
MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics
Hugo Pedro Proença,
hugomcp@di.ubi.pt, 2024/2025

Machine
Learning

[09]

3

Syllabus

• Reinforcement Learning

Reinforcement Learning

• This is the area of Machine Learning concerned with how a
computational agent should take the best actions in an
environment, so to maximize its cumulative reward.
• The most intuitive analogy is “pet training”. Suppose that we

have a dog that, upon our request, can “sit”, “lay down” or “do
nothing”.

• Each Bme we give an order to the
dog, and he makes the right
acBon (i.e., obeys) leads to a
reward.
• AGer a while, the dog starts to

“understand” that the best thing
is to act according to our
command

Reinforcement Learning
• In this analogy, the owner is the environment, which gives to the dog a

current state (St). The dig is the agent that sees the state and should take
a corresponding ac<on (At).
• The owner reacts to the ac<on taken with a reward (Rt+1) and s new state

(St+1).

• Reinforcement Learning is one of the three major paradigms of Machine
Learning, along with Supervised Learning and Unsupervised Learning.
• Though both supervised and reinforcement learning use some kind of mapping

between the input/output, in supervised learning the feedback provided is the
explicit set of ac;ons for performing a task. Instead, Reinforcement Learning
uses rewards and punishment as signals for posi;ve and nega;ve behavior.

Q-learning Algorithm

• The most classical soluBon for Reinforcement Learning is the
Q-learning algorithm, which gives to the agent a knowledge
set , in form of a Q-table.
• A Q-table is a bidimensional structure with size “#total states”

x “#total acBons”, storing the value for each pair state/acBon
(Q-values) 4 possible actions

5
po

ss
ib

le
st

at
es

• Each Q-value represents the
“quality” of an action taken at that
state.
• Higher Q-values correspond to

higher chances of getting greater
rewards in the future

Q-learning

• Q-values are calculated according to the formula:

• The 𝛾 parameter controls the balance between the
immediate/future rewards weight.
• It is important because we want our agent to focus more on

the immediate rewards while not fully ignoring the future
rewards.
• The 𝛼 parameter is the learning rate, and determines how fast

the values in the Q-table change.

𝑄𝑛𝑒𝑤 𝑠𝑡, 𝑎𝑡 ← 1 − 𝛼 𝑄 𝑠𝑡, 𝑎𝑡 + 𝛼(𝑅𝑡 + 𝛾 𝑚𝑎𝑥𝑎 𝑄 𝑆𝑡 + 1,𝑎)

Old value Immediate reward Discounted estimate of optimal future reward

Q-learning
• Supposing that at the beginning, all Q-values were set to 0, there is

no best action in the start.
• In these circumstances we have to choose randomly.
• That will be problematic once a positive Q-value was found, as the agent

will perform that action indefinitely.
• We don’t want that solution, as there might be even higher Q-

values in the future, if that momentaneous optimal action is not
taken at the first place.
• That’s where the 𝛾 comes into play.
• It decides whether we should take the best local action (exploitation) or

should instead take a risky random sample of the space of actions
(exploration).

• This exploitation/exploration strategy has the advantage of never
stopping to explore.
• Typically, we set a high exploration rate at the beginning, and then

decrease it gradually.

Q-learning
• The Q-Learning algorithm is

pretty simple to run, and is
composed of one
initialization plus 3 iterative
steps
• After a sufficient number of

iterations, a good Q-Table is
ready, and the agent has
learned how to behave in a
particular problem.
• This ”naïve” approach works

well in practice for problems
where it is realistic to keep a
list of all possible states

Ini$alize Q-Table

Choose best action

Measure reward

Update Q-table

Q-learning Example

• Suppose we want to learn an agent able to find the best path between
two positions in a rectangular grid, avoiding the “red” positions, which
will “kill” the agent.

2 5

7

37 41

The
initial

position

The
goal

Dangerous
positions

Considering “N, S, E, W” movements, there
are only 4 actions

The board has 12 positions. Hence we have
12 different states

The Q-Table will have dimensions 12 x 4

Q-learning Example

• We start by defining some reward/penalty values for each type of cells.
Let’s consider that blank cells have a small penalty (-1, to assure that
we will not move indefinitely between cells), while red cells should be
avoided (penalty=-100). Finally, the goal cell has a posiFve reward
(100).
• We start by iniFalizing all cells to 0.

• As we are starFng the training now,
we simply perform a random acFon.
• Suppose we move “EAST”.
• We will update the [1, 3] cell

2 5

7

37 41

7 7 7

7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7

N S E W
1,1
1,2
1,3
2,1
2,2
2,3
3,1
3,2
3,3
4,1
4,2
4,3 7 7 7 7

𝑄 1, 3 = 𝑄 1,3 + 𝛼 𝑅 1,3 + 𝛾max𝑄![s’, 𝑎′] − 𝑄[1,3]

Learning rate
Immediate
reward (-1)

Maximum
expected

future reward

Discount rate

The process is repeated
(depth N), with each

move being either the
max Q value action

(exploitation factor) or a
random move

(exploration, i.e., 1-
exploitation)

Q-learning Example 2

• Now, suppose we want to learn an agent able to find the best path
between two positions in a rectangular grid, avoiding the “red”
positions, which will “kill” the agent.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

The
initial

position

The
goal

Dangerous
positions

Q-learning Example
• The Q-table will have 48 rows (# states) and 4 columns (# ac<ons:

LEFT, RIGHT, UP, DOWN).
• Ini<ally, we should incorporate all the physical constraints in this

problem, and create a Reward Matrix R (of size 48 x 48), that provides
the R values for all possible transi<ons between states.
• For example, from State 1, only States 2 and 7 can be reached.
• Hence the first row of the Reward Matrix will have “0” value in posi;ons (1,2)

and (1,7) and “-1” in all others.
• We should define an infinite reward to all transi;ons between states that led

to State 48 (our goal).
• Also, we should define a large penalty to all transi;ons that led to a red

posi7on.
• Finally, as we are interested in finding the short path, every transiFon

between states should have a small penalty, to avoid unnecessary
movements.
• Next, we ini<alize all the values in the Q-table to “0”.
• Note that some ac;ons are not possible for some states. For instance, for

state “1”, only “RIGHT” and “DOWN” ac;ons are valid.

Q-learning Example

• When the process starts, suppose that by random selec4on,
we choose State 7.
• The next step will be to predict what can happen if the agent

was in State 7:
• It can move to State 13 (”DOWN” acFon)
• It can move to State 8 (“RIGHT” acFon)

• The transi4on 7 to 13 R(7,13) has cost -1
• However, R(7,8) has a much worse penalty (−inf), as it

corresponds to a dangerous posi4on.
• This way, the future component of the equa4on will have value

equal to “-1” , i.e., max ([-1, -inf]).
• The following update in the Q-table should be done:

𝑄𝑛𝑒𝑤 1, “𝐷𝑂𝑊𝑁” ← 1 − 𝛼 𝑄 1, ”𝐷𝑂𝑊𝑁” + 𝛼(−1 + 𝛾 − 1)

Q-learning Example

• The most sensitive issue in Q-learning is the definition of
“state”. What characterizes a state?
• If we are too vague, and consider a broad definition of state, the

algorithm will have difficulties to simulate an intelligent behavior.
• E.g., in the previous example, consider simply the “type of cell” as state.
• That will imply to have only three rows in the Q-Table, which will reduce the

complexity.
• However, the algorithm will produce the same action for all “blue cells”, “red

cells”,…

• At the opposite side, we can consider each actual cell in the board as a state,
which will yield 48 rows in the Q-Table and a 48x48 reward matrix.

• What would happen in case of a board with 1,000,000 cells?
• There are intermediate solutions for defining a state, such as the

current position and a neighborhood of radius “r”.
• Enables to infer the correct behavior in a more
sophisticated way.
• Augments the computational complexity (each of the free
8 positions can have 3 types, i.e., 38 = 6561 states

Deep Q-learning

• Q-learning is known to be able to aQain decent results in
problems with small dimension in terms of the “space of all
states”.
• The problem is that even rela4vely simple problems have an

intractable number of possible states, where Q-learning cannot
be applied.
• A possible solu4on is the Deep Q-learning algorithm, where the

idea is to use a CNN to analyze the current state of the world
and return the policy of ac4ons.

The optimal action
corresponds to the most
activated output neuron

The CNN will have as
many neurons in the output

layer as possible actions

Deep Q-learning

• In practice terms, the main difference between using a CNN
for Reinforcement Learning purposes and the traditional way
classification CNNs work is the fact in the latter models, the
target variable does not change over the time.
• For a specific instance (state), the ground truth (or desired label) is

always the same.

• In the Reinforcement Learning setting, we depend on the
policy or value functions to sample actions. However, this
policy changes as we continuously learn what to explore.
During the learning process, we start to know more about the
ground truth values of the states/actions and hence, the
desired output should also change accordingly.
• At the end, we are trying to learn a map for a constantly

changing input/output. Is this feasible?

Deep Q-learning

• The solution is to use slightly different two twin networks,
from slightly different learning generations.

Loss

Copy parameters
every “n”
iterations

Predicted
Action

Target
estimation

Q-learning Prac:cal Work: Labyrinths

• Create a Pyhton script that generates random “N x N” boards, with each
cell having only two possible types: “Safe” (penalty=1) or “Dangerous”
(penalty=100).
• Generate two random cell positions (each one provided in a (row, column)

format), corresponding to the current position of the agent and to the final
position.
• Using Reinforcement Learning techniques (Q-learning), design and

implement a solution for moving from the current state to the final
position in as few movements as possible, avoiding the Dangerous cells as
much as possible.
• Compare different strategies for defining the “state” in terms of the spatial

computational cost of the algorithm (the amount of storage required) and
the quality of the solutions generated (the cost of the overall path, i.e., the
sum of the penalties for the cells composing the best path).
• Perceive the variations in the results, with respect to the 𝛼, 𝛾 values used

in the Q-Table update formula:

• Prepare a small report, describing your main findings.
𝑄𝑛𝑒𝑤 𝑠𝑡, 𝑎𝑡 ← 1 − 𝛼 𝑄 𝑠𝑡, 𝑎𝑡 + 𝛼(𝑅𝑡 + 𝛾 𝑚𝑎𝑥𝑎 𝑄 𝑆𝑡 + 1,𝑎)

