INTERACTION
WITH LARGE
SCALE MODELS

LIACD/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2024/2025

INTERACTION
WITH LARGE
SCALE MODELS

Syllabus

* Tokenization: How text is processed into tokens

* Embeddings: How models understand word meaning

Tokenization

* Tokens are the fundamental unit, the “atom” of
Large Language Models (LLMs). Tokenization is the
process of translating strings and converting them
into sequences of tokens.

* In practice, it regards breaking the input into smaller
units (tokens) that models can process

 Word-based: Splitting by words (e.g., "Prompt
Engineering" = ["Prompt", "Engineering"])

* Subword-based (Byte-Pair Encoding - BPE): Splitting
into frequent character sequences (e.g.,

"Engineering" - ["Eng", "ineering"])
e Character-based: Splitting into individual characters

(e-g-’ IlEngineeringll 9 [IIEII' Ilnll’ llgll’ llill’ "n"' "e"’ llelI’
s o i n II])

1, n, g

Tokenization has evident

impact in input size and Also, it determines

model efficiency context length and
processing speed

[This is a Hello World]

Tokenization - Example

Tiktokenizer
System v You are a helpful assistant X
User v X

Add message

This is an example of an input to be given to a LLM

gpt-40 c
Token count
14
This is an example of an input to be given to a LLM Compare the

tokens used for
different LLMs

2500, 382, 448, 4994, 328, 448, 3422, 316, 413, 4335,
316, 261, 451, 19641

Show whitespace

Source: https://tiktokenizer.vercel.app/

Tokenization

* Most of the recent SOTA models make use of — Byte-Pair Encoding
(BPE), Word Piece, Unigram, and Sentence Piece.

 \Word Based Tokenization

* As the name suggests, in word-based tokenization methods entire words
separated by either punctuation, whitespaces, delimiters, etc. are
considered as tokens.

* The simplest approach might consider whitespaces as delimiters only.

* However, using it on a bigger dataset this method would result in a huge
vocabulary as innumerable groupings of words and punctuations would be
treated as different tokens from the underlying word.

Hello Hello!
Hello. Hello,
Are considered all
different tokens!

Tokenization

 Rule-based words tokenizers.

* Consider the semantics of each specific language, to define rules for
breaking words into tokens

» SpaCy offers a great rule-based tokenizer which applies rules specific
to a language for generating semantically rich tokens. Interested
readers can take a sneak peek into the rules defined by spacy.

 Character Based Tokenization

* Has the main advantage of reducing drastically the complexity and size of
the vocabulary (up to almost 200 tokens)

* However, the tokens no longer carry meaningful semantics. To put this into
context, representations of “king” and “queen” in word-based tokenization
would contain a lot more information than the contextual-independent
embeddings of letter “k” and “q”. This is the reason why language models
perform poorly when trained on character based tokens.

Tokenization

* Sub-word Based Tokenization

* Aim to represent all the words in dataset by only using as many as N tokens,
where N is a hyperparameter and is decided as per your requirements.
Generally, for base models, it hovers around ~30,000 tokens. Thanks to
these methods, without needing an infinite vocabulary we’re now well
equipped to capture context-independent semantically rich token
representations.

* There are four main algorithms used for this type of tokinzation

e Byte-Pair Encoding (BPE)

* Word Piece

* Unigram

* Sentence Piece

Byte-Pair Encoding

* It requires the input to be pre-tokenized —
which can be a simple whitespace tokenization
or a rule-based tokenizer such as SpaCy.

Base Vocab

* Next, a base vocabulary is created which is a

CO”eCt|On Of a” Unlque CharaCterS |n the Pre-tokenized Word Frequency Splitting Into Characters Most Frequent Pairs
corpus. We also obtain the frequency of each

(“sea”, 5)
token and represent each token as a list of E

individual characters from base vocabulary. (“set”, 10)

(“uno”, 15)

e Then, merging begins. Tokens are added to our

base vocab if the maximum size is not reached PRET W r p—

* The pair of tokens occurring the most

times is merged and considered as a new
token. This step is repeated until we r

rce: https://medium.com/towards-data-science/tokenization-algorithfms-explained-e25d5f4322ac

the configured maximum vocab size.

Word Piece

* Word Piece and Byte-Pair Encoding (BPE) are very similar in their
approaches of achieving sub-word tokenization.

* The BPE’s primary criterium is to select the candidate pair with the
maximum frequency.

* Word Piece, instead, focuses on maximizing the likelihood of a
candidate pair (ab), with “a” and “b” being tokens.

* Intuitively, WordPiece is slightly different to BPE in that it evaluates
what it loses by merging two symbols to ensure it’s worth it.

P(ab)
P(a) P(b)

Sentence Plece

 Surprisingly, it’s not actually a tokenizer

* It’s actually a method for selecting tokens from a precompiled list,
optimizing the tokenization process based on a supplied corpus.

* We start by assessing the probability P(Y|X) of a target sentence Y given
an input sentence X.

P(Y|X;0) =T1,—, P(yi|x,y<i;6)

* Note that X and Y can be formed by a very large number of sub-word
sequences.
* For instance, ‘translation’ can be tokenized in many different ways (e.g., [t, r,an, s,
,ati,on]or]t,ra,ns,la,tion], ..

 This algorithm not only considers this fact, but it takes advantage from it.

Sentence Plece

* The cost function is given by:

L(0) = ZlDl E, . p(xx)log P(ylx;0)
y~P(y|Y'?)

 Where |D| is the number of possible tokenizations (segmentations), and “x”
and “y” and drawn from their distributions over all possible segmentatlons

* In practice, we remove the expectation E[...] and just use “x” and “y”
as a single randomized segmentation.

* However, the main problem is to build a probability distribution over
an exponential number of states.

* As in most optimization problems, we obtain an approximate solution.
* Assuming that it is too hard to obtain joint distributions P(x4, x,), we assume

that:
pxX) ~ [T, p@) Y,y p(z) =1

Sentence Plece

* To train, we want to maximize the log-probability of obtaining a
particular tokenization _X=(xy, ..., X,,) of the corpus, given the
unigram probabilities p(x,),...,p(x,,). Note that only the full un-
tokenized sequence X is observed.

* The overall training objective is given by:

P ZlDI log P(X(S)) — ZIDI log (erS(x) P(x))

 Where “x” are the unigram sequences, and S(x) denotes the set of all
p055|ble sequences.

* To solve this, we incorporate an Expectation-Maximization (EM) type
algorithm.

* Initialize the unigram probabilities.
* REPEAT

* M-step: compute the most probable unigram sequence given the current probabilities.

* If all of the sub-words were of the same length, this would be a classic application of the
Viterbi algorithm. Instead, it is solved with dynamic programming.

* E-step: given the current tokenization, recompute the unigram probabilities by counting
the occurrence of all sub-words in the tokenization.

Embeddings

* Token feature embeddings are crucial in
foundational models because they transform
discrete tokens (words, sub-words, or characters) A
into dense vector representations that capture
semantic, syntactic, and contextual information. nan

* Unlike one-hot encoding, which is sparse and lacks @-. oman
meaningful relationships, embeddings allow LLMs) A@
to understand similarities between words, handle O
polysemy (words with multiple meanings), and , R S
generalize across different linguistic patterns. king e |

* These embeddings also enable models to process queen

unseen words by leveraging similarities to known /\)

ones, improving robustness and adaptability.

* Additionally, specialized embeddings, such as Source: https://www.naukri.com/code360/lbrary/word2vec
position and segment embeddings, help models
encode word order and structural relationships,
further enhancing their ability to generate
coherent and contextually relevant text.

Embed‘dings

* As a (non-real) illustration, imagine a set of independent and human-

S

interpretable features, where the corresponding coefficient for each word

will represent how much the word relates to that feature (property).

* In practice, features are not independent and interpretable.

Royalty

Mascu/ini*y

Femininh‘y

Age

KING QUEEN MAN GIRL PRINCE
096 0.98 005 056 0.95
a0 BN o
005 | 010 G

061 07 056 ol ok2
] I
—
L]
== —

Source: https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673

15

Embeddings

* Word2Vec is among the most popular methods for obtaining semantically
consistent language embeddings.

* The main idea is that, instead of representing words as one-hot encoding in
high dimensional space, to represent words in a dense low dimensional space,
in @ way that similar words get similar word vectors, so they are mapped to
nearby points.

* At the top scale, the algorithm is given by:
* Move through the training corpus with a sliding window: Each word is a prediction
problem.
* The objective is to predict the current word using the neighbor words (or vice
versa).

* The outcome of the prediction determines whether we adjust the current word
vector. Gradually, vectors converge to (hopefully) optimal values.

* The prediction itself is not the final goal. It is a proxy to learn vector
representations that can be used in other tasks.

16

Embeddings

* One of the simplest architectures is just a simple one hidden layer plus
one output layer.

Output Layer
Softmax Classifier

Hidden Layer { \ Probability that the word at a
Linear Neurons { z ‘ randomly chosen, nearby

position is “abandon”

Input Vector

() - e

4 " Z . “able”

&
»
OCHOOOOOOO

-)

10,000
positions Y \
300 nevurons | E . "z0ne”
10,000
neurons

Source: https://medium.com/towards-data-science/understanding-word2vec-embedding-in-practice-3e9b8985953

17

Embeddings

e During training, we should maximize the probability of predicting a
word w; given its surrounding words (backward and forward).

P(a)t | Wt_pseer) We—1, a)t+1r ety a)t+n)

* This is approximated by the number of times the word is observed in
that context, divided by the number of times the context is observed
(with or without the word).

* Thus, the final loss formulation is given by the negative log-likelihood:

J=— Z lOg P(a)t | Wty We—1, Weg1) -y wt+7’l)

* This way, it learns word embeddings by optimizing a neural network
that predicts word-context relationships.

