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* Supervised Learning

e Classification

* Logistic Regression




Students Performance

* Suppose that we are interested in predicting the
approval rate of a class, based on the students
marks in the first practical work.

* Typically, students that get good marks in the first
work, got approved at the course.

e Students with very low marks at the first work tend
to fail in the final examination.

* Hence, our machine learning model is expected to
predict a binary outcome (1: pass vs. 0: fail)
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Students Performance

* In this kind of problems, the dependent variable assumes a reduced set of labels:
* Emails: “is this a spam or no spam email”? y € {0,1}
* Medical diagnosis: “is the patient ill or healthy” y € {0, 1}
* How will be the weather tomorrow?: “will it be sunny, cloudy or rainy”? y € {0, 1, 2}

* In this case, a best fitting line is not enough
* Even though this line will be the basis of our classification model
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Logistic Regression: Classification

* The obvious idea will be to define a threshold at the classifier output

hg(x), that binarizes the system response:

* Typically, “0.5” would be the choice, for “equal classification risk”

* |t might be more dangerous to predict erroneously one class instead of other one.

* For example, in a machine learning-based systems for medical diagnosis, classes have different
risk.

* Predict a “malignant cancer” on a “healthy” subject represents a unnecessary concern for the
patient and would probably imply to perform additional (an unnecessary) exams.

* However, provide a “healthy” response for a patient suffering of a “malignant cancer” might
represent the patient dead sentence.

. _|0,hy(x) <0
f) = {1,hZ(x) >0

* Hence, the response of our classification system can be seen as a
composition of two functions: f = go h
ITII I'S Ilgll after /Ihll
* We have seen “h” before...
* |t is the best fitting line, of the previously seen regression problem
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 ...but whatis “g



Logistic Regression: Classification

 Essentially, “g” performs a binarization of its input, and produces ”1”
responses when the input is higher than some threshold, and “0” in the
remaining cases.
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Logistic Regression: Classification

* Assuming the step function as “g”, and f = g o h, obtaining the
automatic optimal parameterization of “f” with respect to our data (i.e.,
machine learning) yields two problems:

* Problem 1: “g” is not differentiable
* |t has not a continuous derivative at a single point
* Problem 2: in every other points “g” has derivative 0

* The solution is to use a function is close to the step function, without
suffering of the above described problems.

e Sigmoid Function
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Logistic Regression: Classification

* Using this composition of functions, our classification system is given
by:

fg(X) — 1 + ehe(x)

l.e.,
1

fe(x) o 1+€91x+ 92
* The remaining problem is the same as in linear regression:
* How to find the @ optimal parameterization?

* According to the basic principles of Machine Learning, up to now
we’ve only defined our model.
* It is also required to define a “Cost Function” (Loss function) that measures
how good it is na hypothesis.
 ...And a systematic optimization process.




Binary Classification: Cost Function

* As previously, the cost function will measure how well the model
responses (f4(x)) resemble the “ground-truth” (y)

* Intuitively, in cases where the system is supposed to output a “1” and the model
predicts a “1”, the cost should be “0”.

e The same thing should hold for “0” responses.
* However, the cost (loss) should grow in cases when the system response is far
from the ground-truth.
e The log() function is a good choice for representing the desired costs (losses)

* |t varies non-linearly with respect to the distance between the desired and actual responses
* Attempts to avoid “very wrong responses”.
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Binary Classification: Cost Function

* Hence, the cost function for one instance is given by:

—log(fy(x)), y =1
 Cost(fola).y) = {— log(1 = f4(x)), y =0

* And the cost function for the whole dataset is given by the sum of
the individual costs:

J(8) =TI, (Cost(fo(x), y'?))

* Considering that y can only assume 2 values (0 or 1), we have:

J(0) = 2311 yOlog(£olx) + (1~ y) log(1 — £ox?))



Logistic Regression: Optimization

* The optimization can be done exactly as in the linear regression case.

* Using the gradient descent strategy, it is required to find the derivatives of
the cost function J() with respect to the @ parameters:

/

5J(6)

* In matrix form, we have:

_ T ()= [0 177
« fo(x) = 1+el—9’x 6 [605 61] X [X ’ 1]
* log(fe(x)) = log(r:_f;)

__ log(1+el_0 x)

1+e
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*log(1 = fe(x)) = —6x — log )



Logistic Regression: Optimization

* Plugging the two simplified expressions in the original cost function:

J(0) = —%Z?’zl — y(i) log(1+ e )+ (1 - y(i)) (—0x — log(1 + e~9%)
« Which can be simplified to:  J(0) = —%Z{-":ly(” Ox — log(1 + e~%%)

* Obtaining the derivative of J(@) with respect to each 9j requires some
effort and calculus.

* For the moment, we will use the automatic differentiation module of
Keras/Pytorch, in the gradient descent step.

def custom_mse(y _true, y pred):
squared_difference = tf.square(y_true - y_pred)
return tf.reduce_mean(squared_difference, axis=-1)

model = tf.keras.Sequential([
tf.keras.layers.Dense(16, input_shape=[4], activation="relu'),
tf.keras.layers.Dense(32, activation="relu'),
tf.keras.layers.Dense(1)

)

model.compile(loss=custom_mse, optimizer='adam’)
history = model.fit(x, y, epochs=10)



Logistic Regression: Multi-class

* Up to now, we’ve only considering binary classification problems.

o_”n

* When the number of classes c=>2, the typical approach is to train “c
classifiers

. ()( : : : m
* In each classifier f,%? x), instances of the i" class are considered positive
examiles, whereas instances of al the remaining classes are regarded as I

* During classification, we pick the class that produces the maximum output
response, i.e.:
max; f5 ' %)

/ -
O @ % ® ®
Ve \
@ o © © - o @ | O o © ~'\ o ©
ad \ N
e ® e ° e ' o e~-_eo
¢ O ¢ o ¢ o ! ® O S
\ ~
e ° ° \ e




