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- Assiduity (A) To get approved at this course, students should 
a5end to - at least - 80% of the theore:cal and prac:cal classes;

- Prac0cal Project (P) The prac:cal projects of this course 
weights 50% (10/20) of the final mark.

- To get approved at the course, a minimal mark of 5/20 should 
be obtained in the prac:cal project part;

- The prac:cal project mark is condi:oned to an individual 
presenta:on and discussion by each student;

- Wri5en Test (F) Tuesday, June 3rd, 2025, 14:00. Room 6.17

- Mark (M) M = (A >= 0.8) * (P * 10/20 + F * 10/20)

- Admission to Exams Students with M >= 6 are admi5ed to 
final exams

- The prac:cal projects mark is considered in all exam epochs;
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Prompt Engineering? What is It?
• "Prompt engineering is the practice of crafting inputs (prompts) to 

guide generative AI models toward producing desired outputs.” 
• Reynolds, L., & McDonell, K. (2021). "Prompt Programming for 

Large Language Models: Beyond the Few-Shot Paradigm.”

• "Prompt engineering involves optimizing the instructions given to AI 
models to maximize the relevance and accuracy of the generated 
responses.”
• Brown, T., et al. (2020). "Language Models are Few-Shot 

Learners." NeurIPS.

• "The process of designing effective input prompts to ensure large 
language models generate outputs aligned with user intentions and 
specific use cases."
• Reference: OpenAI. (2021). "Guidelines for Prompt Engineering 

with GPT-3.”

• "Prompt engineering refers to the process of designing and refining 
natural language prompts to harness the capabilities of large 
language models for downstream tasks.”
• Google Research. (2022). "Understanding and Improving Few-

Shot Prompting."
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Prompt Engineering? Purposes
• Essentially, it’s about crafting inputs (prompts) that guide the AI to generate the most useful and 

relevant responses based on the task or goal at hand. 
• Improving Accuracy and Relevance: By carefully crafting prompts, we can guide the AI to focus on the most relevant 

information, improving the quality and precision of the answers.

• Enhancing Creativity: In tasks where creativity is important (e.g., writing, brainstorming, or generating artwork), 
prompt engineering can steer the AI towards more imaginative, unique, or out-of-the-box responses.

• Controlling Output Style and Tone: Prompt engineering helps to influence the tone and style of the output, such as 
making it formal, casual, humorous, or professional. This is particularly useful for tasks that require a specific 
communication style.

• Reducing Bias or Inappropriate Content: Well-designed prompts can help mitigate bias, inappropriate, or harmful 
content generation by setting clearer boundaries and providing context or guidelines within the prompt itself.

• Task-Specific Optimization: Different tasks require different kinds of responses. A prompt for summarizing an article 
will be different from one used for answering a question. By adjusting the prompt for each task, you can optimize the 
AI’s output to match the intended objective.

• Handling Ambiguity: When the input is unclear or ambiguous, prompt engineering helps clarify and specify what 
information the user is looking for, leading to better, more accurate responses.

• Encouraging Conciseness or Detail: Depending on the goal, prompt engineering can be used to prompt for short, 
concise responses or longer, more detailed explanations.

• Fostering Collaboration: In collaborative tasks, like group brainstorming or coding, prompt engineering can help AI 
assist more effectively by focusing on collaborative feedback, suggestions, or adapting to team needs.
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Essen4als of Prompts
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• A prompt is the input text or query provided to a language model, 
which serves as instructions for the model to generate a response. 
Prompts can vary in length and complexity, ranging from simple 
phrases to detailed instructions or context.
OpenAI API Documentation, 2021

• A prompt is the initial textual input or context provided to a 
generative language model, designed to specify or guide the task that 
the model is expected to perform. The quality of the output is often 
highly dependent on the clarity and specificity of the prompt.
Brown, T. B., et al. (2020). "Language Models Are Few-Shot Learners." 
Advances in Neural Information Processing Systems (NeurIPS).

• A prompt refers to any form of structured or unstructured input 
data provided to a generative AI system, such as a text snippet, 
question, or context. It acts as the starting point for the system to 
produce text, images, or other outputs, depending on the task.
Bommasani, R., et al. (2022). "On the Opportunities and Risks of 
Foundation Models." Stanford Institute for Human-Centered Artificial 
Intelligence (HAI).

Source: https://www.techtarget.com/searchenterpriseai/definition/AI-prompt



Explicit Prompts
• Explicit prompts are clear, specific instruc3ons provided to a genera3ve model, 

detailing what the model is expected to do. These prompts minimize ambiguity 
by outlining the task clearly.

• Characteris*cs:
• Direct instruc+ons.
• Well-defined structure and context.
• High control over the output.

• Examples:
• Text Genera*on (ChatGPT):

"Write a 100-word summary of the novel Pride and Prejudice by Jane Austen."
Output: A concise summary of the book focusing on its main themes and characters.

• Image Genera*on (DALL-E):
"Generate an image of a futuris+c city with flying cars and skyscrapers in a cyberpunk 
theme."
Output: A vivid depic+on of a futuris+c cyberpunk cityscape.

• Code Genera*on:
"Write a Python func+on to calculate the factorial of a number using recursion."
Output: A Python func+on explicitly performing the task.
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Implicit Prompts
• Implicit prompts rely on less direct instruc3ons or contextual cues to guide the 

model. These prompts oAen mimic human conversa3onal inputs or vague requests, 
requiring the model to infer the task or context.

• Characteris*cs:
• Less direct, conversa+onal, or ambiguous.
• Requires the model to "guess" the intent.
• Greater reliance on the model's training data and context.

• Examples:
• Text Genera*on (ChatGPT):

"What do you think happens in Pride and Prejudice?"
Output: A general descrip+on or interpreta+on of the book, poten+ally omiKng specific 
details.

• Image Genera*on (DALL-E):
"Imagine a futurisDc world."
Output: A crea+ve but poten+ally varied interpreta+on of a futuris+c seKng.

• Code Genera*on:
"How can I find the factorial of a number in Python?"
Output: An explana+on or example of calcula+ng factorials, possibly using loops or recursion.
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Explicit/Implicit Prompts
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Aspect Explicit Prompt Implicit Prompt

Clarity Highly specific and unambiguous Conversational or vague; requires 
inference

Control Offers more control over the 
output

Relies more on the model's 
interpretation

Use Case Ideal for task-specific outputs Suited for open-ended or creative 
tasks

Example Prompt "Write a poem about autumn in 4 
lines."

"Can you write something about 
autumn?"

Output A short, structured poem on 
autumn.

A broader response, possibly less 
structured.

Explicit prompts are ideal for when we need precise 
and reliable results. Implicit prompts are better for 
brainstorming, open-ended creativity, or when we don't 
want to over-constrain the model.



Structure of Prompts
• A. Context

Providing background information or setting the stage for 
the task.
"You are a travel guide specializing in European 
destinations. Write a 200-word description of Paris."

• B. Task Instruction
Clearly specifying what the model is expected to do.
"Summarize the following text in three sentences."

• C. Constraints
Defining rules, boundaries, or limitations for the response.
"Generate a response in less than 50 words."

• D. Desired Output Format
Specifying the structure, tone, or format of the output.
"Write the response as a bullet-point list."
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Context

Instruc3ons

Constraints

Output

Any set up to help the intent 
clear and objective (role play, 
background, expertise, 
examples,…)

What to do and how to do it, 
as if the instructions are 
given to an 8-year child

What to avoid, and what 
rules to obey, that should be 
met regardless of the 
generated output

What to avoid, and what 
rules to obey, that should be 
met regardless of the 
generated output



Good/Bad Prompts
• Good Prompt:

"Write a 150-word summary of the ar6cle linked 
below, focusing on the main argument and 
suppor6ng evidence.”

• Good Prompt:
"You are an academic tutor. Explain the 
Pythagorean theorem using a step-by-step 
example with a right triangle where the sides are 
3, 4, and 5."

• Bad Prompt:
"Summarize this arDcle.”

• Bad Prompt:
"What is the Pythagorean theorem?"
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Role Assignment
Assigning a role to the AI to 
set a specific perspective or 
tone. "You are an expert 
chef. Write a recipe for a 
simple vegetarian pasta 
dish."

Use Examples 
Including examples to clarify 
the task. "Translate English 
to French. Example: 'Hello' -> 
'Bonjour'. Now translate: 
'Goodbye'."

Step-by-Step
Breaking down complex 
tasks into smaller, clear 
steps. "Step 1: Read the text 
below. Step 2: Identify the 
main argument. Step 3: Write 
a 100-word summary."

Chaining Prompts
Using multiple, sequential 
prompts to guide a multi-step 
process.
Prompt 1: "Summarize the 
given text."
Prompt 2: "Rewrite the 
summary in simpler language 
for a younger audience."Use Variables

Including placeholders or 
dynamic variables for 
reusable prompts.
"Generate a tagline for a 
company named 
[CompanyName] that 
specializes in [Industry]."

✓
✗



Types of Prompts – Zero-Shot 
• Definition: The model is asked to perform a task without being given any 

examples or demonstrations. The prompt relies entirely on the model's training 
to understand and execute the task.

• Characteristics:
• No prior examples are provided in the prompt.
• Used when the model is expected to generalize from its training data.

• Examples:
• Text Generation:

"Summarize the following paragraph: The quick brown fox jumps over the lazy dog. 
The dog wakes up startled and chases the fox into the woods."
Output: "A fox jumps over a dog, who wakes up and chases the fox.”

• Code Generation:
"Write a Python function to reverse a string."
Output: A Python function that performs the string reversal task.
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Types of Prompts – One-Shot 
• Definition: The model is given one example of the task before being asked to 

perform it. This helps provide minimal context while remaining efficient.

• Characteristics:
• Includes a single example of the task in the prompt.
• Useful when the model might benefit from seeing one example.

• Examples:
• Text Generation:

"Here is an example of translating English to French: 'Hello' -> 'Bonjour'. Translate 
the following: 'Good morning'."
Output: "Bon matin" or "Bonjour.”

• Code Generation:
"Example: Input: [1, 2, 3] -> Output: [3, 2, 1]. Now reverse this list: [4, 5, 6]."
Output: "[6, 5, 4]".
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Types of Prompts – Few-Shot 
• The model is given mul/ple examples of the task before being asked to 

perform it. This provides more context and helps the model be:er 
understand the desired format or behavior.
• Characteris*cs:

• Includes 2–5 examples of the task in the prompt.
• Useful for complex tasks or when the model needs addi3onal context.

• Examples:
• Text Genera*on:

“Translate English to French: 'Hello' -> 'Bonjour' Example 2: Translate English to 
French: 'How are you?' -> 'Comment ça va?' Translate the following: 'Thank 
you.’ 

 Output: "Merci."
• Code Genera*on:
 “Example 1: Input: [1, 2, 3] -> Output: [3, 2, 1]. Example 2: Input: ['a', 'b', 'c'] -> 

Output: ['c', 'b', 'a']. Now reverse this list: [4, 5, 6].” 
 Output: "[6, 5, 4]".
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Open-Ended Prompts
• Definition: Prompts that allow the model to 

generate creative, unrestricted responses. 
They encourage exploration and variety in the 
output.
• Characteristics:

• No rigid format or constraint.
• Useful for brainstorming, storytelling, or 

creative tasks.
• Examples:

• Text Generation:
"Describe a futuristic city."
Output: "A sprawling metropolis with 
levitating cars, towering skyscrapers made of 
translucent materials, and a glowing green 
sky powered by renewable energy."

• Image Generation:
"Create an artwork that represents peace."
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Closed Prompts
• Defini*on: Prompts that restrict the 

model's response by providing clear 
guidelines or constraints on the format 
and content of the output.

• Characteris*cs:
• Structured and specific.
• Used for tasks requiring precision, such 

as ques+on-answering or 
summariza+on.

• Examples:
• Text Genera*on:

"Summarize this in 20 words: The quick 
brown fox jumps over the lazy dog. The 
dog wakes up startled and chases the 
fox into the woods."
Output: "A fox jumps over a dog. The 
dog wakes up startled and chases the 
fox into the woods."

• Image Genera*on:
"Generate an image of a red apple on a 
wooden table in a minimalist style."
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Challenges and Limita>ons
• Sensitivity to Prompt Wording
• Challenge: Models can be highly sensitive to slight changes in 

prompt phrasing, which may drastically alter the output.

• Example:
"Summarize the key points of this article."
Output: A short summary focusing on the most relevant points.
"What is this article about?"
Output: A general and sometimes vague response.

• Impact: Users may need to experiment with multiple iterations to 
achieve the desired output.
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Challenges and Limitations
• Lack of Robustness to Ambiguity
• Challenge: Vague or ambiguous prompts lead to inconsistent or 

irrelevant outputs. The model cannot always infer user intent 
without sufficient clarity.

• Example:
"Explain photosynthesis."
Output: The explanation could be too detailed for a layperson or too 
simplified for a botanist.

• Impact: Requires precise language to ensure the output aligns with 
user expectations.
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Challenges and Limita>ons
• Balancing Specificity and Flexibility
• Challenge: Overly specific prompts can restrict crea/vity, while 

overly flexible prompts may produce unstructured or irrelevant 
outputs.

• Example:
Highly Specific: "Write a 200-word essay about renewable energy, focusing 
on solar power, using formal language."
Too Flexible: "Write about renewable energy."
Balanced: "Write a short essay about renewable energy, highlighZng its 
benefits and challenges."

• Impact: Finding the right balance oHen involves trial and error.
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Challenges and Limitations
• Task Complexity
• Challenge: For complex tasks requiring multiple steps or nuanced 

understanding, a single prompt may fail to guide the model 
effectively.

• Example:
"Write a report analyzing the economic impacts of climate change and 
propose solutions."
Issue: The model may focus more on one part of the task and neglect the 
other.

• Solution: Use chained or step-by-step prompts to address different 
aspects of the task sequentially.
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Challenges and Limitations
• Prompt Length Limitations
• Challenge: Models like GPT have token limits (e.g., ~4,000 tokens for 

GPT-3.5 or ~8,000 tokens for GPT-4), which can restrict the length of 
both prompts and outputs.

• Example:
• A prompt requiring extensive context or multiple examples may exceed 

the token limit, truncating the response.

• Impact: Users must prioritize and condense information while 
crafting prompts.
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Genera>ve AI Applica>ons
• Genera@ve AI is increasingly used in 

content crea@on, enabling creators to 
produce lifelike AI-generated videos, 
automate scrip@ng, edi@ng, and 
narra@on, thereby significantly 
reducing produc@on @me and costs.
• Example: Content creators are 

leveraging AI tools to generate videos, 
manage e-commerce, and handle 
social media tasks, enhancing 
produc@vity and expanding their 
reach.
• Illustra5ve Video: "Meet the content 

creators harnessing AI - and how they 
use it to make thousands per month"
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Generative AI Applications
• In the film industry, generative AI is 

utilized to modify actors' 
performances, such as adjusting 
accents or enhancing specific aspects 
of dialogue delivery, to achieve a 
desired level of authenticity.
• Example: The film "The Brutalist" 

employed AI tools to refine the 
Hungarian accents of its stars, 
ensuring accurate pronunciation and 
enhancing the overall authenticity of 
the performances.
• Illustrative Video: "The Brutalist's AI 

Controversy, Explained"
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Recurrent Neural Networks

• Recurrent Neural Networks (RNNs) are 
deep learning model typically used to 
process and convert a sequen(al data 
input into a sequen:al data output.
• Sequen(al data—such as words, 

sentences, or :me-series— have 
interrelated sequen:al components, 
based on complex seman:cs and syntax 
rules.
• The key idea in RNNs is to use (apart the 

classical “weights”) an internal state that 
is updated as a sequence is processed 

The output y can 
be seen not only as 
a function of the 
input x, but also of 
the internal state h



Recurrent Neural Networks

• The forward step of RNNs is divided 
into two phases:

• Step 1: Obtain the hidden state 
at time “t” (𝒉!), given the input 
at time “t” (𝒙!), and the 
previous state (𝒉!"#).

• Step 2: Then, obtain the output 
at time “t” (𝒚!), using the 
recently updated state (𝒉!).



Recurrent Neural Networks

Random 
initialization



Recurrent Neural Networks

• Step 1. To obtain the hidden state at time “t” (𝒉!) , we process a set of inputs 
(𝒙$) , using the same function 𝒇% at every step. 
• In practice, this is due to the fact that backpropagation (weights update) is

only done after a batch of steps. 

• The pioneer architecture (Vanilla RNN) assumes that the state (𝒉!) is a single 
hidden vector in the network.
• “s” is the dimension of the input/output space, and “d” is a hyper-parameter of the 

RNN.

[d x d] Matrix

[d x 1] vector [d x s] Matrix

[s x 1] vector

[d x 1] vector



Recurrent Neural Networks

• Step 2. Once 𝒉! is found, the output at time “t” (𝒚!) , can also be obtained

• Hence, the first step of the corresponding computational graph is given by:

[s x d] Matrix

[d x 1] vector[s x 1] vector



Recurrent Neural Networks

• Only at the second step, the outputs  (𝒚!) are obtained and the partial losses
found.
• Such partial loss values are then used to obtain the final loss ℒ that will be 

used in backpropagation.



Recurrent Neural Networks: Example

• Text Generation. Consider a single training sequence (“hello”). 
• The vocabulary is a set of four symbols: {“h”, “e”, “l”, “o”}
• We start by obtaining a latent representation of each element in the training 

set. The simplest one is the hot-one encoding.
• ℎ → 1, 0, 0, 0 𝑇 ; 𝑒 → 0, 1, 0, 0 𝑇; 𝑙 → 0, 0, 1, 0 𝑇 ; o → 0, 0, 0, 1 𝑇

• More sophisticated content generation techniques (e.g., Chat GPT) obtain 
richer representations, which elements lie in topological spaces (i.e., 
neighbor representations are related or are alike).
• It is reported that these representations play a very important role in the 

final effectiveness of the model. 
• In this example, we are working at the character level. However, “word” or 

even “small sentence” levels can also be considered.
• “𝑐𝑎𝑡” → 1, 0, … , 0, 0 𝑇 ; 𝑑𝑜𝑔 → 0, 1, … , 0, 0 𝑇; 



Recurrent Neural Networks: Example

• Step 1. Obtain the hidden state representations (𝒉!) for the training 
sequence (“hell”).

• Suppose that (𝑾&&) and (𝑾'&) were initialized randomly.

Why isn’t the complete 
set considered?

(𝒉!)



Recurrent Neural Networks: Example

• Step 2. Next, we can obtain the predicted elements at each time.

• Again, suppose that (𝑾&*) was initialized randomly.

𝒉! obtained in Step 1



• During training, we forward during
the entire sequence to obtain the
loss, and then backpropagate to 
obtain the gradientes and adjust
weights.

• However, in practice, we run
forward/backward through
“chunks” instead of the whole
sequence.

• This is the equivalent to the notion
“batch” in classical CNNs
architectures

Recurrent Neural Networks: Example



Recurrent Neural Networks: Example

• A minimal example (in 112 lines of Python) is available at the web page of
this course. It contains a “Vanila” RNN learning process, depending
exclusively of “numpy” library. 

• Based in a simple plain text file (input.txt”) it learns to generate text.

Credits: Andrej Karpathy



Recurrent Neural Networks: Applica7ons

• One interesting application of RNNs is
“Image Captioning”, that regards to 
obtain descriptions for visual content.
• The learning set is composed of a set of

images previously labeled (captioned) by
humans.
• A classical CNN architecture for global 

image classification can be used (e.g., 
VGG or ResNet), removing the final 
classification layer.
•We use the highest-level possible latent

representation

𝒗



Recurrent Neural Networks: Applications

• The latent representation 𝒗 is also 
considered by the RNN, fusing text  𝒙 to 
visual information  𝒗
• A new weights matrix 𝑾𝑖ℎ is also required

𝒗

Special tokens:

<START> + 
<END>



Image Cap7oning: Results

Credits: Fei-Fei Li, Yunzhu Li, Ruohan Gao



Attention and Transformers 

• The Transformer architecture was 
proposed in the paper entitled “Attention 
is All You Need”
• As of March 2024, this paper had over 

111,000 citations from peers
• It was responsible for expanding the 2014 

attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture. 
• The paper is considered the founding

document for modern artificial 
intelligence, as transformers became the
main architecture of large language (and
vision) models (e.g., Chat GPT).

Key concepts: 
embeddings, 
positional encoding 
and attention



Attention and Transformers 

• It was originally proposed for “Machine translation” purposes, i.e., 
sequence-to-sequence tasks.
• The focus was on improving Seq2seq techniques for machine translation, 

but even in their paper the authors saw the potential for other tasks like 
“question answering” and for what is now called multimodal Generative AI.

Seq2Seq Architecture
Input Sequence: 𝒙!; 
Output Sequence: 𝒚!; 

Often 𝒄 = 𝒉𝑒𝑛𝑑

Initial decoder state

Main problem: Very large input sequences can be bottlenecked
in the fixed-size state representation (Suppose T=100?)



Attention and Transformers 

• Using this architecture, the encoder must encapsulate the entire input into 
a fixed-size vector that is passed to the decoder. 
• With Attention, the complete input sentences aren’t required to be 

encoded into a single vector. Instead, the decoder attends to different 
elements in the input sentence at each step of output generation. 
• The previous generation of recurrent models had long paths between input 

and output words. For a 50-word sentence, the decoder had to recall 
information from 50 steps ago for the first word (and that data had to be 
squeezed into a single vector).



Attention and Transformers 
General Architecture:
Transformers share the encoder/decoder 
architecture, placing a stack of elements in 
each part of the pipeline (E/D). 

The original implementation used a stack of 6 
elements at each side.

Each Encoder is divided into two parts: a 
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also 
uses an attention layer that helps the decoder 
to find the most relevant parts of the input 
sentence



A>en7on and Transformers - Input Embedding
• The process starts (before feeding the input data to the first Encoder), by

obtaining latent representations of the input elements. 
• In practice, this first encoder begins by converting input tokens - words or

subwords - into vectors using Embedding layers. 
• These embeddings should capture the semantic meaning of the tokens and

convert them into numerical vectors.
• It is a more sophisticated variant of the “one-hot encoding” previously saw.

• As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.

“Hello”
Embedding 

Layer

0.1

0.7

1.4

2.1

0.4



Positional Encoding

A set of sin() and cos() functions of 
different frequencies are used. This 
way, each input element is combined 
(added) to a vector that contains 
information about the position of the 
element within the sequence 

0.1

0.7

1.4

2.1

0.4

+

0.1

1.7

1.4

3.1

…

=

0

1

0

1

…

P[0]

Embedding with positional context

[0]



A>en7on and Transformers

• Most encoders receive a list of input vectors 𝒙, each of the size 512. 
• Acer embedding the elements 𝒙i, each of them flows through each of the 

two layers of the encoder. 

A key property is 
that each input 
element 𝒙i follows an 
independent path in 
the network. There 
are dependencies 
between these 
paths in the self-
attention layer. The 
feed-forward layer 
does not have any 
dependencies.



Self Attention Mechanism - Encoder

• Attention enables the models to relate each element in the input with other 
elements. For instance, in a given example, the model might learn to connect 
the element “𝒙i” with “𝒙j”.
• This allows the encoder to focus on different parts of the input sequence as it 

processes each token
• It is based on 3 types of vectors: Queries (𝒒j), Keys (𝒌j) and Values (𝒗j)

• Attention is about how much weight the query word (e.g., 𝒒) should give 
each word in the sentence (e.g., 𝒌1, 𝒌2 ,…). This is obtained via a dot product 
between the query and all the keys. 
• The dot product measures how similar two vectors are. 
• If the dot product between a query-key pair is high, we pay more attention to it. 
• These dot products then go through a softmax which makes the attention scores 

(across all keys) sum to 1

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on 
their spines (keys) that suggest their content. We compare your query to these titles to decide how 
relevant each book is, and how much attention to give each book. Finally, we can get the information 
(value) from the relevant books to answer our question.



Self Attention Mechanism - Encoder

• We start by obtaining 3 vectors for each input element:
• The Query, Key and Value. They are all created by mulCplying the embedding by three

matrices (the only ones trained during the learning process).

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (e.g., 64 << 512)

Multiplying 𝒙! by 𝑾𝑄 yields 𝒒!, by 𝑾𝐾 yields 𝒌! and by 𝑾𝑉 yields 𝒗! 

x



Self Attention Mechanism - Encoder

Embedding

“word” 0.1 0.2 0.1 0.4

𝒙i
0.1 0.2 0.1

𝒒i

0.1 0.2 0.1

𝑽

0.1 0.2 0.1

𝑲

0.1 0.2 0.1

0.1 0.2 0.1

0.1 0.2 0.1

.

0.1 0.2 0.1

0.1 0.2 0.1

0.1 0.2 0.1

10.1

2.3

0.1

8.4

+

0.1 0.2 0.1𝒛i

10.1

2.3

0.1

8.4

SoUmax

0.7

0.05

0.0001

0.24

Inner Products
between the

interest query
element and all the
key vectors in the

dictionary

The higher the
scores, the higher

the similarity
between vectors

Softmax layer to 
assure a linear 

combination that
keeps the norm

Output vector
corresponding to 𝒙i



• Next, the inner product between the query 𝒒i, and all
the key elements (𝒌1,… 𝒌n) measures the similarity of 
the query with respect to every other element (𝒒i.𝒌j)
• Normalizing and applying a so\max for all 

products gives us how much of the corresponding 
value vector should be used in the final sum to 
obtain the output vector 𝒛i.

• Formally, this step yields the parameters of a 
linear combina3on between all the vectors, that 
will be used to represent the input 𝒙i. 

• The resul3ng vector is sent to the feed-forward layer. 
• The output of the final encoder layer is a set of 

vectors, each represen3ng the input sequence with a 
rich contextual understanding. This output is then 
used as the input for the decoder in a Transformer 
model.

  

Self A>en7on Mechanism - Encoder

❤ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear 
combination of the other elements in the space, depending on the similarity/importance of each one with respect to the 

input. ❤

Attention that the element “it” 
gives to the remaining 
elements, for two two 

different “heads”.



❤Self Attention Mechanism – Matrix Form Example

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Input: Four 6D vectors xi

Step 1. Obtain the query, 
key and value

representations (by
multiplying the input 

vectors by the
corresponding matrices)

(Suppose that at the
current iteration, the

Query, Quey and Value
matrices have these

values)



Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 2. Multiply KT and Q
This is equivalent to taking the dot

product between every pair of query
and key vectors.

(4x3) x (3x4) = (4x4)

The idea is to use the dot product as 
an estimate of the "matching score" 

between every key-value pair.

This estimate makes sense because
the dot product is the numerator of

cosine similarity between two vectors.

❤Self Attention Mechanism – Matrix Form Example



Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 3. Scale each element by the
square root of dk, which is the

dimension of key vectors (dk=3).

The purpose is to normalize the impact
of the dk on matching scores, even if

we scale dk to 32, 64, or 128.

To simplify hand calculation, we
approximate [□/sqrt(3)] with [floor(□/2)].

❤Self A7en8on Mechanism – Matrix Form Example



Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 4. Softmax: e^x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e^□ with 3^□.

❤Self Attention Mechanism – Matrix Form Example



Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 5. Softmax: e^x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e^□ with 3^□.

For each column, divide each element
by the column sum

The purpose is normalize each column
so that the numbers sum to 1. In other

words, each column is a probability
distribution of attention, and we have

four of them.

The result is the Attention Weight
Matrix (A) (yellow)

❤Self A7en8on Mechanism – Matrix Form Example



Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/

Step 7. MatMul
Multiply the value vectors (Vs) with the

Attention Weight Matrix (A)

The results are the attention weighted
features Zs.

They are fed to the position-wise feed
forward network in the next layer.

2 0 0 0 2 1

8 2 6

In:

Out: In practice, the first value
vector (𝑣') pays attention (is 
replaced by…) to 0.2 𝑣' + 

0.6 𝑣( + 0.2 𝑣)

This yields one row of the 
𝑽encdec matrix (next...)

❤Self A7en8on Mechanism – Matrix Form Example



Self A>en7on Mechanism - Encoder
• The described process allows to map the embedding representations of each input 𝑣%

element into the attention vectors 𝑧%.
• The final encoding encoding step consists of passing the 𝑧! elements through a feed 

forward (dense) layer.



Self A>en7on Mechanism - Decoder
• Using multiple heads, the Value matrices representations (obtained as previously Illustrated) are 

concatenated into (𝑲encdec and 𝑽encdec) (with as many elements as the number of heads used).
• They represent the features of the whole input sequence.
• Are used in the second multi-head attention module of the decoder to relate the input sequence to the

masked output of the first multi-head decoder.

• Then, the decoder starts to produce its outputs, until a special element (<END>) indicates that
the process must be stopped.

• During the first iteration, only the “<start>” token is additionally given
• At each iteration, the set of previous outputs is also given as input.
• The self attention layers are only allowed to attend to earlier positions in the output sequence. This is

done by masking future positions (setting them to “ − ∞”) before the softmax step in the self-attention
calculation. 

1st input
2nd input
3rd input
4th input
…

3 heads in this
Illustration: 



Self A>en7on Mechanism - Decoder

• Note that the decoder has an
extra level of complexity. The
masked mul3-head aeen3on
layer, that avoids to pay 
aeen3on to “future words”

• The output of this layer is then
fed to the “Mul3-head
Aeen3on” layer that uses the
Key 𝑲encdec and Value 𝑽encdec
outputs given by the encoder.

Gradients flow 
across the whole 
network. i.e., all 

matrices are 
learned 

simultaneously
12 3 5 2

4 9 3 5

2 3 7 2

3 4 1 9

0 −∞ −∞ −∞

0 0 −∞ -∞

0 0 0 −∞

0 0 0 0

+



Self A>en7on Mechanism - Decoder
• The final part of the decoder works pretty much as a standard 

“classification” CNN, returning a vector with as many entries as 
the number of elements in the dictionary. After a “softmax()” 
layer, the index o the maximum element is found and the 
corresponding entry in the dictionary returned.

• Real-Life Well-Known Transformers:

• Google's 2018 release of BERT, an open-source natural language processing framework, revolutionized 
NLP with its unique bidirectional training. Pre-trained on Wikipedia, excels in various NLP tasks, 
prompting Google to integrate it into its search engine for more natural queries. 

• LaMDA (Language Model for Dialogue Applications) is a Transformer-based model developed by Google, 
designed specifically for conversational tasks, and launched during in 2021. They are designed to 
generate more natural and contextually relevant responses, enhancing user interactions in various 
applications.

• ChatGPT, developed by OpenAI, are advanced generative models known for their ability to produce 
coherent and contextually relevant text. They are suitable for content creation, conversation, language 
translation, .... GPT's architecture enables it to generate text that closely resembles human writing, 
making it useful in applications like creative writing, customer support, and even coding assistance. 


