
INTERACTION
WITH LARGE
SCALE MODELS

LIACD/1

University of Beira Interior,
Department of Informatics
Hugo Pedro Proença,
hugomcp@di.ubi.pt, 2024/2025

INTERACTION
WITH LARGE

SCALE MODELS

[02]

Syllabus

• Tokenization: How text is processed into tokens

• Embeddings: How models understand word meaning

3

Tokenization
• Tokens are the fundamental unit, the “atom” of

Large Language Models (LLMs). Tokenization is the
process of translating strings and converting them
into sequences of tokens.
• In practice, it regards breaking the input into smaller

units (tokens) that models can process
• Word-based: Splitting by words (e.g., "Prompt

Engineering" → ["Prompt", "Engineering"])
• Subword-based (Byte-Pair Encoding - BPE): Splitting

into frequent character sequences (e.g.,
"Engineering" → ["Eng", "ineering"])

• Character-based: Splitting into individual characters
(e.g., "Engineering" → ["E", "n", "g", "i", "n", "e", "e",
"r", "i", "n", "g"])

4

Tokenization has evident
impact in input size and
model efficiency

Also, it determines
context length and
processing speed

This is a Hello World

This is a Hello World

Tokenization - Example

5

Source: https://tiktokenizer.vercel.app/

Compare the
tokens used for
different LLMs

Tokenization
• Most of the recent SOTA models make use of — Byte-Pair Encoding

(BPE), Word Piece, Unigram, and Sentence Piece.
• Word Based Tokenization

• As the name suggests, in word-based tokenization methods entire words
separated by either punctuation, whitespaces, delimiters, etc. are
considered as tokens.

• The simplest approach might consider whitespaces as delimiters only.
• However, using it on a bigger dataset this method would result in a huge

vocabulary as innumerable groupings of words and punctuations would be
treated as different tokens from the underlying word.

6

Hello
Hello. Hello,

Hello!

Are considered all
different tokens!

Tokenization
• Rule-based words tokenizers.

• Consider the semantics of each specific language, to define rules for
breaking words into tokens

• SpaCy offers a great rule-based tokenizer which applies rules specific
to a language for generating semantically rich tokens. Interested
readers can take a sneak peek into the rules defined by spacy.
• Character Based Tokenization

• Has the main advantage of reducing drastically the complexity and size of
the vocabulary (up to almost 200 tokens)

• However, the tokens no longer carry meaningful semantics. To put this into
context, representations of “king” and “queen” in word-based tokenization
would contain a lot more information than the contextual-independent
embeddings of letter “k” and “q”. This is the reason why language models
perform poorly when trained on character based tokens.

7

Tokenization
• Sub-word Based Tokenization

• Aim to represent all the words in dataset by only using as many as N tokens,
where N is a hyperparameter and is decided as per your requirements.
Generally, for base models, it hovers around ~30,000 tokens. Thanks to
these methods, without needing an infinite vocabulary we’re now well
equipped to capture context-independent semantically rich token
representations.

• There are four main algorithms used for this type of tokinzation
• Byte-Pair Encoding (BPE)
• Word Piece
• Unigram
• Sentence Piece

8

Byte-Pair Encoding
• It requires the input to be pre-tokenized —

which can be a simple whitespace tokenization
or a rule-based tokenizer such as SpaCy.

• Next, a base vocabulary is created which is a
collection of all unique characters in the
corpus. We also obtain the frequency of each
token and represent each token as a list of
individual characters from base vocabulary.

• Then, merging begins. Tokens are added to our
base vocab if the maximum size is not reached

• The pair of tokens occurring the most
times is merged and considered as a new
token. This step is repeated until we reach
the configured maximum vocab size.

9

Source: https://medium.com/towards-data-science/tokenization-algorithms-explained-e25d5f4322ac

Word Piece
• Word Piece and Byte-Pair Encoding (BPE) are very similar in their

approaches of achieving sub-word tokenization.
• The BPE’s primary criterium is to select the candidate pair with the

maximum frequency.
• Word Piece, instead, focuses on maximizing the likelihood of a

candidate pair (ab), with “a” and “b” being tokens.
• Intuitively, WordPiece is slightly different to BPE in that it evaluates

what it loses by merging two symbols to ensure it’s worth it.

𝑃(𝑎𝑏)
𝑃 𝑎 𝑃(𝑏)

10

Sentence Piece
• Surprisingly, it’s not actually a tokenizer
• It’s actually a method for selecting tokens from a precompiled list,

optimizing the tokenization process based on a supplied corpus.
• We start by assessing the probability P(Y|X) of a target sentence Y given

an input sentence X.

• Note that X and Y can be formed by a very large number of sub-word
sequences.
• For instance, ‘translation’ can be tokenized in many different ways (e.g., [t, r,an, s,

l, a ti, o n] or [t, r, a, ns, la, ti, o n], …

• This algorithm not only considers this fact, but it takes advantage from it.

11

Sentence Piece
• The cost function is given by:

• Where |D| is the number of possible tokenizations (segmentations), and “x”
and “y” and drawn from their distributions over all possible segmentations.

• In practice, we remove the expectation E[…] and just use “x” and “y”
as a single randomized segmentation.
• However, the main problem is to build a probability distribution over

an exponential number of states.
• As in most optimization problems, we obtain an approximate solution.
• Assuming that it is too hard to obtain joint distributions P(x1, x2), we assume

that:

12

Sentence Piece
• To train, we want to maximize the log-probability of obtaining a

particular tokenization _X=(x1, …, xn) of the corpus, given the
unigram probabilities p(x1),…,p(xn). Note that only the full un-
tokenized sequence X is observed.
• The overall training objective is given by:

• Where “x” are the unigram sequences, and S(x) denotes the set of all
possible sequences.

• To solve this, we incorporate an Expectation-Maximization (EM) type
algorithm.
• Initialize the unigram probabilities.
• REPEAT

• M-step: compute the most probable unigram sequence given the current probabilities.
• If all of the sub-words were of the same length, this would be a classic application of the

Viterbi algorithm. Instead, it is solved with dynamic programming.
• E-step: given the current tokenization, recompute the unigram probabilities by counting

the occurrence of all sub-words in the tokenization.
13

Embeddings
• Token feature embeddings are crucial in

foundational models because they transform
discrete tokens (words, sub-words, or characters)
into dense vector representations that capture
semantic, syntactic, and contextual information.
• Unlike one-hot encoding, which is sparse and lacks

meaningful relationships, embeddings allow LLMs
to understand similarities between words, handle
polysemy (words with multiple meanings), and
generalize across different linguistic patterns.
• These embeddings also enable models to process

unseen words by leveraging similarities to known
ones, improving robustness and adaptability.
• Additionally, specialized embeddings, such as

position and segment embeddings, help models
encode word order and structural relationships,
further enhancing their ability to generate
coherent and contextually relevant text.

14

Source: https://www.naukri.com/code360/library/word2vec

Embeddings

15

• As a (non-real) illustration, imagine a set of independent and human-
interpretable features, where the corresponding coefficient for each word
will represent how much the word relates to that feature (property).
• In practice, features are not independent and interpretable.

Source: https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673

Embeddings

16

• Word2Vec is among the most popular methods for obtaining semantically
consistent language embeddings.
• The main idea is that, instead of representing words as one-hot encoding in

high dimensional space, to represent words in a dense low dimensional space,
in a way that similar words get similar word vectors, so they are mapped to
nearby points.
• At the top scale, the algorithm is given by:

• Move through the training corpus with a sliding window: Each word is a prediction
problem.

• The objective is to predict the current word using the neighbor words (or vice
versa).

• The outcome of the prediction determines whether we adjust the current word
vector. Gradually, vectors converge to (hopefully) optimal values.

• The prediction itself is not the final goal. It is a proxy to learn vector
representations that can be used in other tasks.

Embeddings

17

• One of the simplest architectures is just a simple one hidden layer plus
one output layer.

Source: https://medium.com/towards-data-science/understanding-word2vec-embedding-in-practice-3e9b8985953

Embeddings

18

• During training, we should maximize the probability of predicting a
word 𝜔! given its surrounding words (backward and forward).

𝑃(𝜔! | 𝜔!"#,…, 𝜔!"$, 𝜔!%$, …, 𝜔!%#)

• This is approximated by the number of times the word is observed in
that context, divided by the number of times the context is observed
(with or without the word).
• Thus, the final loss formulation is given by the negative log-likelihood:

J = − ∑ 𝑙𝑜𝑔 𝑃(𝜔! | 𝜔!"#,…, 𝜔!"$, 𝜔!%$, …, 𝜔!%#)

• This way, it learns word embeddings by optimizing a neural network
that predicts word-context relationships.

