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Syllabus

• Tokenization: How text is processed into tokens

• Embeddings: How models understand word meaning
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Tokenization
• Tokens are the fundamental unit, the “atom” of 

Large Language Models (LLMs). Tokenization is the 
process of translating strings and converting them 
into sequences of tokens. 
• In practice, it regards breaking the input into smaller 

units (tokens) that models can process
• Word-based: Splitting by words (e.g., "Prompt 

Engineering" → ["Prompt", "Engineering"])
• Subword-based (Byte-Pair Encoding - BPE): Splitting 

into frequent character sequences (e.g., 
"Engineering" → ["Eng", "ineering"])

• Character-based: Splitting into individual characters 
(e.g., "Engineering" → ["E", "n", "g", "i", "n", "e", "e", 
"r", "i", "n", "g"])
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Tokenization has evident
impact in input size and
model efficiency

Also, it determines 
context length and
processing speed

This is a Hello World

This is a Hello World



Tokenization - Example
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Source: https://tiktokenizer.vercel.app/

Compare the 
tokens used for 
different LLMs 



Tokenization
• Most of the recent SOTA models make use of — Byte-Pair Encoding 

(BPE), Word Piece, Unigram, and Sentence Piece. 
• Word Based Tokenization

• As the name suggests, in word-based tokenization methods entire words 
separated by either punctuation, whitespaces, delimiters, etc. are 
considered as tokens. 

• The simplest approach might consider whitespaces as delimiters only. 
• However, using it on a bigger dataset this method would result in a huge 

vocabulary as innumerable groupings of words and punctuations would be 
treated as different tokens from the underlying word. 
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Hello
Hello. Hello,

Hello!

Are considered all 
different tokens!



Tokenization
• Rule-based words tokenizers. 

• Consider the semantics of each specific language, to define rules for 
breaking words into tokens

• SpaCy offers a great rule-based tokenizer which applies rules specific 
to a language for generating semantically rich tokens. Interested 
readers can take a sneak peek into the rules defined by spacy.
• Character Based Tokenization

• Has the main advantage of reducing drastically the complexity and size of 
the vocabulary (up to almost 200 tokens)

• However, the tokens no longer carry meaningful semantics. To put this into 
context, representations of “king” and “queen” in word-based tokenization 
would contain a lot more information than the contextual-independent 
embeddings of letter “k” and “q”. This is the reason why language models 
perform poorly when trained on character based tokens.
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Tokenization
• Sub-word Based Tokenization

• Aim to represent all the words in dataset by only using as many as N tokens, 
where N is a hyperparameter and is decided as per your requirements. 
Generally, for base models, it hovers around ~30,000 tokens. Thanks to 
these methods, without needing an infinite vocabulary we’re now well 
equipped to capture context-independent semantically rich token 
representations.

• There are four main algorithms used for this type of tokinzation
• Byte-Pair Encoding (BPE)
• Word Piece
• Unigram
• Sentence Piece 
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Byte-Pair Encoding
• It requires the input to be pre-tokenized — 

which can be a simple whitespace tokenization 
or a rule-based tokenizer such as SpaCy.

• Next, a base vocabulary is created which is a 
collection of all unique characters in the 
corpus. We also obtain the frequency of each 
token and represent each token as a list of 
individual characters from base vocabulary.

• Then, merging begins. Tokens are added to our 
base vocab if the maximum size is not reached 

• The pair of tokens occurring the most 
times is merged and considered as a new 
token. This step is repeated until we reach 
the configured maximum vocab size.
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Source: https://medium.com/towards-data-science/tokenization-algorithms-explained-e25d5f4322ac



Word Piece
• Word Piece and Byte-Pair Encoding (BPE) are very similar in their 

approaches of achieving sub-word tokenization. 
• The BPE’s primary criterium is to select the candidate pair with the 

maximum frequency. 
• Word Piece, instead, focuses on maximizing the likelihood of a 

candidate pair (ab), with “a” and “b” being tokens.
• Intuitively, WordPiece is slightly different to BPE in that it evaluates 

what it loses by merging two symbols to ensure it’s worth it.

𝑃(𝑎𝑏)
𝑃 𝑎 𝑃(𝑏)
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Sentence Piece
• Surprisingly, it’s not actually a tokenizer
• It’s actually a method for selecting tokens from a precompiled list, 

optimizing the tokenization process based on a supplied corpus.
• We start by assessing the probability P(Y|X) of a target sentence Y given 

an input sentence X.

• Note that X and Y can be formed by a very large number of sub-word 
sequences.
• For instance, ‘translation’ can be tokenized in many different ways (e.g., [t, r,an, s, 

l, a ti, o n] or [t, r, a, ns, la, ti, o n], …

• This algorithm not only considers this fact, but it takes advantage from it.
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Sentence Piece
• The cost function is given by:

• Where |D| is the number of possible tokenizations (segmentations), and “x” 
and “y” and drawn from their distributions over all possible segmentations.

• In practice, we remove the expectation E[…] and just use “x” and “y” 
as a single randomized segmentation. 
• However, the main problem is to build a probability distribution over 

an exponential number of states. 
• As in most optimization problems, we obtain an approximate solution.
• Assuming that it is too hard to obtain joint distributions P(x1, x2), we assume 

that: 

12



Sentence Piece
• To train, we want to maximize the log-probability of obtaining a 

particular tokenization _X=(x1, …, xn) of the corpus, given the 
unigram probabilities p(x1),…,p(xn). Note that only the full un-
tokenized sequence X is observed.
• The overall training objective is given by:

• Where “x” are the unigram sequences, and S(x) denotes the set of all 
possible sequences. 

• To solve this, we incorporate an Expectation-Maximization (EM) type 
algorithm.
• Initialize the unigram probabilities. 
• REPEAT

• M-step: compute the most probable unigram sequence given the current probabilities.
• If all of the sub-words were of the same length, this would be a classic application of the 

Viterbi algorithm. Instead, it is solved with dynamic programming.
• E-step: given the current tokenization, recompute the unigram probabilities by counting 

the occurrence of all sub-words in the tokenization. 
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Embeddings
• Token feature embeddings are crucial in 

foundational models because they transform 
discrete tokens (words, sub-words, or characters) 
into dense vector representations that capture 
semantic, syntactic, and contextual information. 
• Unlike one-hot encoding, which is sparse and lacks 

meaningful relationships, embeddings allow LLMs 
to understand similarities between words, handle 
polysemy (words with multiple meanings), and 
generalize across different linguistic patterns. 
• These embeddings also enable models to process 

unseen words by leveraging similarities to known 
ones, improving robustness and adaptability. 
• Additionally, specialized embeddings, such as 

position and segment embeddings, help models 
encode word order and structural relationships, 
further enhancing their ability to generate 
coherent and contextually relevant text.
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Source: https://www.naukri.com/code360/library/word2vec



Embeddings
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•  As a (non-real) illustration, imagine a set of independent and human-
interpretable features, where the corresponding coefficient for each word 
will represent how much the word relates to that feature (property).
• In practice, features are not independent and interpretable.

Source: https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673



Embeddings
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• Word2Vec is among the most popular methods for obtaining semantically 
consistent language embeddings.
• The main idea is that, instead of representing words as one-hot encoding in 

high dimensional space, to represent words in a dense low dimensional space, 
in a way that similar words get similar word vectors, so they are mapped to 
nearby points.
• At the top scale, the algorithm is given by:

• Move through the training corpus with a sliding window: Each word is a prediction 
problem.

• The objective is to predict the current word using the neighbor words (or vice 
versa).

• The outcome of the prediction determines whether we adjust the current word 
vector. Gradually, vectors converge to (hopefully) optimal values. 

• The prediction itself is not the final goal. It is a proxy to learn vector 
representations that can be used in other tasks.



Embeddings

17

•  One of the simplest architectures is just a simple one hidden layer plus 
one output layer.

Source: https://medium.com/towards-data-science/understanding-word2vec-embedding-in-practice-3e9b8985953



Embeddings
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•  During training, we should maximize the probability of predicting a 
word 𝜔! given its surrounding words (backward and forward).

𝑃(𝜔! | 𝜔!"#,…, 𝜔!"$, 𝜔!%$, …, 𝜔!%#)

• This is approximated by the number of times the word is observed in 
that context, divided by the number of times the context is observed 
(with or without the word).
• Thus, the final loss formulation is given by the negative log-likelihood:

J = − ∑ 𝑙𝑜𝑔 𝑃(𝜔! | 𝜔!"#,…, 𝜔!"$, 𝜔!%$, …, 𝜔!%#)

• This way, it learns word embeddings by optimizing a neural network 
that predicts word-context relationships.


