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• The design of the experimental procedure to 
learn/evaluate machine learning models is 
sensitive
• Badly designed experiments lead to erroneously 

optimistic/pessimistic estimates of the system 
performance 

• One of the golden rules in machine learning is 
that the data should be split in three disjoint 
subsets:
• Learning (Training) set:  this is the set of instances 

used to fit the parameters of the hypothesis 
(model).
• In case of supervised learning, it consists of pairs of a 

input vectors and the corresponding ground truth, also 
known as the target or label.

• Validation set. It provides an unbiased evaluation 
of a model performance during the learning 
process, while tuning the model hyper-
parameters (e.g., acceptance/rejection threshold)

• Test set. It is used to provide an unbiased 
evaluation of a final model.

Machine Learning: Experimental Setup 



• Overfitting it is one of the most classical problems in Machine Learning
problems.
• It occurs when the our model fits “too well” the learning data, but is fails to 

generalize to new data, i.e., the data where we actually want to use the model
• This is particularly probable when the model has a large number of parameters

• In such case, the model has too many degrees-of-freedom
• Nowadays, the breakthrough models based in deep-learning frameworks have a huge

number of parameters
• VGG-16 network, proposed in 2014, has 138,000,000 parameters!

Machine Learning: Overfitting
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• The Occam’s razzor is a principle from philosophy that
states that:
• »Entia non sunt multiplicanda praeter necessitatem»

• This can be translated to:
• “More things should not be used than are necessary”

• Which in practical terms states that simple models 
should (in case of comparable effectiveness) be 
preferred over more complex ones.

Machine Learning: Overfitting/Underfitting

Wiliam of Ockham

• In linear and logistic regression, this is equivalent to force the inferred 
parameters of  our model to be small.
• This is done by adding a term to the cost function we want to minimize:

• It is called the “regularization term” (and 𝝀 the regularization weight)
• Consider that 𝜃 = {𝜃0, 𝜃1, …, 𝜃𝐷}

J(𝜽) = !
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2+ 𝜆∑$%!& 𝜃𝑖2 



Machine Learning: Overfitting/Underfitting

• Consider the following model:

• Suppose that we set 𝜆 too large. What happens?

• Minimizing the  J() function, it will force that 𝜃1… 𝜃4 will be 
approximately 0

• Hence, the inferred model will be given by:

ℎ𝜃 𝑥 = 𝜃0+ 𝜃1𝑥 + 𝜃2𝑥2+ 𝜃3𝑥3+ 𝜃4𝑥4

J(𝜽) = !
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2+ 𝜆∑$%!& 𝜃𝑖2 
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Machine Learning: Overfitting/Underfitting

• In practice terms, this adds one extra-parameter 𝜆 to our 
problem.
• This parameter is not part of the model, but instead, it is used during 

the learning process
• These are called “hyper-parameters”

• We saw that: 
• Too large values will lead to underfitted models
• Too small values will lead to overfitted models

• Typically, the choice of 𝜆 can be made according to the performance in 
the validation set.
• To adapt the linear and logistic regression learning processes, in order 

to obtain regularized models, one just have to consider that:

∫
∫ (𝒊

𝜆∑$%!& 𝜃𝑖2 = 2𝜆𝜃𝑖



• It is a statistical method used to estimate 
the performance of machine learning 
hypotheses (models).

• It is one of the most commonly used, being 
easy to understand and to implement, with 
estimates generally having comparable 
bias than other more sophisticated 
methods (e.g., bootstrapping)

• It is a resampling technique.
• The value for “K” is defined at the beginning
• The available data is randomly split at K 

samples (groups)
• The model is fitted “K” times, each time 

using 1 group as test set and the remaining 
(k-1) groups as learning data

• Performance is obtained for the test set 
• The final performance is given by the mean 

value of the “K” performance values.

K-Fold Cross Validation

K=5
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Test Learning



• Also, typically results are given in a (“mean” ∓ “standard deviation”) performance 
values
•  E.g.: “0.70 ∓0.02” means that it is expected that the model performs well 70% 

of the times, with “typical” variations of more or less 2%
• It has roots in the “law of big numbers” and in the “theorem of the

central limit”
• Considering that repeated observed performance values will approach

their “true mean” and that they follow a Gaussian distribution, one can 
conclude that about 68.2% of the times, the model performance will lie 
in the “mean ∓ standard deviation” interval.

K-Fold Cross Validation



• It is closely related to K-fold cross validation and follows the same idea:
• Generates multiple subsets, by sampling from a single, original dataset. 
• Each of the “new” sets can be used to estimate performance. 
• Since there are multiple sets (and therefore multiple estimates), one can also obtain 

the mean, standard deviation or a confidence interval for the estimate.

• The key difference is that bootstrapping resamples the data with 
replacement. 
• Given a dataset containing N points, bootstrap picks a data point uniformly at 

random, adds it to the bootstrapped set, puts that data point back into the dataset, 
and repeats.

• Why put the data point back? 
• In a real setting, data would come from the “real distribution of the data”. 
• But all we have is a dataset (i.e., a sample), we don’t have the real distribution of the 

data. Out set is supposed to represent the underlying distribution, i.e., it is an 
empirical distribution of data. 

• The rule is to simulate sub-sets by drawing from the empirical distribution. 
• Hence, the data point must be put back, because otherwise the empirical distribution 

would change after each draw.

Bootstrapping



• Also known as an error matrix, this table summarizes the model 
performance, providing more information that the simple “accuracy” value.
• For a  binary classification problem, it is a table with two rows and two 

columns, reporting the number of false positives, false negatives, true 
positives, and true negatives. 
• Each row corresponds to one predicted outcome (class)
• Each column corresponds to one actual (ground-truth) class  

• The model accuracy is given by:  !"#!$
!"#!$#%"#%$

• Precision: !"
!"#%"

(when it predicts “yes”, how likely it is correct?)  

• Recall: !"
!"#%$

(what is the proportion of “yes” that are actually detected?) 

Confusion Matrix 



• A Receiver Operating Characteristic curve (ROC), 
is a graphical plot that illustrates the performance 
of a binary classifier system, with respect to 
changes in its discrimination threshold.

• This curve shows the relationship between two 
measures:
• True Positive Rate
• False Positive Rate

• The True Positive Rate (TPR) is also known as 
recall and is given by:
• 𝑇𝑃𝑅 = #$

#$%&'
• The False Positive Rate (FPR) (1 – specificity) is 

given by:
• 𝐹𝑃𝑅 = &$

&$%#'
• This plot gives the TPR vs. FPR at different 

acceptance thresholds. 
• Low thresholds classify more items as positive, which 

increases both the TPR and FPR
• High thresholds classify less items as positive, which 

decreases both the TPR and FPR

ROC: Receiver Operating Characteristic
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• To obtain the data for a ROC curve, we start by sorting the output scores, 
obtained for the evaluation set:
• Consider that red dots correspond to class “0” (the negative class), and green 

dots to class “1” (the positive class)

• What happens when we set the acceptance threshold at?

• 6 (out of 8) negative samples are correctly rejected. TNR=6/8
• 2 (out of 8) negative samples are erroneously considered as positive. FPR = 2/8
• 7 (out of 10) positive samples are correctly accepted. TPR = 7/10
• 3 (out of 10) positive samples are erroneously considered as negative. FNR = 3/10

ROC: Receiver Operating Characteristic
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• Next, we obtain the TPR/FPR values for all possible acceptance 
thresholds:

• At t0, we have TPR=1, FPR=1
• At t1, …
• At ti, we have TPR=0.9, FPR=0.5
• …
• At tn, we have TPR=0, FPR=0

ROC: Receiver Operating Characteristic
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• The ROC curve reports all the possible
performance parameterizations of our
model:
• Either tuned for security or convenience

• When comparing two models, the best one
would have the ROC curve above the other
most times
• The optimal performance will correspond

to the (0,1) point in the plot
• The xi=yi line corresponds to the worst

possible model, with performance equal of
a random number generator.

ROC: Receiver Operating Characteristic
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• The ROC curve shows all possible
parameterization, and it is given as a plot
• To obtain a numeric value that sumarizes 

the effectiveness of a model, it is typically
used the Area Under Curve metric.
• It is given by:

• ∫!
" 𝑓 𝑥 𝑑𝑥

• with 𝑓 𝑥  corresponding to the ROC curve 
values. 
• AUC = 1 is the perfect system that obtains 

optimal performance with all possible 
acceptance thresholds
• AUC = 0.5 is the “random number” 

generator (worst possible system)

AUC: Area Under Curve
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