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• The curse of dimensionality is one of the most 
classical phenomena in the development of 
Machine Learning systems.

• In short, when the dimensionality increases, the 
volume of the space increases so fast that the data 
become sparse. 

• Sparsity is problematic for any method that requires 
statistical significance, i.e., densely populated 
spaces.

• For example,  consider 100 evenly spaced 
sample points (instances) inside a unit interval.

• On average, points will be separated around  
10−2=0.01

• An equivalent sampling that will yield similar 
density in a 10-dimensional unit hypercube 
would require 1020[=(102)10] sample points

Dimensionality Reduction



• In statistics, machine learning, and information 
theory, dimensionality reduction is the process of 
reducing the number of random variables under 
consideration by obtaining a set of principal 
variables.
• In general, there are two families of methods to 

reduce the dimensionality of a data set:
• Feature Selection. The idea is to find a subset of the 

original features that better represent the problem, 
i.e., that minimally decrease the amount of available 
information, when compared to the original dataset.
• Most approaches are based in filters (based in information 

gain), wrappers (based in accuracy) and embedded (features 
iteratively selected/removed according to prediction errors) 

• Feature Extraction. It is often also designated as 
“Feature Projection” and the idea is to transform the 
original feature space into a space of fewer 
dimensions, while keeping as much of the original 
information as we can.
• Principal Component Analysis (PCA) is the main technique in 

this family. 

Dimensionality Reduction

The key idea is to find 
the direction(s) 
(vector(s)) onto which 
data maximally span 



• Graphically, we are interested in finding the direction (vector in the original 
space) onto which the projected data provides the minimal projection error:

PCA

!𝒗 = [1,0]

This is an example of a 
bad projection vector 
that produces large 
projection errors!!

Projection error à

Direction à



• Graphically, we are interested in finding the direction (vector in the original 
space) onto which the projected data have minimal projection error:

PCA

!𝒗 = [1,1]

Example of a much better 
projection vector that produces 
smaller projection errors



PCA: Covariance

• The covariance can be obtained for any two
dimensions (features) of a n-dimensional 
feature space
• It is a measure of the joint variability of two

features
• If both variables vary in a direct way, the 

covariance is positive 
• On the contrary, if both variables vary 
inversely, the variance values will be 
negative.

• The sign of the covariance shows the 
tendency in the linear relationship between 
the variables. 
• The magnitude of the covariance is not easy 

to interpret because it is not normalized 
and hence depends on the magnitudes of 
the variables. 
• The normalized version of the covariance, 

the correlation coefficient, however, shows 
by its magnitude the strength of the linear 
relation. 
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PCA: Covariance

• The distance between sample points and their mean is
multiplied. Then, the result is divided by the number of data 
points minus 1:

𝑐𝑜𝑣 𝑋, 𝑌 =
∑!"#
$ 𝑋𝑖 − 𝑋

∗ (𝑌𝑖 − 𝑌 ∗)
𝑛 − 1

where Xi, Yi are the ith data points, X*, Y* are the sample means
and “n” is the number of data points.
• The results is meaningful essentially by analysing it’s sign:
• Positive: Both dimensions vary directly.
• Negative: Both dimensions vary inversely.
• Zero: Dimensions are independent.  



PCA: Covariance Matrix

• The Covariance Matrix C contains all covariance pair values between every
possible dimensions of a feature space : 

𝑪 = [ 𝑐𝑖𝑗 | 𝑐𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗)]

• For exemple, considering a three dimensional space {X, Y, Z}, the covariance
matrix will correspond to:

𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌) 𝑐𝑜𝑣(𝑋, 𝑍)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌) 𝑐𝑜𝑣(𝑌, 𝑍)
𝑐𝑜𝑣(𝑍, 𝑋) 𝑐𝑜𝑣(𝑍, 𝑌) 𝑐𝑜𝑣(𝑍, 𝑍)

• Values along the main diagonal describe the variance of the corresponding
dimension.
• Based on its definition, it is obvious that cov(X,Y)=cov(Y,X), i.e., the covariance

matrix is symetric with respect to its main diagonal.  



PCA: Covariance Matrix

•Exercise. Obtain the covariance matrix for the given 
data set:

    

Obs. X1 X2 X3

1 2 2 4

2 3 4 6

3 5 4 2

4 6 6 4



Eigenvectors and eigenvalues
• Consider the multiplication of a matrix by a vector:

2 3
2 1

1
3

=
11
5

• However, there are some particularly interesting vectors:

2 3
2 1

3
2

=
12
8

= 4
3
2

• In the first case, the resulting vector is not a multiple of the original vector.
• Oppositelly, in the second case, the resulting vector (12,8) is a multiple of the

multiplier. 
• As such, the latter is an eigenvector.

• The correspondong eigenvalue is “4”



Eigenvectors and eigenvalues

• By analysing the direction of the original and resultant vectors:

• Considering the matrix as a transformation, it can be concluded
that in the second case, the direction was not changed. This is
the key insight the notion of eigenvector.

• The given matrix does not change the direction of its eigenvectors.
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Eigenvectors and eigenvalues

•As we’ve seen, the notion of eigenvalue is strongly
related to the eigenvector. 
• It is the value that should by multiplied by the eigenvector

to obtain the original vector. 
• In the above example, 4 was the eigenvalue that

corresponds to the given eigenvector. 
•As such, eigenvalues and eigenvectors come in pairs

and are always inter-related.



Eigenvectors and eigenvalues

• As a summary, the eigenvectors of a matrix correspond to the directions that
are not changed by the (transformation) matrix.
• Not all matrices have eigenvectors.
• Matrices have to be square.
• A (n x n) matrix has – at most – “n” eigenvectors.
• The set of eigenvectors of a matrix (image) is widely used to describe the

spatial content of that image (feature).
• In MATLAB, this eigenanalysis is made by the “eig()” function:
• [V,D] = eig(A)
• Returns the eigenvectors (D) and corresponding eigenvalues (V) of matrix

A.
• In Python, this can simply be done by:
• V, D = LA.eig(A)



Eigenvectors and eigenvalues

• There is an important property to be stressed: the eigenvectors of a matrix
are orthogonal. This is to say that they form an orthogonal basis of the
matrix.
• We are able to express every point of a data set by linear combinations of

its basis-vectors.
• This is specially usefull for the analysis of principal components (PCA). 
• It is usual to determine the eigenvectors/eigenvalues in their normalized

version, i.e., with length normalized to 1.
• As previously seen, the length of a vector does not affect its property of

being (or not) an eigenvector.
• Hence, having an eigenvector (x1, ..., xn) it is usual to divide each

component by the norm of this vector, in order to obtain length “1”:
• ||(x1,..., xn)|| = sqrt ( x12 + ... + xn2)  



Eigenvectors and eigenvalues

•Exercise
•Determine, from the following vectors, which are 

eigenvectors of the matrix given below and, if positive, 
determine the corresponding eigenvalue. 
• Matrix:

3 0 1
−4 1 2
−6 0 −2

• Vectors:
[2
2
−1]

[−1
0
2]

 
[−1
1
3]

      
[0
1
0]

 
[3
2
1]



PCA: Principal Component Analysis

•The Principal Component Analysis (PCA) it’s a well
known way to detect patterns on data, by expressing it
on a way that enhances similarities or differences. 
•Detecting patterns on high dimensional data is a hard

task, either for humans or machines. 
• Requires huge amounts of data. An empirical rule says that

at the minimum, d2 instances are required to analyze a d-
dimensional data set.

•PCA is typically used to compress data (reduce
dimensionality), without loosing substantial
information.



PCA: Principal Component Analysis

•Step 1. The analysis of principal components requires a 
data set (with dimension n) and cardinality (k).
•Step 2. Removal of energy. For each dimension, the

corresponding mean is subtrated to each component. 
As such, all dimensions of the data set have zero 
energy.



Principal Component Analysis

•Step 3. Calculus of the covariance matrix. Here, the
relationships between independent components are 
detected, together with an assessment of the data 
dispersion in each dimension (by analysing the main
diagonal components). 
•Step 4. As the covariance matrix is square, it is possible

to obtain the set of eigenvectors and correspºonding
eigenvalues. 
•Step 4.1. Eigenvectors normalization. All eigenvectors

are normalized to have norm equal to 1.



Principal Component Analysis

•Step 5. Selection of components. The set of
eigenvectors is sorted by decreasing order, considering
the corresponding eigenvalues. From this set, the “k1” 
principal components are selected.
• This is the step that performs the reduction of

dimensionality.
•Step 6. A transformation matrix is built, by

concatenating the eigenvectors selected in the
previous step.

• This matrix will be used to represent all points in the reduced dimensionality feature space. 
MAT=[ vect1, vect2, ... Vectk1]



Principal Component Analysis

•Step 7. Data Transformation. As the transformation
matrix has “d” lines (corresponding to the dimension
of the original feature space and k1 columns
(corresponding to the dimension of the new feature
space), when multipling each original data point by the
transformation matrix, we obtain a vector of k1
components. These are the new representation of the
data points, in the principal components space.

[1 x d] x [d x k1] = [1 x k1]



Principal Component Analysis

• How to choose the value of “k”?
• The previously described process does not give any information about a strategy to select

the dimensionality of the principal components feature space. 
• There is no formal rule. However, some heuristics about what is generally better exist. 

• Usually, the variation in magnitude of consecutive eigenvalues (after sorting) is
measured. When changes in magnitude are higher than a threshold, the selection
process is stopped.

• But most frequently, the proportion of the data variability that is kept by the selected
components is considered as the main criterium.
• Typically, we are interested in keeping around 90, 95, 99% of the original data variability. 
• The analysis can be done by measuring the proportion of the sum of eigenvalues:

• Variability:
∑!"#
$ /#

∑!"#
% /#

, ”k”: number of selected vectors, and “d”: dimensionality



PCA: Example

• Consider a set of 128 face grayscale images (with dimensions 64 
x 64). 
• Each image is represented by a 64 x 64 matrix = (4096),

where each position represents the intensity at a point (0: 
black pixel, ... 255: White pixel)

• Each face can be regarded as a point represented in a 4096 
dimensional feature space



PCA: Example

•We can usethe PCA to select the principal components in this
space (i.e., the directions in which the elements mostly span
(vary)) .
• In pratice, the eigenvectors (each one with dimension 4096) with the

largest corresponding eigenvalues will be selected. 

• Next, each original face can be represented as a weighted
combination of the top-k eigenvalues. 
• In such case, each face will actually be represented by weights 𝜶: 𝛼1, … 𝛼𝑘
• The PCA can be also regarded as a way to represent a face, with much less

information than the originally used, while keeping the most importante 
information.

• Further, the facial recognition process can be done in the new
feature space of (much more) reduced dimension, i.e., typically
k << d (original space).



PCA: Example

• Example of the 16 principal components (eigenvectors with the
largest eigenvalues) from the above data set:

What do the 
brightest regions 
in each vector 
represent?


