MACHINE LEARNING

MEI/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2023/2024

Machine Learning

Syllabus

- Supervised Learning

- Logistic Regression
[03]

Students Performance

- Suppose that we are interested in predicting the approval rate of a class, based on the students marks in the first practical work.
- Typically, students that get good marks in the first work, got approved at the course.
- Students with very low marks at the first work tend to fail in the final examination.
- Hence, our machine learning model is expected to
 predict a binary outcome (1: pass vs. 0 : fail)

Students Performance

- In this kind of problems, the dependent variable assumes a reduced set of labels:
- Emails: "is this a spam or no spam email"? $y \in\{0,1\}$
- Medical diagnosis: "is the patient ill or healthy" $y \in\{0,1\}$
- How will be the weather tomorrow?: "will it be sunny, cloudy or rainy"? $y \in\{0,1,2\}$
- In this case, a best fitting line is not enough
- Even though this line will be the basis of our classification model

$$
h_{\theta}(x)=\theta_{1} \cdot x+\theta_{2}
$$

- In this kind of próblems, the dependent variable assumes a reduced set of labels:
- Emails: "is this a spam or no spam email"? $y \in\{0,1\}$
- Medical diagnosis: "is the patient ill or healthy" $y \in\{0,1\}$
- How will be the weather tomorrow?: "will it be sunny, cloudy or rainy"? $y \in\{0,1,2\}$
- In this case, a best fitting line is not enough
- Even though this line will be the basis of our classification model

Logistic Regression: Classification

- The obvious idea will be to define a threshold at the classifier output $h_{\theta}(x)$, that binarizes the system response:
- Typically, " 0.5 " would be the choice, for "equal classification risks"
- It might be more dangerous to predict erroneously one class instead of other one.
- For example, in a machine learning-based systems for medical diagnosis, classes have different risk.
- Predict a "malignant cancer" on a "healthy" subject represents a unnecessary concern for the patient and would probably imply to perform additional (an unnecessary) exams.
- However, provide a "healthy" response for a patient suffering of a "malignant cancer" might represent the patient dead sentence.
- $f(x)=\left\{\begin{array}{l}0, h_{\theta}(x)<0 \\ 1, h_{\theta}(x) \geq 0\end{array}\right.$
- Hence, the response of our classification system can be seen as a composition of two functions: $f=g o h$

$$
\text { " } f \text { " is " } g \text { " after " } h \text { " }
$$

- We have seen " h " before, but what is " g "?

Logistic Regression: Classification

- Essentially, " g " performs a binarization of its input, and produces "1" responses when the input is higher than some threshold, and " 0 " in the remaining cases.
- Step function:

False negatives

Logistic Regression: Classification

- Assuming the step function as " g ", and $f=g o h$, obtaining the automatic optimal parameterization of " f " with respect to our data (i.e., machine learning) yields two problems:
- Problem 1: " g " is not differentiable
- It has not a continuous derivative at a single point
- Problem 2: in every other points " g " has derivative 0
- The solution is to use a function is close to the step function, without suffering of the above described problems.
- Sigmoid Function

Logistic Regression: Classification

- Using this composition of functions, our classification system is given by:

$$
f_{\theta}(x)=\frac{1}{1+e^{h_{\theta}(x)}}
$$

- Or:

$$
f_{\theta}(x)=\frac{1}{1+e^{\theta_{1} x+\theta_{2}}}
$$

- The remaining problema is the same as in linear regression:
- How to find the $\boldsymbol{\theta}$ optimal parameterization?
- According to the basic principles of Machine Learning, up to now, we've only defined our model.
- It is also required to define a "Cost Function" (Loss function) that measures how good it is na hypothesis.
- And a systematic optimization process

Logistic Regression: Cost Function

- As previously, the cost function will measure how well the model responses ($f_{\theta}(x)$) resemble the "ground-truth" (y)
- Intuitively, in cases where the system is supposed to output a " 1 " and the model predicts a " 1 ", the cost should be " 0 ".
- The same thing should hold for " 0 " responses.
- However, the cost (loss) should grow in cases when the system response is far from the ground-truth.
- The $\log ()$ function is a good choice for representing the desired costs (losses)
- It varies non-linearly with respect to the distance between the desired and actual responses
- Attempts to avoid "ridiculously wrong responses".

Logistic Regression: Cost Function

- Hence, the cost function for one instance is given by:
$\cdot \operatorname{Cost}\left(f_{\theta}(x), y\right)=\left\{\begin{array}{c}-\log \left(f_{\theta}(x)\right), y=1 \\ -\log \left(1-f_{\theta}(x)\right), y=0\end{array}\right.$
- And the cost function for the whole dataset is given by the sum of the individual costs:

$$
\mathrm{J}(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N}\left(\operatorname{Cost}\left(f_{\theta}\left(x^{\left({ }_{i}\right)}\right), y^{(i)}\right)\right)
$$

- Considering that y can only assume 2 values (0 or 1), we have:

$$
J(\boldsymbol{\theta})=-\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log \left(\boldsymbol{f}_{\boldsymbol{\theta}}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-f_{\boldsymbol{\theta}}\left(x^{(i)}\right)\right)
$$

Logistic Regression: Optimization

- The optimization can be done exactly as in the linear regression case.
- Using the gradient descent strategy, it is required to find the derivatives of the cost function J() with respect to the $\boldsymbol{\theta}$ parameters:

$$
\frac{\int}{\int \theta} \mathrm{J}(\theta)
$$

- In matrix form, we have:
- $\mathrm{f}_{\boldsymbol{\theta}}(\boldsymbol{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}}}$

$$
\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]^{\top}
$$

$$
\boldsymbol{x}^{(\mathrm{i})}=\left[x^{(\mathrm{i})}, 1\right]^{\top}
$$

- $\log \left(f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)=\log \left(\frac{1}{1+e^{-\theta^{T} x}}\right)$

$$
=-\log \left(\frac{1+e^{-\theta^{T} x}}{1}\right)
$$

$\cdot \log \left(1-f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)=-\theta \mathbf{x}-\log \left(\frac{1+e^{-\boldsymbol{\theta}^{T} x}}{1}\right)$

Logistic Regression: Optimization

- Plugging the two simplified expressions in the original cost function, we obtain:

$$
J(\boldsymbol{\theta})=-\frac{1}{N} \sum_{i=1}^{N}-y^{(i)} \log \left(1+e^{-\boldsymbol{\theta} x}\right)+\left(1-y^{(i)}\right)\left(-\boldsymbol{\theta} \boldsymbol{x}-\log \left(1+e^{-\boldsymbol{\theta} \boldsymbol{x}}\right)\right.
$$

- Which can be simplified to:

$$
\mathrm{J}(\boldsymbol{\theta})=-\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \boldsymbol{\theta} \boldsymbol{x}-\log \left(1+e^{-\boldsymbol{\theta} \boldsymbol{x}}\right)
$$

- Now, as

$$
\frac{\int}{\int \theta j} y^{(i)} \boldsymbol{\theta} \boldsymbol{x}=y^{(i)} \boldsymbol{\theta} \boldsymbol{x} \quad \frac{\int}{\int \theta j} \log \left(1+e^{\boldsymbol{\theta} x}\right)=\frac{\boldsymbol{x}_{i} e^{-\boldsymbol{\theta} x}}{1+e^{\boldsymbol{\theta} x}}=\mathrm{x}_{\mathrm{j}}^{\mathrm{i}} f_{\boldsymbol{\theta}}(x)
$$

- We have:

$$
\frac{\int}{\int \theta j} J(\theta)=\sum_{i=1}^{N} x_{j}^{i}\left(f_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)
$$

Logistic Regression: Multi-class

- Up to now, we've only considering binary classification problems.
- When the number of classes (c) is higher than 2, the typical approach is to train "c" classifiers
- In each classifier $\left.f_{\theta}{ }^{(}{ }_{i}\right)(x)$, instances of the $\mathrm{i}^{\text {th }}$ class are considered positive examples, whereas instances of al the remaining classes are treated as negative instances.
- During classification, we pick the class that produces the maximum output response, i.e.:

$$
\max _{\mathrm{i}} f_{\theta}{ }^{\left({ }_{i}\right)}(x)
$$

