MACHINE LEARNING

MEI/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2023/2024

Machine Learning

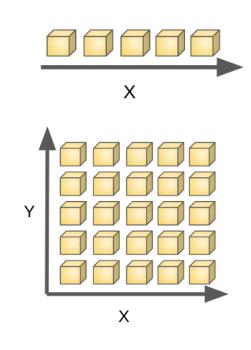
[05]

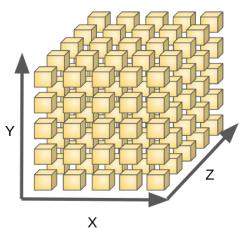
Syllabus

- Feature Representation
- Dimensionality Reduction
- PCA
 - Eigenvectors and Eigenvalues

Dimensionality Reduction

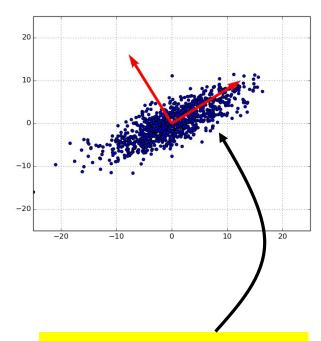
- The curse of dimensionality is one of the most classical phenomena in the development of Machine Learning systems.
 - In short, when the dimensionality increases, the volume of the space increases so fast that the data become sparse.
 - Sparsity is problematic for any method that requires statistical significance, i.e., densely populated spaces.
- For example, consider 100 evenly spaced sample points (instances) inside a unit interval.
 - On average, points will be separated around $10^{-2}=0.01$
- An equivalent sampling that will yield similar density in a 10-dimensional unit hypercube would require $10^{20}[=(10^2)^{10}]$ sample points





Dimensionality Reduction

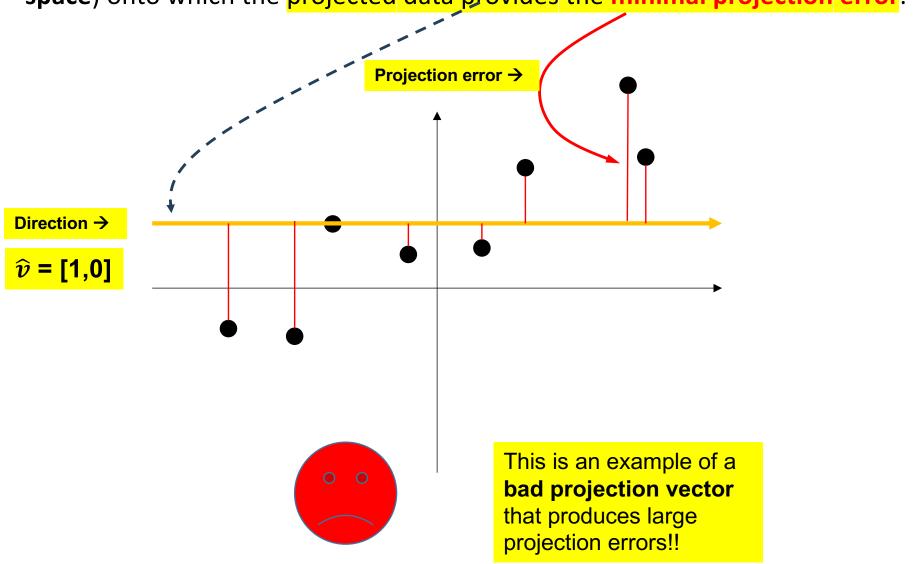
- In statistics, machine learning, and information theory, dimensionality reduction is the process of reducing the number of random variables under consideration by obtaining a set of principal variables.
- In general, there are two families of methods to reduce the dimensionality of a data set:
 - Feature Selection. The idea is to find a subset of the original features that better represent the problem, i.e., that minimally decrease the amount of available information, when compared to the original dataset.
 - Most approaches are based in filters (based in information gain), wrappers (based in accuracy) and embedded (features iteratively selected/removed according to prediction errors)
 - Feature Extraction. It is often also designated as "Feature Projection" and the idea is to transform the original feature space into a space of fewer dimensions, while keeping as much of the original information as we can.
 - **Principal Component Analysis (PCA)** is the main technique in this family.



The key idea is to find the direction(s) (vector(s)) onto which data maximally **span**

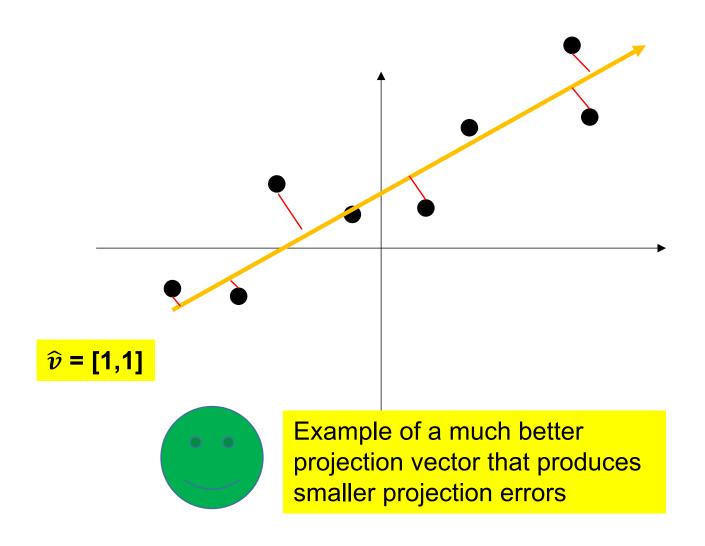
PCA

• Graphically, we are interested in finding the direction (vector in the original space) onto which the projected data provides the minimal projection error:



PCA

 Graphically, we are interested in finding the direction (vector in the original space) onto which the projected data have minimal projection error:

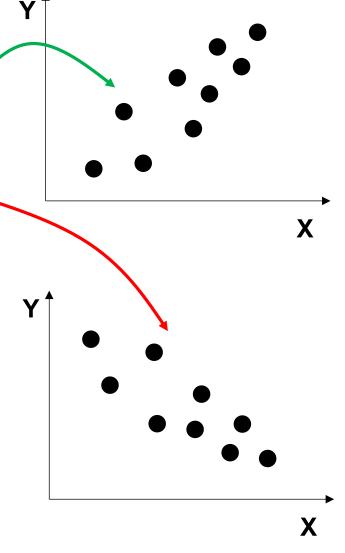


PCA: Covariance

 The covariance can be obtained for any two dimensions (features) of a n-dimensional feature space

It is a measure of the joint variability of two features

- If both variables vary in a direct way, the covariance is positive
- On the contrary, if both variables vary inversely, the variance values will be negative.
- The sign of the covariance shows the tendency in the linear relationship between the variables.
- The magnitude of the covariance is not easy to interpret because it is not normalized and hence depends on the magnitudes of the variables.
- The normalized version of the covariance, the correlation coefficient, however, shows by its magnitude the strength of the linear relation.



PCA: Covariance

 The distance between sample points and their mean is multiplied. Then, the result is divided by the number of data points minus 1:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - X^*)(Y_i - Y^*)}{n-1}$$

where X_i , Y_i are the ith data points, X^* , Y^* are the sample means and "n" is the number of data points.

- The results is meaningful essentially by analysing it's sign:
 - Positive: Both dimensions vary directly.
 - Negative: Both dimensions vary inversely.
 - Zero: Dimensions are independent.

PCA: Covariance Matrix

• The Covariance Matrix C contains all covariance pair values between every possible dimensions of a feature space :

$$C = [cij \mid cij = cov(Xi, Xj)]$$

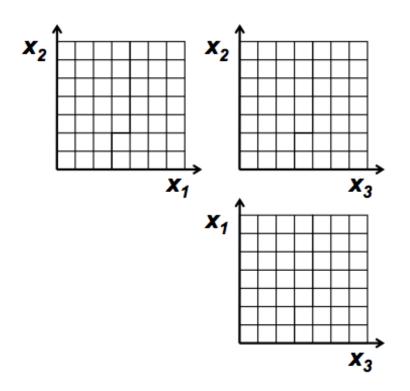
• For exemple, considering a three dimensional space {X, Y, Z}, the covariance matrix will correspond to:

$$\begin{bmatrix} cov(X,X) & cov(X,Y) & cov(X,Z) \\ cov(Y,X) & cov(Y,Y) & cov(Y,Z) \\ cov(Z,X) & cov(Z,Y) & cov(Z,Z) \end{bmatrix}$$

- Values along the main diagonal describe the variance of the corresponding dimension.
- Based on its definition, it is obvious that cov(X,Y)=cov(Y,X), i.e., the covariance matrix is symetric with respect to its main diagonal.

PCA: Covariance Matrix

• Exercise. Obtain the covariance matrix for the given data set:



Obs.	X1	X2	Х3		
1	2	2	4		
2	3	4	6		
3	5	4	2		
4	6	6	4		

	χ₁	x ₂	X ₃	X ₁ -µ ₁	X 2-μ2	х з-µз	(x ₁ -μ ₁) ²	$(x_2-\mu_2)^2$	(x ₃ -μ ₃) ²	(x ₁ -µ ₁)(x ₂ -µ ₂)	(x,-µ,)(x,-µ,3)	(x ₂ -µ ₂)(x ₃ -µ ₃)
1												
2												
3												
4												

Consider the multiplication of a matrix by a vector:

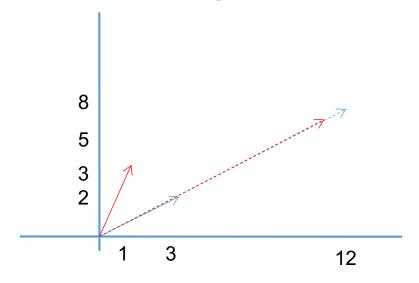
$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 5 \end{pmatrix}$$

However, there are some particularly interesting vectors:

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

- In the first case, the resulting vector is not a multiple of the original vector.
- Oppositelly, in the second case, the resulting vector (12,8) is a multiple of the multiplier.
- As such, the latter is an eigenvector.
 - The correspondong eigenvalue is "4"

By analysing the direction of the original and resultant vectors:



- Considering the matrix as a transformation, it can be concluded that in the second case, the direction was not changed. This is the key insight the notion of eigenvector.
 - The given matrix does not change the direction of its eigenvectors.

- As we've seen, the notion of **eigenvalue** is strongly related to the **eigenvector**.
 - It is the value that should by multiplied by the eigenvector to obtain the original vector.
 - In the above example, 4 was the eigenvalue that corresponds to the given eigenvector.
- As such, eigenvalues and eigenvectors come in pairs and are always inter-related.

- As a summary, the eigenvectors of a matrix correspond to the directions that are not changed by the (transformation) matrix.
- Not all matrices have eigenvectors.
- Matrices have to be square.
- A (n x n) matrix has at most "n" eigenvectors.
- The set of eigenvectors of a matrix (image) is widely used to describe the spatial content of that image (feature).
- In MATLAB, this eigenanalysis is made by the "eig()" function:
 - [V,D] = eig(A)
 - Returns the eigenvectors (D) and corresponding eigenvalues (V) of matrix
 A.
- In Python, this can simply be done by:
 - **V**, **D** = LA.eig(**A**)

- There is an important property to be stressed: **the eigenvectors of a matrix are orthogonal**. This is to say that they form an orthogonal basis of the matrix.
 - We are able to express every point of a data set by linear combinations of its basis-vectors.
 - This is specially usefull for the analysis of principal components (PCA).
 - It is usual to determine the eigenvectors/eigenvalues in their normalized version, i.e., with length normalized to 1.
 - As previously seen, the length of a vector does not affect its property of being (or not) an eigenvector.
 - Hence, having an eigenvector $(x_1, ..., x_n)$ it is usual to divide each component by the norm of this vector, in order to obtain length "1":
 - $||(x_1,...,x_n)|| = sqrt(x_1^2 + ... + x_n^2)$

Exercise

- Determine, from the following vectors, which are eigenvectors of the matrix given below and, if positive, determine the corresponding eigenvalue.
 - Matrix:

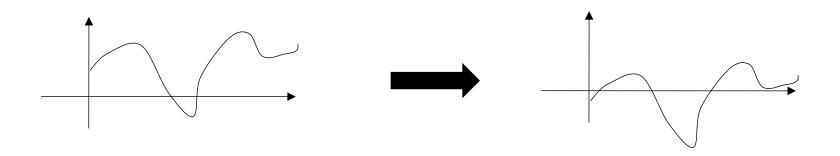
$$\begin{bmatrix} 3 & 0 & 1 \\ -4 & 1 & 2 \\ -6 & 0 & -2 \end{bmatrix}$$

• Vectors:

$$\begin{bmatrix} 2 & [-1 & [-1 & [0 & [3 \\ 2 & 0 & 1 & 1 & 2 \\ -1] & 2] & 3] & 0] & 1 \end{bmatrix}$$

- The Principal Component Analysis (PCA) it's a well known way to detect patterns on data, by expressing it on a way that enhances similarities or differences.
- Detecting patterns on high dimensional data is a hard task, either for humans or machines.
 - Requires huge amounts of data. An empirical rule says that at the minimum, d² instances are required to analyze a ddimensional data set.
- PCA is typically used to compress data (reduce dimensionality), without loosing substantial information.

- Step 1. The analysis of principal components requires a data set (with dimension n) and cardinality (k).
- **Step 2.** Removal of energy. For each dimension, the corresponding mean is subtrated to each component. As such, all dimensions of the data set have zero energy.



- **Step 3.** Calculus of the covariance matrix. Here, the relationships between independent components are detected, together with an assessment of the data dispersion in each dimension (by analysing the main diagonal components).
- **Step 4.** As the covariance matrix is square, it is possible to obtain the set of eigenvectors and corresponding eigenvalues.
- **Step 4.1.** Eigenvectors normalization. All eigenvectors are normalized to have norm equal to 1.

- Step 5. Selection of components. The set of eigenvectors is sorted by decreasing order, considering the corresponding eigenvalues. From this set, the " k_1 " principal components are selected.
 - This is the step that performs the reduction of dimensionality.
- **Step 6.** A transformation matrix is built, by concatenating the eigenvectors selected in the previous step.
 - This matrix will be used to represent all points in the reduced dimensionality feature space. MAT=[vect1, vect2, ... Vectk₁]

• Step 7. Data Transformation. As the transformation matrix has "d" lines (corresponding to the dimension of the original feature space and k_1 columns (corresponding to the dimension of the new feature space), when multipling each original data point by the transformation matrix, we obtain a vector of k_1 components. These are the new representation of the data points, in the principal components space.

$$[1 \times d] \times [d \times k_1] = [1 \times k_1]$$

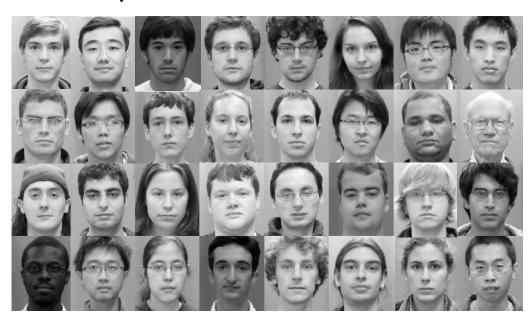
How to choose the value of "k"?

- The previously described process does not give any information about a strategy to select the dimensionality of the principal components feature space.
- There is no formal rule. However, some heuristics about what is generally better exist.
- Usually, the variation in magnitude of consecutive eigenvalues (after sorting) is measured. When changes in magnitude are higher than a threshold, the selection process is stopped.
- But most frequently, the proportion of the data variability that is kept by the selected components is considered as the main criterium.
 - Typically, we are interested in keeping around 90, 95, 99% of the original data variability.
 - The analysis can be done by measuring the proportion of the sum of eigenvalues:

• Variability:
$$\frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^d \lambda_i}$$
 , "k": number of selected vectors, and "d": dimensionality

PCA: Example

- Consider a set of 128 face grayscale images (with dimensions 64 x 64).
 - Each image is represented by a 64 x 64 matrix = (4096), where each position represents the intensity at a point (0: black pixel, ... 255: White pixel)
- Each face can be regarded as a point represented in a 4096 dimensional feature space



PCA: Example

- We can usethe PCA to select the principal components in this space (i.e., the directions in which the elements mostly span (vary)).
 - In pratice, the eigenvectors (each one with dimension 4096) with the largest corresponding eigenvalues will be selected.
- Next, each original face can be represented as a weighted combination of the top-k eigenvalues.
 - In such case, each face will actually be represented by weights α : α_1 , ... α_k
 - The PCA can be also regarded as a way to represent a face, with much less information than the originally used, while keeping the most importante information.
- Further, the facial recognition process can be done in the new feature space of (much more) reduced dimension, i.e., typically k << d (original space).

PCA: Example

• Example of the 16 principal components (eigenvectors with the largest eigenvalues) from the above data set:

