
MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics
Hugo Pedro Proença,
hugomcp@di.ubi.pt, 2023/2024

Machine
Learning

[03]

3

Syllabus

• Supervised Learning

• Logistic Regression

• Suppose that we are interested in predicting the
approval rate of a class, based on the students
marks in the first practical work.
• Typically, students that get good marks in the first

work, got approved at the course.
• Students with very low marks at the first work tend

to fail in the final examination.
• Hence, our machine learning model is expected to

predict a binary outcome (1: pass vs. 0: fail)

Students Performance

• In this kind of problems, the dependent variable assumes a reduced set of labels:
• Emails: “is this a spam or no spam email”? 𝑦 ∈ {0, 1}
• Medical diagnosis: “is the patient ill or healthy” 𝑦 ∈ {0, 1}
• How will be the weather tomorrow?: “will it be sunny, cloudy or rainy”? 𝑦 ∈ 0, 1, 2

• In this case, a best fitting line is not enough
• Even though this line will be the basis of our classification model

Students Performance

ℎ𝜃 𝑥 = 𝜃1. 𝑥 + 𝜃2

• The obvious idea will be to define a threshold at the classifier output
ℎ𝜃 𝑥 , that binarizes the system response:

• Typically, “0.5” would be the choice, for “equal classification risks”
• It might be more dangerous to predict erroneously one class instead of other one.
• For example, in a machine learning-based systems for medical diagnosis, classes have different

risk.
• Predict a “malignant cancer” on a “healthy” subject represents a unnecessary concern for the

patient and would probably imply to perform additional (an unnecessary) exams.
• However, provide a “healthy” response for a patient suffering of a “malignant cancer” might

represent the patient dead sentence.

• 𝑓 𝑥 = $0, ℎ𝜃 𝑥 < 0
1, ℎ𝜃 𝑥 ≥ 0

• Hence, the response of our classification system can be seen as a
composition of two functions: 𝑓 = 𝑔 𝜊 ℎ

 “f” is “g” after “h”

• We have seen “h” before, but what is “g”?

Logistic Regression: Classification

• Essentially, “g” performs a binarization of its input, and produces ”1”
responses when the input is higher than some threshold, and “0” in the
remaining cases.
• Step function:

Logistic Regression: Classification

False negatives

False positive

True positives

True negatives

• Assuming the step function as “g”, and 𝑓 = 𝑔 𝜊 ℎ, obtaining the
automatic optimal parameterization of “f” with respect to our data (i.e.,
machine learning) yields two problems:

• Problem 1: “g” is not differentiable
• It has not a continuous derivative at a single point

• Problem 2: in every other points “g” has derivative 0

• The solution is to use a function is close to the step function, without
suffering of the above described problems.

• Sigmoid Function

Logistic Regression: Classification

𝑔 𝑥 =
1

1 + 𝑒!"

• Using this composition of functions, our classification system is given
by:

𝑓𝜽 𝑥 =
1

1 + 𝑒!!(#)
• Or:

𝑓𝜽 𝑥 = !
!"##"$% ##

• The remaining problema is the same as in linear regression:
• How to find the 𝜽 optimal parameterization?

• According to the basic principles of Machine Learning, up to now,
we’ve only defined our model.

• It is also required to define a “Cost Function” (Loss function) that measures
how good it is na hypothesis.

• And a systematic optimization process

Logistic Regression: Classification

• As previously, the cost function will measure how well the model
responses (𝑓𝜽 𝑥) resemble the “ground-truth” (y)

• Intuitively, in cases where the system is supposed to output a “1” and the model
predicts a “1”, the cost should be “0”.

• The same thing should hold for “0” responses.
• However, the cost (loss) should grow in cases when the system response is far

from the ground-truth.
• The log() function is a good choice for representing the desired costs (losses)
• It varies non-linearly with respect to the distance between the desired and actual responses

• Attempts to avoid “ridiculously wrong responses”.

Logistic Regression: Cost Function

𝑦 = 1 𝑦 = 0

−log(𝑓𝜃 𝑥) −log(1 − 𝑓𝜃 𝑥)

• Hence, the cost function for one instance is given by:

• 𝐶𝑜𝑠𝑡 𝑓𝜃 𝑥 , 𝑦 = 3
−log(𝑓𝜃 𝑥) , 𝑦 = 1

− log 1 − 𝑓𝜃 𝑥 , 𝑦 = 0

• And the cost function for the whole dataset is given by the sum of
the individual costs:

• Considering that y can only assume 2 values (0 or 1), we have:

Logistic Regression: Cost Function

J(𝜽) = /
0
∑12/0 𝐶𝑜𝑠𝑡 𝑓𝜃 𝑥

(𝑖) , 𝑦(𝑖)

J(𝜽) = −)
*
∑+,)* 𝑦 𝑖 log 𝒇𝜽 𝑥

(𝑖) + (1 − 𝑦 𝑖) log 1 − 𝑓𝜽 𝑥
(𝑖)

Logistic Regression: Optimization

• The optimization can be done exactly as in the linear regression case.
• Using the gradient descent strategy, it is required to find the derivatives of

the cost function J() with respect to the 𝜽 parameters:

• In matrix form, we have:

• f𝜽 𝒙 = !
!"#&𝜽

$𝒙

• log(𝑓𝜽 𝒙) = log(!
!"#&𝜽

$𝒙)

 = − log(!"#
&𝜽$𝒙

!
)

• log(1 − 𝑓𝜽 𝒙) = −θ𝐱 − log(!"#
&𝜽$𝒙

!
)

∫
∫ 𝜽

J(𝜽)

𝜽= [𝜃0, 𝜃1]T 𝒙(i)= [𝑥(i), 1]T

Logistic Regression: Optimization

• Plugging the two simplified expressions in the original cost function, we
obtain:

• Which can be simplified to:

• Now, as

• We have:

J(𝜽) = − &
'
∑()&' − 𝑦 𝑖 log 1 + 𝑒*𝜽𝒙 + (1 − 𝑦 𝑖) (−𝜽𝒙 − log 1 + 𝑒*𝜽𝒙

J(𝜽) = − &
'
∑()&' 𝑦 𝑖 𝜽𝒙 − log 1 + 𝑒*𝜽𝒙

∫

∫ &'
𝑦 𝑖 𝜽𝒙 = 𝑦 𝑖 𝜽𝒙 ∫

∫ &'
log 1 + 𝑒𝜽𝒙 = 𝒙!)&𝜽𝒙

*+)𝜽𝒙
 = xi

j 𝑓𝜽 𝑥

∫

∫ &'
𝐽(𝜃) = ∑,-*. 𝑥𝑖𝑗 𝑓𝜃 𝑥

𝑖 − 𝑦 𝑖

Logistic Regression: Multi-class

• Up to now, we’ve only considering binary classification problems.
• When the number of classes (c) is higher than 2, the typical approach is to

train “c” classifiers
• In each classifier 𝑓𝜃

(𝑖)(𝑥), instances of the ith class are considered positive
examples, whereas instances of al the remaining classes are treated as negative
instances.

• During classification, we pick the class that produces the maximum output
response, i.e.:

maxi 𝑓𝜃
(𝑖)(𝑥)

𝑓𝜃
(0)(𝑥) 𝑓𝜃

(1)(𝑥) 𝑓𝜃
(2)(𝑥)

