, we obtain an approximate solution.
 - Assuming that it is too hard to obtain joint distributions P(x₁, x₂), we assume that:

$$p(\mathbf{x}|X) \approx \prod_{i=1}^{n} p(x_i) \qquad \sum_{x \in V} p(x) = 1$$

Sentence Piece

- To train, we want to maximize the log-probability of obtaining a particular tokenization $_X=(x_1, ..., x_n)$ of the corpus, given the unigram probabilities $p(x_1),...,p(x_n)$. Note that only the full untokenized sequence X is observed.
- The overall training objective is given by:

$$\mathcal{L} = \sum_{s=1}^{|D|} \log P(X^{(s)}) = \sum_{s=1}^{|D|} \log \left(\sum_{\mathbf{x} \in S(\mathbf{x})} P(\mathbf{x}) \right)$$

- Where "x" are the unigram sequences, and S(x) denotes the set of all possible sequences.
- To solve this, we incorporate an Expectation-Maximization (EM) type algorithm.
 - Initialize the unigram probabilities.
 - REPEAT
 - M-step: compute the most probable unigram sequence given the current probabilities.
 - If all of the sub-words were of the same length, this would be a classic application of the Viterbi algorithm. Instead, it is solved with dynamic programming.
 - **E-step:** given the current tokenization, recompute the unigram probabilities by counting the occurrence of all sub-words in the tokenization.

- Token feature embeddings are crucial in foundational models because they transform discrete tokens (words, sub-words, or characters) into dense vector representations that capture semantic, syntactic, and contextual information.
- Unlike one-hot encoding, which is sparse and lacks meaningful relationships, embeddings allow LLMs to understand similarities between words, handle polysemy (words with multiple meanings), and generalize across different linguistic patterns.
- These embeddings also enable models to process unseen words by leveraging similarities to known ones, improving robustness and adaptability.
- Additionally, specialized embeddings, such as position and segment embeddings, help models encode word order and structural relationships, further enhancing their ability to generate coherent and contextually relevant text.

- As a (non-real) illustration, imagine a set of independent and humaninterpretable features, where the corresponding coefficient for each word will represent *how much* the word relates to that feature (property).
 - In practice, features are not independent and interpretable.

	KING	QUEEN	MAN	GIRL	PRINCE	
Royalty	0.96	0.98	0.05	0.56	0.95	
Masculinity	0.92	0.07	0.90	0.09	0.85	
Femininity	0.08	0.93	0.10	0.91	0.15	
Age	0.67	0.71	0.56	0.11	0.42	

Source: https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673

- *Word2Vec* is among the most popular methods for obtaining semantically consistent language embeddings.
- The main idea is that, instead of representing words as one-hot encoding in high dimensional space, to represent words in a dense low dimensional space, in a way that similar words get similar word vectors, so they are mapped to nearby points.
- At the top scale, the algorithm is given by:
 - Move through the training corpus with a sliding window: Each word is a prediction problem.
 - The objective is to predict the current word using the neighbor words (or vice versa).
 - The outcome of the prediction determines whether we adjust the current word vector. Gradually, vectors converge to (hopefully) optimal values.
- The prediction itself is not the final goal. It is a proxy to learn vector representations that can be used in other tasks.

• One of the simplest architectures is just a simple one hidden layer plus one output layer.

else. When we multiply this input vector by weight matrix, we are actually

Source: https://medium.com/towards-data-science/understanding-word2vec-embedding-in-practice-3e9b8985953

• During training, we should maximize the probability of predicting a word ω_t given its surrounding words (backward and forward).

$$P(\omega_t \mid \omega_{t-n}, ..., \omega_{t-1}, \omega_{t+1}, ..., \omega_{t+n})$$

- This is approximated by the number of times the word is observed in that context, divided by the number of times the context is observed (with or without the word).
- Thus, the final loss formulation is given by the negative log-likelihood:

$$J = -\sum \log P(\omega_t \mid \omega_{t-n}, ..., \omega_{t-1}, \omega_{t+1}, ..., \omega_{t+n})$$

• This way, it learns word embeddings by optimizing a neural network that predicts word-context relationships.