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- Assiduity (A) To get approved at this course, students should
attend to - at least - 80% of the theoretical and practical classes;

- Practical Project (P) The practical projects of this course
weights 50% (10/20) of the final mark.

- To get approved at the course, a minimal mark of 5/20 should
be obtained in the practical project part;

- The practical project mark is conditioned to an individual
presentation and discussion by each student;

- Written Test (F) Tuesday, June 39, 2025, 14:00. Room 6.17

- Mark (M) M = (A>=0.8) * (P * 10/20 + F * 10/20)

- Admission to Exams Students with M >= 6 are admitted to
final exams

- The practical projects mark is considered in all exam epochs;



"Prompt engineering is the practice of crafting inputs (prompts) to
guide generative Al models toward producing desired outputs.”

* Reynolds, L., & McDonell, K. (2021). "Prompt Programming for
Large Language Models: Beyond the Few-Shot Paradigm.”

"Prompt engineering involves optimizing the instructions given to Al
models to maximize the relevance and accuracy of the generated
responses.”

* Brown, T, et al. (2020). "Language Models are Few-Shot
Learners." NeurlPS.

"The process of designing effective input prompts to ensure large
language models generate outputs aligned with user intentions and
specific use cases."

* Reference: OpenAl. (2021). "Guidelines for Prompt Engineering
with GPT-3.”

"Prompt engineering refers to the process of designing and refining
natural language prompts to harness the capabilities of large
language models for downstream tasks.”

* Google Research. (2022). "Understanding and Improving Few-
Shot Prompting."
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Prompt Engineering? What is It?




Prompt Engineering? Purposes

* Essentially, it’s about crafting inputs (prompts) that guide the Al to generate the most useful and
relevant responses based on the task or goal at hand.

* Improving Accuracy and Relevance: By carefully crafting prompts, we can guide the Al to focus on the most relevant
information, improving the quality and precision of the answers.

* Enhancing Creativity: In tasks where creativity is important (e.g., writing, brainstorming, or generating artwork),
prompt engineering can steer the Al towards more imaginative, unique, or out-of-the-box responses.

e Controlling Output Style and Tone: Prompt engineering helps to influence the tone and style of the output, such as
making it formal, casual, humorous, or professional. This is particularly useful for tasks that require a specific
communication style.

* Reducing Bias or Inappropriate Content: Well-designed prompts can help mitigate bias, inappropriate, or harmful
content generation by setting clearer boundaries and providing context or guidelines within the prompt itself.

* Task-Specific Optimization: Different tasks require different kinds of responses. A prompt for summarizing an article
will be different from one used for answering a question. By adjusting the prompt for each task, you can optimize the
Al’s output to match the intended objective.

* Handling Ambiguity: When the input is unclear or ambiguous, prompt engineering helps clarify and specify what
information the user is looking for, leading to better, more accurate responses.

* Encouraging Conciseness or Detail: Depending on the goal, prompt engineering can be used to prompt for short,
concise responses or longer, more detailed explanations.

* Fostering Collaboration: In collaborative tasks, like group brainstorming or coding, prompt engineering can help Al
assist more effectively by focusing on collaborative feedback, suggestions, or adapting to team needs.



Essentials of Prompts

* A prompt is the input text or query provided to a language model,
which serves as instructions for the model to generate a response.
Prompts can vary in length and complexity, ranging from simple

phrases to detailed instructions or context. “You never

OpenAl APl Documentation, 2021 told me you

knew that.”

e A prompt is the initial textual input or context provided to a
generative language model, designed to specify or guide the task that
the model is expected to perform. The quality of the output is often
highly dependent on the clarity and specificity of the prompt.

Brown, T. B., et al. (2020). "Language Models Are Few-Shot Learners."
Advances in Neural Information Processing Systems (NeurlPS).

e A prompt refers to any form of structured or unstructured input )
data provided to a generative Al system, such as a text snippet, "‘@ @
guestion, or context. It acts as the starting point for the system to “You never
produce text, images, or other outputs, depending on the task.
Bommasani, R., et al. (2022). "On the Opportunities and Risks of
Foundation Models." Stanford Institute for Human-Centered Artificial
Intelligence (HAI).

asked.

Source: https://www.techtarget.com/searchenterpriseai/definition/Al-prompt
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Explicit Prompts

Explicit prompts are clear, specific instructions provided to a generative model,
detailing what the model is expected to do. These prompts minimize ambiguity
by outlining the task clearly.

* Characteristics:
* Direct instructions.
*  Well-defined structure and context.
* High control over the output.

* Examples:

* Text Generation (ChatGPT):
"Write a 100-word summary of the novel Pride and Prejudice by Jane Austen."
Output: A concise summary of the book focusing on its main themes and characters.

* Image Generation (DALL-E):

"Generate an image of a futuristic city with flying cars and skyscrapers in a cyberpunk
theme."

Output: A vivid depiction of a futuristic cyberpunk cityscape.

* Code Generation:
"Write a Python function to calculate the factorial of a number using recursion."
Output: A Python function explicitly performing the task.



Implicit Prompts

* Implicit prompts rely on less direct instructions or contextual cues to guide the
model. These prompts often mimic human conversational inputs or vague requests,
requiring the model to infer the task or context.

* Characteristics:

Less direct, conversational, or ambiguous.
Requires the model to "guess" the intent.
Greater reliance on the model's training data and context.

* Examples:

Text Generation (ChatGPT):

"What do you think happens in Pride and Prejudice ?"

Output: A general description or interpretation of the book, potentially omitting specific
details.

Image Generation (DALL-E):
"Imagine a futuristic world."
Output: A creative but potentially varied interpretation of a futuristic setting.

Code Generation:
"How can | find the factorial of a number in Python?"
Output: An explanation or example of calculating factorials, possibly using loops or recursion.



Explicit/Implicit Prompts

Aspect

Clarity

Control

Use Case

Example Prompt

Output

Explicit Prompt Implicit Prompt

. . ) Conversational or vague; requires
Highly specific and unambiguous 8 a

inference
Offers more control over the Relies more on the model's
output interpretation

. Suited for open-ended or creative
Ideal for task-specific outputs

tasks
"Write a poem about autumnin 4 "Can you write something about
lines." autumn?"
A short, structured poem on A broader response, possibly less
autumn. structured.

Explicit prompts are ideal for when we need precise
and reliable results. Implicit prompts are better for
brainstorming, open-ended creativity, or when we don't
want to over-constrain the model.



Structure of Prompts

A. Context

Providing background information or setting the stage for
the task.

"You are a travel guide specializing in European
destinations. Write a 200-word description of Paris."

B. Task Instruction

Clearly specifying what the model is expected to do.
"Summarize the following text in three sentences."

Instructions

C. Constraints
Defining rules, boundaries, or limitations for the response.
"Generate a response in less than 50 words." Constraints

D. Desired Output Format

Specifying the structure, tone, or format of the output.
"Write the response as a bullet-point list."

Output

Any set up to help the intent
clear and objective (role play,
background, expertise,
examples,...)

What to do and how to do it,
as if the instructions are
given to an 8-year child

What to avoid, and what
rules to obey, that should be
met regardless of the
generated output

What to avoid, and what
rules to obey, that should be
met regardless of the
generated output
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Good/BgiPrompts

Role Assignment

* Good Prompt: Assigning a role to the Al to

"Write a 150-word summary of the article linked set a specific perspective or
below, focusing on the main argument and tone. "You are an expert
supporting evidence.” chef. Write a recipe for a
simple vegetarian pasta
* Good Prompt: dish."

"You are an academic tutor. Explain the
Pythagorean theorem using a step-by-step

example with a right triangle where the sides are e

Breaking down complex

3,4, and 5. tasks into smaller, clear
steps. "Step 1: Read the text
below. Step 2: Identify the

* Bad Prompt: main argument. Step 3: Write

"Summarize this article.” a 100-word summary."

« Bad Prompt: IUse bluClit

o _ " ncluding placeholders or

What is the Pythagorean theorem? dynamic variables for

reusable prompts.
"Generate a tagline for a
company named
[CompanyName] that
specializes in [Industry]."

Use Examples

Including examples to clarify
the task. "Translate English
to French. Example: 'Hello' ->
‘Bonjour'. Now translate:
'‘Goodbye"."

Chaining Prompts

Using multiple, sequential
prompts to guide a multi-step
process.

Prompt 1: "Summarize the
given text."

Prompt 2: "Rewrite the
summary in simpler language
for a younger audience."
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Types of Prompts — Zero-Shot

* Definition: The model is asked to perform a task without being given any

examples or demonstrations. The prompt relies entirely on the model's training
to understand and execute the task.

* Characteristics:
* No prior examples are provided in the prompt.
* Used when the model is expected to generalize from its training data.

* Examples:

* Text Generation:
"Summarize the following paragraph: The quick brown fox jumps over the lazy dog.
The dog wakes up startled and chases the fox into the woods."
Output: "A fox jumps over a dog, who wakes up and chases the fox.”

* Code Generation:
"Write a Python function to reverse a string."
Output: A Python function that performs the string reversal task.
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Types of Prompts — One-Shot

* Definition: The model is given one example of the task before being asked to
perform it. This helps provide minimal context while remaining efficient.

e Characteristics:

* Includes a single example of the task in the prompt.
e Useful when the model might benefit from seeing one example.

* Examples:

* Text Generation:
"Here is an example of translating English to French: 'Hello' -> 'Bonjour’. Translate

the following: 'Good morning'.
Output: "Bon matin" or "Bonjour.”

 Code Generation:
"Example: Input: [1, 2, 3] -> Output: [3, 2, 1]. Now reverse this list: [4, 5, 6]."
Output: "[6, 5, 4]".
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Types of Prompts — Few-Shot

* The model is given multiple examples of the task before being asked to
perform it. This provides more context and helps the model better
understand the desired format or behavior.

* Characteristics:
* Includes 2-5 examples of the task in the prompt.
* Useful for complex tasks or when the model needs additional context.

* Examples:

* Text Generation:
“Translate English to French: 'Hello' -> 'Bonjour' Example 2: Translate English to

French: 'How are you?'-> 'Comment ¢ca va?' Translate the following: 'Thank
you.

Output: "Merci."
e Code Generation:

“Example 1: Input: [1, 2, 3] -> Output: [3, 2, 1]. Example 2: Input: ['a’, 'b’, 'c'] ->
Output: ['c’, 'b’, 'a’]. Now reverse this list: [4, 5, 6].”

Output: "[6, 5, 4]".
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Open-Ended Prompts

* Definition: Prompts that allow the model to
generate creative, unrestricted responses.
They encourage exploration and variety in the
output.

* Characteristics:
* Norigid format or constraint.

e Useful for brainstorming, storytelling, or
creative tasks.

* Examples:

* Text Generation:
"Describe a futuristic city."
Output: "A sprawling metropolis with
levitating cars, towering skyscrapers made of
translucent materials, and a glowing green
sky powered by renewable energy."

* Image Generation:
"Create an artwork that represents peace."




CIosedPrgr_n pts

» Definition: Prompts that restrict the
model's response by providing clear
guidelines or constraints on the format
and content of the output.

* Characteristics:
e Structured and specific.

* Used for tasks requiring precision, such
as question-answering or
summarization.

* Examples:

* Text Generation:

"Summarize this in 20 words: The quick
brown fox jumps over the lazy dog. The
dog wakes up startled and chases the
fox into the woods."

Output: "A fox jumps over a dog. The
dog wakes up startled and chases the
fox into the woods."

* Image Generation:
"Generate an image of a red apple on a
wooden table in a minimalist style."
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Challenges and Limitations

* Sensitivity to Prompt Wording

* Challenge: Models can be highly sensitive to slight changes in
prompt phrasing, which may drastically alter the output.

 Example:

"Summarize the key points of this article."
Output: A short summary focusing on the most relevant points.

"What is this article about?"
Output: A general and sometimes vague response.
* Impact: Users may need to experiment with multiple iterations to
achieve the desired output.



Challenges and Limitations

* Lack of Robustness to Ambiguity

* Challenge: Vague or ambiguous prompts lead to inconsistent or
irrelevant outputs. The model cannot always infer user intent
without sufficient clarity.

 Example:

"Explain photosynthesis."
Output: The explanation could be too detailed for a layperson or too

simplified for a botanist.

* Impact: Requires precise language to ensure the output aligns with
user expectations.



Challenges and Limitations

* Balancing Specificity and Flexibility

* Challenge: Overly specific prompts can restrict creativity, while
overly flexible prompts may produce unstructured or irrelevant
outputs.

* Example:

Highly Specific: "Write a 200-word essay about renewable energy, focusing
on solar power, using formal language.”

Too Flexible: "Write about renewable energy.”

Balanced: "Write a short essay about renewable energy, highlighting its
benefits and challenges.”

* Impact: Finding the right balance often involves trial and error.
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Challenges and Limitations

* Task Complexity

* Challenge: For complex tasks requiring multiple steps or nuanced
understanding, a single prompt may fail to guide the model
effectively.

* Example:
"Write a report analyzing the economic impacts of climate change and
propose solutions."
Issue: The model may focus more on one part of the task and neglect the
other.

» Solution: Use chained or step-by-step prompts to address different
aspects of the task sequentially.
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Challenges and Limitations

* Prompt Length Limitations

* Challenge: Models like GPT have token limits (e.g., ~4,000 tokens for
GPT-3.5 or ~8,000 tokens for GPT-4), which can restrict the length of
both prompts and outputs.

 Example:

* A prompt requiring extensive context or multiple examples may exceed
the token limit, truncating the response.

* Impact: Users must prioritize and condense information while
crafting prompts.



Generative Al Applications

* Generative Al is increasingly used in
content creation, enabling creators to
produce lifelike Al-generated videos,
automate scripting, editing, and
narration, thereby significantly
reducing production time and costs.

* Example: Content creators are
leveraging Al tools to generate videos,
manage e-commerce, and handle
social media tasks, enhancing
productivity and expanding their
reach.

* lllustrative Video: "Meet the content
creators harnessing Al - and how they
use it to make thousands per month"
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Generative Al Applications

* In the film industry, generative Al is
utilized to modify actors'
performances, such as adjusting
accents or enhancing specific aspects JRIUIe EIENZA( Tyl ]e
of dialogue delivery, to achieve a
desired level of authenticity.

 Example: The film "The Brutalist" | @ o

J |
employed Al tools to refine the [ D wdowmey | [ @comrosenr |
Hungarian accents of its stars,
ensuring accurate pronunciation and RATIVE Al

enhancing the overall authenticity of EXAMPLES

the performances.

* lllustrative Video: "The Brutalist's Al
Controversy, Explained"
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Recurrent Neural Networks

e Recurrent Neural Networks (RNNs) are
deep learning model typically used to
process and convert a sequential data
input into a sequential data output.

* Sequential data—such as words,
sentences, or time-series— have
interrelated sequential components,
based on complex semantics and syntax
rules.

* The key idea in RNNs is to use (apart the
classical “weights”) an internal state that
is updated as a sequence is processed

The output y can
be seen not only as
a function of the
input x, but also of
the internal state h



Recurrent Neural Networks

* The forward step of RNNs is divided
into two phases:

 Step 1: Obtain the hidden state ht — fW (ht—la mt)
at time “t” (h;), given the input  new state / old state input vector at
at time “t” (x;), and the

previous state (h;_4). some function
with parameters W

 Step 2: Then, obtain the output yt B fWhy ( ht )
at time “t” (y;), using the ' new state
recently updated state (h;). Ouipt /

another function
with parameters W _

some time step



Recurrent Neural Networks
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Recurrent Neural Networks

* Step 1. To obtain the hidden state at time “t” (h;) , we process a set of inputs
(x;) , using the same function f;, at every step.

* In practice, this is due to the fact that backpropagation (weights update) is
only done after a batch of steps.

hy = fW(ht—h xt)

* The pioneer architecture (Vanilla RNN) assumes that the state (h;) is a single
hidden vector in the network.

l{ 2

. is the dimension of the input/output space, and “d” is a hyper-parameter of the
RNN

[d x 1] vector

., hy =tanh(Wp,h, 1 + Wy, )

\J / ] —

[d x 1] vector [d x s] Matrix

[d x d] Matrix



Recurrent Neural Networks

* Step 2. Once h; is found, the output at time “t” (y;) , can also be obtained

o Yy = Whyhy T

[s x 1] vector / [d x 1] vector

[s x d] Matrix

* Hence, the first step of the corresponding computational graph is given by:

h0—>fW —>h1—>fW —>h2—>fW —>h3—>...—>h
X, X, Xy




Recurrent Neural Networks

* Only at the second step, the outputs (y;) are obtained and the partial losses
found.

* Such partial loss values are then used to obtain the final loss £ that will be
used in backpropagation.

Y, L, Y, " Ly Y3 L, Yt L,
h0—>fW —>h1—>fW —>h2—>fW —>h3—>.--—>h_|_




Recurrent Neural Networks: Example

» Text Generation. Consider a single training sequence (“hello”).
* The vocabulary is a set of four symbols: {“h”, “e”, “I”, “0”}

* We start by obtaining a latent representation of each element in the training
set. The simplest one is the hot-one encoding.
h - [1,0,0,0]";e —»[0,1,0,0];1 - [0,0,1,0]";0 — [0,0,0,1]

* More sophisticated content generation techniques (e.g., Chat GPT) obtain
richer representations, which elements lie in topological spaces (i.e.,
neighbor representations are related or are alike).

* |t is reported that these representations play a very important role in the
final effectiveness of the model.

* In this example, we are working at the character level. However, “word” or
even “small sentence” levels can also be considered.

+ “cat” - [1,0,...,0,0]" ; dog - [0,1,...,0,0]";



Recurrent Neural Networks: Example

* Step 1. Obtain the hidden state representations (h;) for the training
Sequence( hell ) Why isn’t the complete

\_/ set considered?

* Suppose that (W) and (W,.;,) were initialized randomly.

h, = tanh(Wp,hi_1 + Wy )

1.0 0.1 |\w hnl -0.3
> 0.3 > 05— 09
0.1 -0.3 0.7
T T TW_XT‘
(he) 1 0 0 0
: 0 1 0 0
t
input layer 0 0 1 1
0 0 0 0
input chars: “h” “ar | 2 s



Recurrent Neural Networks: Example

» Step 2. Next, we can obtain the predicted elements at each time.

Yy = W hy hy
* Again, suppose that (Wp,,) was initialized randomly.
target chars: ‘e’ i I i o
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
output jayer RS 1.0 1.9 0.1
4.1 12 -1.1 fd
T Jww
1.0 0.1 -0.3
hidden layer > 0.3 >/ .05 W—hi 0.9
0.1 -0.3 0.7
h; obtained in Step 1
\/ T T TW—Xh
1 0 0 0
: 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars: “h” “e” I i iy



Recurrent Neural Networks: Example

* During training, we forward during
the entire sequence to obtain the
loss, and then backpropagate to

obtain the gradientes and adjust
weights.

* However, in practice, we run
forward/backward through

“chunks” instead of the whole
sequence.

* This is the equivalent to the notion
“batch” in classical CNNs
architectures

Loss

AR\




Recurrent Neural Networks: Example

* A minimal example (in 112 lines of Python) is available at the web page of
this course. It contains a “Vanila” RNN learning process, depending
exclusively of “numpy” library. Credits: Andrej Karpathy

* Based in a simple plain text file (input.txt”) it learns to generate text.

C\Users\lorem ipsum.txt - TFV 1.04 build 064 - olEN|
| File Edit View Fitter Highlight Tools Help
& d B¢ vl| & % % M MY N 3 ([H B || 8|8 B
Vivamus quis mi. Phasellus a est. Phasellus magna. i

In hac habitasse platea dictumst. Curabitur at lacus ac velit ornare lobortis. Curabitur a felis i
Morbi mattis ullamcorper velit. Phasellus gravida semper nisi. Nullam vel sem. Pellentesque liberc
semper nec, quam. Sed hendrerit. Morbi ac felis. Nunc egestas, augue at pellentesque laoreet, feli
at malesuada velit leo quis pede. Donec interdum, metus et hendrerit aliquet, dolor diam sagittis
Nunc nulla. Fusce risus nisl, viverra et, tempor et, pretium in, sapien. Donec venenatis vulputate

Morbi nec metus. Phasellus blandit_leo ut odio. Maecenas ullamcorper, dui et placerat feugiat, erc
condimentum viverra felis nunc et lorem. Sed magna purus, fermentum eu, tincidunt eu, varius ut,

Quisque Tibero metus, condimentum nec, tempor a, commodo mollis, magna. vestibulum ullamcorper ma.
Nullam cursus lacinia erat. Praesent blandit laoreet nibh.

Fusce convallis metus id felis luctus adipiscing. Pellentesque egestas, neque sit amet convallis ¢
justo nulla eleifend augue, ac auctor orci leo non est. Quisque id mi. Ut tincidunt tincidunt erat
Vestibulum dapibus nunc ac augue. Curabitur vestibulum aliquam leo. Praesent egestas neque eu enim
Fusce a quam. Etiam ut purus mattis mauris sodales aliquam. Curabitur nisi. Quisque malesuada plac
vestibulum eu, molestie vel, lacus.

sed augue ipsum, egestas nec, vestibulum et, malesuada adipiscing, dui. vestibulum facilisis, purt
ligula mi congue nunc, vitae euismod ligula urna in dolor. Mauris sollicitudin fermentum libero. F
Nunc interdum lacus sit amet orci. Vestibulum rutrum, mi nec elementum vehicula, eros quam gravide
Morbi mollis tellus ac_sapien. Phasellus volutpat, metus eget egestas mollis, lacus lacus blandit
Fusce vel dui. Sed in libero ut nibh placerat accumsan. Proin faucibus arcu quis ante. In consecte
Praesent metus tellus, elementum eu, semper a, adipiscing nec, purus. Cras risus ipsum, faucibus L
leo. Suspendisse feugiat. Suspendisse enim turpis, dictum sed, jaculis a, condimentum nec, nisi. F
Praesent ac massa at ligula laoreet jaculis. Nulla neque dolor, sagittis eget, iaculis quis, moles

Mauris turpis nunc, blandit et, volutpat molestie, porta ut, ligula. Fusce pharetra convallis urne
faucibus at, scelerisque quis, convallis in, nisi. Suspendisse non nisl sit amet velit hendrerit r
Proin pretium, leo ac pellentesque mollis, felis nunc ultrices eros, sed gravida augue augue molli
Donec id justo. Praesent porttitor, nulla vitae posuere iaculis, arcu nisl dignissim dolor, a pret

praesent vestibulum dapibus nibh. Etiam jaculis nunc ac metus. Ut id nis] quis enim dignissim sagi
ipsum eu pulvinar rutrum, tellus ipsum laoreet sapien, quis venenatis ante odio sit amet eros. Prc
Duis vel nibh at velit scelerisque suscipit.

Curabitur turpis. vestibulum suscipit nulla quis orci. Fusce ac felis sit amet ligula pharetra cor
Maecenas egestas arcu quis 1igula mattis placerat. Duis lobortis massa imperdiet quam. Suspendisse

Pellentesque commodo eros a enim. vestibulum turpis sem, aliquet eget, lobortis pellentesque, rutr
Aliquam erat volutpat. Etiam vitae tortor. Morbi vestibulum volutpat enim. Aliquam eu nunc. Nunc s
eros et ultrices tempus, mauris ipsum aliquam libero, non adipiscing dolor urna a orci. Nulla port
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.

Pellentesque dapibus hendrerit tortor. Praesent egestas tristique nibh. Sed a libero. Cras varius.
Donec vitae orci sed dolor rutrum auctor. Fusce egestas elit eget lorem. Suspendisse nisl elit, rf
elementum ac, condimentum eget, diam. Nam at tortor in tellus interdum sagittis. Aliquam lobortis.
aliquam ut, faucibus non, euismod id, nulla. Curabitur blandit mollis lacus. Nam adipiscing. vesti

vivamus laoreet. Nullam tincidunt adipiscing enim. Phasellus tempus. Proin viverra, ligula sit ame
ligula arcu tristique sapien, a accumsan nisi mauris ac eros. Fusce neque. Suspendisse faucibus, r
lacus ante convallis tellus, vitae iaculis lacus elit id tortor. Vivamus aliquet elit ac nisl. Fus
vivamus euismod mauris. In Ut quam vitae odio lacinia tincidunt. Praesent ut ligula non mi varius
Praesent ac sem eget est egestas volutpat. Vivamus consectetuer hendrerit lacus. Cras non dolor.
vivamus in erat ut urna cursus vestibulum. Fusce commodo aliquam arcu. Nam commodo suscipit quam.
Praesent venenatis metus at tortor pulvinar varius.
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Recurrent Neural Networks: Applications

* One interesting application of RNNs is
“Image Captioning”, that regards to
obtain descriptions for visual content.

* The learning set is composed of a set of

images previously labeled (captioned) by
humans.

* A classical CNN architecture for global
image classification can be used (e.g.,
VGG or ResNet), removing the final
classification layer.

* We use the highest-level possible latent
representation

-—

image
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Recurrent Neural Networks: Applications

: : . image

* The latent representation v is also
. . -64
considered by the RNN, fusing text x to ::::54
visual information v —
* A new weights matrix W, is also required T
conv-128

— * * %*
h = tanh(th X+ Whh h + Wih V) maxpool
conv-256
y0 y1 y2 conv-256
maxpool
T T T conv-512
conv-512
hO | h1 | h2 —
Special tokens: conv-512
conv-512
<START> + maxpool
<END>

\_/v = ST)/(\RT> straw hat F C' 409 6
v FC-4096

-—




Image Captioning: Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Credits: Fei-Fei Li, Yunzhu Li, Ruohan Gao



Attention and Transformers

* The Transformer architecture was
proposed in the paper entitled “Attention
is All You Need”

* As of March 2024, this paper had over
111,000 citations from peers

* |t was responsible for expanding the 2014
attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture.

* The paper is considered the founding
document for modern artificial
intelligence, as transformers became the

main architecture of large language (and
vision) models (e.g., Chat GPT).

Output
Probabilities

Add&Norm
Feed
Forward
Add&Norm

Multi-Head
Attention

-

~

Add&Norm

Add&Norm
Masked
Multi-Head
Attention

O

Input Output
Embedding

Positional
Encoding

Positional
Encoding

Output
(shifted right)

Key concepts:
embeddings,
positional encoding
and attention




Attention and Transformers

* |t was originally proposed for “Machine translation” purposes, i.e.,
seguence-to-sequence tasks.

* The focus was on improving Seqg2seq techniques for machine translation,
but even in their paper the authors saw the potential for other tasks like
“question answering” and for what is now called multimodal Generative Al.

Main problem: Very large input sequences can be bottlenecked

Seq2Seq Architecture in the fixed-size state representation (Suppose T=1007?)
Input Sequence: x;;
Output Sequence' Vi, estamos comiendo pan [STOP]
- Vi,
Initial decoder state i £ Vs Ya
h, = h, =9 h, —P h, P s, » s, =P s, —P| 5, —P> s,
X4 X, X3 X, > Yo 2 Y, Y,

we are eating bread Often ¢ = h,,, [START] estamos comiendo pan
en



Attention and Transformers

* Using this architecture, the encoder must encapsulate the entire input into
a fixed-size vector that is passed to the decoder.

* With Attention, the complete input sentences aren’t required to be
encoded into a single vector. Instead, the decoder attends to different
elements in the input sentence at each step of output generation.

* The previous generation of recurrent models had long paths between input
and output words. For a 50-word sentence, the decoder had to recall
information from 50 steps ago for the first word (and that data had to be
squeezed into a single vector).

estamos comiendo pan [STOP]
Y Ys Y3 A
h, = h, =9 h, =P h, P s, P s, —P s, —P 5, —P> s,
X1 X2 X3 X4 ¢ yO y1 y2 y3

we are eating bread [START] estamos comiendo pan



Attention and Transformers

General Architecture:

Transformers share the encoder/decoder
architecture, placing a stack of elements in
each part of the pipeline (E/D).

The original implementation used a stack of 6
elements at each side.

Each Encoder is divided into two parts: a
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also
uses an attention layer that helps the decoder
to find the most relevant parts of the input
sentence

t

Feed Forward

4

Self-Attention

()

-

—/

t

ENCODERS

DECODERS

\\

\S

=%

$

Feed Forward

4

Encoder-Decoder Attention

4

Yo

Self-Attention

N W W

t



Attention and Transformers - Input Embedding

* The process starts (before feeding the input data to the first Encoder), by
obtaining latent representations of the input elements.

* |n practice, this first encoder begins by converting input tokens - words or
subwords - into vectors using Embedding layers.

* These embeddings should capture the semantic meaning of the tokens and
convert them into numerical vectors.

* It is a more sophisticated variant of the “one-hot encoding” previously saw.

0.1

0.7

Embedding

v

“Hello”

1.4

v

Layer

2.1

0.4

* As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.



Positional Encoding
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Attention and Transformers

* Most encoders receive a list of input vectors x, each of the size 512.

* After embedding the elements x; each of them flows through each of the
two layers of the encoder.

t t t
A key property is
Feed Forward that each input
element x; follows an
T T 7 independent path in
the network. There
are dependencies
T T T between these
paths in the self-
attention layer. The
Self-Attention feed-forward layer
does not have any
dependencies.

t t t
[T 1] (T 1]



Self Attention Mechanism - Encoder

* Attention enables the models to relate each element in the input with other
elements. For instance, in a given example, the model might learn to connect
the element “x;” with “x;”.

* This allows the encoder to focus on different parts of the input sequence as it
processes each token

* |t is based on 3 types of vectors: Queries (qj), Keys (k;) and Values (vj)

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on
their spines (keys) that suggest their content. We compare your query to these titles to decide how
relevant each book is, and how much attention to give each book. Finally, we can get the information
(value) from the relevant books to answer our question.

* Attention is about how much weight the query word (e.g., q) should give
each word in the sentence (e.g., k{, k, ...). This is obtained via a dot product
between the query and all the keys.

* The dot product measures how similar two vectors are.
* If the dot product between a query-key pair is high, we pay more attention to it.

* These dot products then go through a softmax which makes the attention scores
(across all keys) sum to 1



Self Attention Mechanism - Encoder

* We start by obtaining 3 vectors for each input element:

* The Query, Key and Value. They are all created by multiplying the embedding by three
matrices (the only ones trained during the learning process).

Embedding LT T T LT T 1]

Queries D:D D:D
Multiplying x;, by W< yields q,, by W¥ yields k, and by WV yields v,

Keys [T 1] [11] -

Values D:D D:D

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (e.g., 64 << 512)



Self Attention Mechanism - Encoder

Inner Products
between the
interest query

xi element and all the
key vectors in the
& ? 0.1 0.2 0.1 0.4 1 1 U
2.3
Embedding 0.1
Softmax layer to 8.4
assure a linear )
combination that The higher the
keeps the norm v scores, the higher
the similarity
between vectors
10.1 0.7
2.3 0.05
0.1 » Softrmax » 0.0001
8.4 0.24 +
Z

Output vector
\/ corresponding to x;



Self Attention Mechanism - Encoder

Attention that the element “it”
gives to the remaining
elements, for two two

* Next, the inner product between the query q;, and all different “heads’”.
the key elements (k... k,) measures the similarity of
the query with respect to every other element (q;.k))

* Normalizing and applying a softmax for all

products gives us how much of the corresponding e e
value vector should be used in the final sum to animal_ animal_
obtain the output vector z.. . —

* Formally, this step yields the parameters of a t t
linear combination between all the vectors, that . .
will be used to represent the input x,. street_ street_

because_ because_
* The resulting vector is sent to the feed-forward layer. it . it
* The output of the final encoder layer is a set of Y:cs,: tv:::
vectors, each representing the input sequence with a “:’ 2'9

rich contextual understanding. This output is then
used as the input for the decoder in a Transformer
model.

@ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear

combination of the other elements in the space, depending on the similarity/importance of each one with respect to the
input.



Self Attention Mechanism — Matrix Form Exampl
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Z;

Z

Attention
Weight
Matrix (A)

Attention
Weighted
Features

FFN

Input: Four 6D vectors x;

(Suppose that at the
current iteration, the
Query, Quey and Value
matrices have these
values)

Step 1. Obtain the query,
key and value
representations (by
multiplying the input
vectors by the
corresponding matrices)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/




Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Z

Z; I3

Zy

FFN

Attention
Weight
Matrix (4)

Attention
Weighted
Features

3

Step 2. Multiply KT and Q
This is equivalent to taking the dot
product between every pair of query
and key vectors.

(4x3) x (3x4) = (4x4)

The idea is to use the dot product as
an estimate of the "matching score"
between every key-value pair.

This estimate makes sense because
the dot product is the numerator of
cosine similarity between two vectors.

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/




Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Attention
Weight
Matrix (A)

Attention
Weighted
Features

4

Step 3. Scale each element by the
square root of dk, which is the
dimension of key vectors (dk=3).

The purpose is to normalize the impact
of the dk on matching scores, even if
we scale dk to 32, 64, or 128.

To simplify hand calculation, we
approximate [o/sqrt(3)] with [floor(c/2)].

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/



Self Attention Mechanism — Matrix Form Exampl

Self Attention
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Step 4. Softmax: e”x

Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e*o with 3*o.

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/
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Self Attention
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Step 5. Softmax: e”x

- Raise e to the power of the number
in each cell

- To simplify hand calculation,
we approximate e*o with 3*o.

For each column, divide each element
by the column sum

The purpose is normalize each column
so that the numbers sum to 1. In other
words, each column is a probability
distribution of attention, and we have
four of them.

The result is the Attention Weight
Matrix (A) (yellow)

Credits: https://www.linkedin.com/posts/tom-yeh_deeplearning-transformer-neuralnetwork-activity-7153234215709360129-9J8y/
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Self Attention
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Self Attention Mechanism - Encoder

* The described process allows to map the embedding representations of each input v;
element into the attention vectors z;.

* The final encoding encoding step consists of passing the z; elements through a feed
forward (dense) layer.

t t
[TTT] LT

| 1

Feed Forward Feed Forward
Neural Network Neural Network

t t
(11 (T
[ | | ]
t t



Self Attention Mechanism - Decoder

* Using multiple heads, the Value matrices representations (obtained as previously lllustrated) are
concatenated into (K. cqec aNd Vecqee) (With as many elements as the number of heads used).
* They represent the features of the whole input sequence.

* Are used in the second multi-head attention module of the decoder to relate the input sequence to the
masked output of the first multi-head decoder.

* Then, the decoder starts to produce its outputs, until a special element (<KEND>) indicates that
the process must be stopped.
* During the first iteration, only the “<start>" token is additionally given

* At each iteration, the set of previous outputs is also given as input.

* The self attention layers are only allowed to attend to earlier positions in the output sequence. This is
done by masking future positions (setting them to “ — ") before the softmax step in the self-attention

calculation.

Decoding timestep: 1 2 3 4(5)6

3 heads in this
[llustration:
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Self Attention Mechanism - Decoder

* Note that the decoder has an
extra level of complexity. The
masked multi-head attention
layer, that avoids to pay
attention to “future words”

* The output of this layer is then
fed to the “Multi-head
Attention” layer that uses the
Key Kencdec and Value Vencdec
outputs given by the encoder.

Output
Probabilities

Gradients flow
across the whole
network. i.e., all
matrices are
learned
simultaneously

Forward
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Feed
Attention
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Input Output
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Self Attention Mechanism - Decoder

[(TTTTT I T T T T T [

* The final part of the decoder works pretty much as a standard 12345 4 - Vocab_size
“classification” CNN, returning a vector with as many entries as
the number of elements in the dictionary. After a “softmax()” ( Softmax )
layer, the index o the maximum element is found and the 4
corresponding entry in the dictionary returned. L L "*' e L N
( Linear )
e Real-Life Well-Known Transformers: :

* Google's 2018 release of BERT, an open-source natural language processing framework, revolutionized
NLP with its unique bidirectional training. Pre-trained on Wikipedia, excels in various NLP tasks,
prompting Google to integrate it into its search engine for more natural queries.

* LaMDA (Language Model for Dialogue Applications) is a Transformer-based model developed by Google,
designed specifically for conversational tasks, and launched during in 2021. They are designed to
generate more natural and contextually relevant responses, enhancing user interactions in various
applications.

* ChatGPT, developed by OpenAl, are advanced generative models known for their ability to produce
coherent and contextually relevant text. They are suitable for content creation, conversation, language
translation, .... GPT's architecture enables it to generate text that closely resembles human writing,
making it useful in applications like creative writing, customer support, and even coding assistance.



