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• Non-Linear Discrimination

•Multi-layer Perceptrons

• Convolutional Neural Networks



• Consider the following truth tables, corresponding to the classical “AND”, 
‘’OR’’ and “XOR” problems:

• Suppose we want to learn three logistic regression classifiers that
appropriatelly discriminate between the ”0”|”1” classes

Linear Discriminants: Exercise
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• As we previously saw, the logistic regression is only able to find hyperplanes 
(straight lines, in 2D data) that separate the subspaces of each class, which 
happens in the “AND/OR” problems.

• These are called linear discriminants

Linear Discriminants: Exercise
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• In short, one logistic regression model is effective only 
in linearly separable problems, where there is a 
hyperplane that appropriately separates the feature 
space.

Linear Discriminants: Summary
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• However, for the “XOR” problem, there is no possible configurations for 𝜽 that 
satisfy the requirements:

• XOR appears to be a very simple problem. However, Minksy and Papert (1969) 
showed that this was a big problem for neural network architectures of the 
1960s, known as perceptrons.

• The inefficiency of Perceptron networks to solve this problem caused the “NN 
winter” (period up to the early 90s, when NN were almost abandoned by the ML 
community)

Linear Discriminants: Exercise
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• Among the three classical approaches for machine learning (pattern 
recognition) models, this kind of methods aims at replicate the way 
the human brain works:

• In practice terms, this functioning model has remarkable similarities 
to the way our previous models were defined:

• “Mixing” the values from a set of inputs, followed by one non-linear 
activation function”. 

Neural Networks

Inputs
Output

Core



• A logistic regression classifier is defined by:

𝑓𝜽 𝒙 =
1

1 + 𝑒!(($)$* (%)%* (&)

• A Rosenblatt’s perceptron is defined as:

Neural Networks

Inputs: x1, x2,...

Phase 1: 
Convolution
between x and 𝜽

Phase 2: Non-linearity



• The key concept of the most classical kind of neural networks (feed-
forward) is to define multiple layers, in which neurons of one layer 
receive the input of all neurons in the previous layer.

• These are called neurons in hidden layers
• Neurons in the first layer receive the x input  

• They are called neurons in the input layer
• Neurons in the last layer provide the result of the model

• They are called neurons in the output layer

Neural Networks: MLP Architecture

# classes# inputs

# inputs /2 à # inputs * 2



• Let’s start by the easiest part: (implementation) 
• How can I create one “Multi-Layer Perceptron” (MLP) network in Python and

apply it to my problem?
• Step 1: Import the corresponding library:

• Step 2: Have a X data set with shape (n, 2) and y with shape (n,)
• In practice, X will be a “list of lists” and y will be a list.

• Step 3: Create the network:

• Step 4: Start learning:

• Step 5: Use it, to predict on new instances:

Machine Learning: Python MLP

from sklearn.neural_network import MLPClassifier

X = [[0., 0.], [1., 1.]] 
y = [0, 1]

clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
         hidden_layer_sizes=(5, 2), random_state=1)

clf.fit(X, y)

clf.predict([[2., 2.], [-1., -2.]])



• When designing a neural network, there are different parameterizations that 
have to be chosen, with might determine the system effectiveness:

• The number of neurons in the input/output layers result directly of the problem 
considered:

• Input Layer = Dimension of the Feature Space
• Output Layer = Number of classes (hot encoded)

• In the hidden layers, the number of neurons can vary:
• A too short number might not be enough to model the decision surface desired;
• A too high value might lead to overfitting
• In practice, values between half and the double of the number of neurons in the 

input layer  are tested

Neural Networks

• Regarding the number of hidden layers:
Networks with one layer have the ability to 
approximate any linear decision surface
Networks with two layers approximate any 
continuous decision surface
Networks with three layers approximate any 
decision surface

1
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0 0 1
0 1 0
1 0 0



• Considering that:

𝐴 '𝐵 = ¬ ( (𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵) )

• For example, how to infer the weights for a “NOT” neuron, i.e.,  a neuron that replicates
the functioning of a logical “NOT” operation.

• In this simple case, there are various weight configurations that will work

Machine Learning: NN Exercise
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• Considering that:

𝐴 '𝐵 = ¬ ( (𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵) )

• Now, how to infer the weights for a “OR” neuron, i.e.,  a neuron that replicates the
functioning of a logical “OR” operation.

• Again, there are various weight configurations that will work:

Machine Learning: NN Example
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• Considering that:

𝐴 '𝐵 = ¬ ( (𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵) )

• Next, in a similar way, if we want to infer the weights for a “AND” neuron, i.e.,  a neuron
that replicates the functioning of a logical “AND” operation.

• As in the previous cases, there are various weight configurations that will work:

Machine Learning: NN Example
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• Considering that:

𝐴 "𝐵 = ¬ ( (𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵) )

• Design a multi-layer network, with the corresponding weights 𝜽, able to solve the
“XOR” problem.

Machine Learning: NN Exercise
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• Considering that:

𝐴 "𝐵 = ¬ ( (𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵) )

• Design a multi-layer network, with the corresponding weights 𝜽, able to solve the
“XOR” problem.

• This will be a network “specific” to reproduce this function. 
• However, the big question remains: How to automatically obtain the 𝜽 values?

Machine Learning: NN Exercise
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Neural Networks: Learning

• In case of multilayered networks, the closed-form equation for the whole 
network, the cost function and the corresponding derivatives might not be 
easy to obtain.

• Exercise: 
• Obtain the function that describes the functioning of the following network, 

considering that the transfer functions of all nodes. 

W1

W2

W3

x1

x2



Backpropagation
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  J(w) = #
/
∑𝐶𝑜𝑠𝑡(𝑁𝑁 𝜔, 𝑥 𝑖 , 𝑦 𝑖 )

• Cost (NN(w, x(i)), y(i))=  -log (NN(w, x(i))), if y(i)=1 

     -log (1 - NN(w, x(i))), if y(i)=0 

• Therefore, as we did before for the logistic regression classifier, the 
cost function is combined in a single function:

 J(w) = − +
,
∑- y(i) log (NN(w, x(i))) + (1−y(i)) log (1 − NN(w,x(i))) 

Backpropagation



Backpropagation

•Using the gradient descent (delta rule) learning 
strategy previously described, it will be required to 
obtain:

…and this is a tiny network...



Backpropagation and the Chain Rule
• “Backpropagation” is the short 

name for "backward propagation 
of errors”
• It is an algorithm for supervised 

learning of multi-layer artificial 
neural networks, based in gradient 
descent 
• The key concept is the chain rule: 

𝝏𝒚
𝝏𝒙
= 𝝏𝒚

𝝏𝒈
. 𝝏𝒈
𝝏𝒇

 . 𝝏𝒇
𝝏𝒙

• Calculates the gradient of the 
error function with respect to the 
neural network's weights; 
• It is a generalization of the delta 

rule for perceptrons to multilayer 
feed-forward neural networks.



Convolutional Neural Networks (CNNs)

• CNNs are a type of Neural Networks that have been 
augmenting their popularity in most tasks related to Computer 
Vision
• E.g., Image Segmentation, Classification.

• The property of shift invariance gives them the biological 
inspiration of the human visual system and keeps the number 
of weights relatively small, making learning a feasible task.
• In opposition to traditional Feed-forward nets, neurons in 

CNNs are arranged in three dimensions.



Convolutional Neural Networks (CNNs)

• Each layer of a CNN transforms a 3D input into a 3D output.
• This pioneering work in CNNs was due to Yann LeCun (LeNet5) 

after many previous successful iterations since 1988. 
• Initially, the LeNet architecture was used mainly for character 

recognition tasks such as reading zip codes, digits...
• The efficacy of CNNs in visual tasks is the main reason behind 

the popularity of deep learning. They are powering major 
advances in computer vision, with  applications for robotics, 
security and medical diagnosis.



Convolutional Neural Networks (CNNs)

• The most typical structure of a CNN is:

Computer Vision @ UBI, 22/23, hugomcp@di.ubi.pt

Convolutions + 
Non-linearities

Pooling
Fully Connected

Softmax

These operations are the basic building blocks of most CNNs, so understanding 
how these work is an important step to understand the functioning of these 
powerful models.



Signals and Systems

qWhat is a signal?

qIt can be regarded as a description how a parameter varies
(dependent variable) with respect to another (independent
variable);

qE.g., the voltage of an electric charge varies with respect to 
time (1D signals) ;

qE.g., the intensity of a pixel varies with respect its location in 
image (2D signals);

qTipically, signals are denoted by upper case letters.
qDiscrete signals are denoted by []:

qE.g., X[n], Y[k] 
qContinuous signals are denoted by ()  

qE.g., X(i), Y(j)



Convolution

qIt is a mathematical operation that describes the relationship 
between three signals:
qOne input signal;
qOne impulse response;
qYielding the output signal.

qIt can be seen as “extracting a specific feature from a signal, 
depending on the filter used”.

qAs it combines addition (+) with multiplication (x), it is usually 
denoted by “*”.

qY[k]=H[k]*X[k]



Convolution: Exercise

qObtain the result of the convolution of the following signals:



Convolution: Exercise (cont.)

qObtain the result of the convolution of the following signals:



Convolution: Examples

qLow-pass filtering:



Convolution: Examples

qHigh-pass filtering:



Convolution: Examples

qDiscrete derivative:



Convolution: Caution!!

qWhen an input signal is convolved with an impulse response 
of length “M”, then the first and last “M-1” components are 
not fully reliable.

qWhy is this?



Filters: Examples



Convolutional Neural Networks (CNNs)

• Convolution
• This block computes the convolution between an input map 

x with a bank of k multi-dimensional filters f, to obtain the 
results y.

• Formally, the outputs y are given by:



Convolutional Neural Networks (CNNs)

• Convolution (padding and stride)
• Usually it is possible to specify top, bottom, left, right 

paddings (Ph
-, Ph

+, Pw
-, Pw

+) of the input array and 
subsampling strides (Sh,Sw) of the output array.  

Ph
-

Ph
+

Pw
+

Pw
-

The output size is given by:



Convolutional Neural Networks (CNNs)

• Spatial Pooling
• The typical blocks are the max and sum pooling, 

respectively computing the maximum and the summed 
response of each feature channel in a H’ x W’ patch.

• Pooling progressively reduces the spatial size of the input 
representation.
• This reduces the number of parameters and, therefore, 

controls over fitting;
• Also, it makes the network invariant to small transforms, 

distortions and translations in the input image (a small 
distortion in input will not change the output of pooling).



Convolutional Neural Networks (CNNs)

• Pooling
• Note that Pooling down samples the input volume only 

spatially;
• The input depth is equal to the output depth;
• The pooling operation is often considered deprecated. To 

reduce the size of the representation, in is possible to use 
larger strides in the convolution layers.

Example: max() pooling 



Convolutional Neural Networks (CNNs)

• Non-Linearity
• There are two basic non-linear activation functions used in 

CNNS: “ReLU” (Rectified Linear Units) and “Sigmoid”.

• As advantages with respect to each other, Sigmoid is 
consider not to blow up activation, while ReLU does not 
vanishes the gradient
• In the case of Sigmoid, when the input grows to infinitely large, 

the derivative tends to 0.
• However, in the case of ReLU, there is no mechanism to 

constrain the output of the neuron, as the input is often the 
output)



Convolutional Neural Networks (CNNs)
• Fully Connected layers

• Neurons in a fully connected layer have full connections to all 
activations in the previous layer, as in a regular feed-forward network. 

• In practical terms, these neurons resemble pretty much the neurons in 
”Convolution” layers.

• The only difference between fully connected and Convolution layers 
is that the neurons in the former layer are connected only to a local 
region in the input, and that many of the neurons in a CONV volume 
share parameters.

• However, the neurons in both layers still compute dot products, so 
their functional form is identical. 

• For example, an FC layer with K=4096 that is looking at some input 
volume of size 7×7×512 can be expressed as a Convolution layer with 
F=7 x 7 x 4096 (padding 0, stride 1). 

• In other words, we are setting the filter size to be exactly the size of the 
input volume;

• Hence the output will simply be 1×1×4096.



Convolutional Neural Networks (CNNs)

• Softmax
• Can be seen as the combination of an activation function 

(exponential) and a normalization operator.
• It is usually applied as the transfer function of the last layer 

of the CNN, where the idea is to push up the maximum 
value of the responses to “1”, and all the other values to 
“0”.
• In practice, it simulates the probability of the input 

corresponding to each category, represented by a neuron in 
the output layer. 



Convolutional Neural Networks (CNNs)
• Most of the data memory used by CNNs is used in the early Convolutional 

layers (where spatial resolution is maximal), whereas most of the 
parameters of the network are in the fully connected layers. 

• Example VGGNet, one of the well known and succeeded architectures:

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0 
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864 
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0 
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456 POOL2: [56x56x128] 
memory: 56*56*128=400K weights: 0 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0 
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216 
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000



Convolutional Neural Networks (CNNs)
• VGGNet:

• The total memory used is about 4 bytes * 24,000,000 = 93 MB
• This is required only for the forward step
• In practice, the backward step requires around the double memory;
• The network has 138,000,000 parameters to be tuned by the back-

propagation algorithm.
• It should be noted that the conventional paradigm of a linear list of layers 

is not the state-of-the-art anymore.
• Google’s Inception architectures and also Residual Networks from 

Microsoft Research Asia. 
• Both of these feature more intricate and different connectivity 

structures.
• Most of the COTS (commercial off-the-shelf) models have complex graph-

based architectures. 



Convolutional Neural Networks (CNNs)

Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

• Accuracy vs. Number of operations for a single forward step. 
Circumference radii corresponds to the number of parameters



Convolutional Neural Networks (CNNs)

• An illustration of the most popular deep learning architectures 
is provided in http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/

LeNet AlexNet VGG GoogLeNet Inception Resnet



CNNs: Example

• How to create (and instantiate) one CNN (Sequential): 

(“Sequential” objects provide the simplest way. “Functional” 
objects enable additional functionalities)

def cnn_model(input_shape=(32, 32, 3)):

  model = Sequential()

  model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=input_shape))
  model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Flatten())
  model.add(Dense(512, activation='relu'))
  model.add(Dense(10, activation='softmax'))

  return model

# ###########################################################
# Instantiate model
model = cnn_model()
model.summary()

# Compile model
model.compile(optimizer='rmsprop’, loss='categorical_crossentropy’, metrics=['accuracy'])



CNNs: Example

• How to use (or fine tune) one well known CNN model:
• Example: Inception.V3

• This is typically the approach that attains the best results.
• Not only the architecture was coherently designed, but also the 

weights were optimized based in huge datasets.

def create_inception(tot_classes):
    imgs_input = Input((args['image_height'], args['image_width'], 3))

    if args['fine_tuning'] == 0:
        model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3), 
  weights=None, include_top=False)
    else:
        model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3), 
  weights='imagenet', include_top=False)
        model_tmp.trainable = False

    x = model_tmp(imgs_input, training=False)

    x = keras.layers.GlobalAveragePooling2D()(x)
    outs = Dense(tot_classes, activation='linear')(x)

    md = Model(inputs=imgs_input, outputs=outs)
    md.compile(optimizer=RMSprop(learning_rate=args['learning_rate']), loss=tf.keras.losses.MeanAbsoluteError())
    return md



CNNs: Example

• How to train one CNN:

• Typical preprocessing steps:

# For small datasets
history = model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1, validation_split=.3)

# For large datasets
for i in range(tot_batches):
 [X_batch, y_batch] = get_input_batch(i)
 loss = model.train_on_batch(X_batch, y_batch)

# Images are typically normalized to the range [0, 1].
X_train = X_train.astype("float32") / 255
X_test  = X_test.astype("float32") / 255

# In classification problems, labels are typically converted to one-hot encoding.
y_train = to_categorical(y_train)
y_test  = to_categorical(y_test)


