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A Large Language Model (LLM): ChatGPT

Machine Learning Learning Paradigms

Machine Learning 
from User 
Perspective!



Fine Tunning a LLM (ChatGPT)

Machine Learning Learning Paradigms

{"messages": [ {"role": "system",
      "content": "You are an assistant that occasionally misspells words" },
    {"role": "user",
      "content": "Tell me a story." },
    {"role": "assistant",
      "content": "One day a student went to school." }]}

Step 1: Prepare Data (JSON file)

!pip install -U openai
import openai
openai.api_key = "YOUR_OPENAI_API_KEY"
openai.File.create( file=open('/path/to/your/data.jsonl’), purpose='fine-tune',)

Step 2: Upload Data

openai.FineTuningJob.create(training_file='your_file_id',model='gpt-3.5-turbo',)

Step 3: Create Job

completion = openai.ChatCompletion.create( model='gpt-3.5-turbo',
  messages=[ {"role": "system", "content": "You are Zordon, leader of the Power Rangers."},
    {"role" "user", "content": "Zordon, the Red Ranger has been captured! What do we do?"}])

Step 4: Use Model

Machine Learning 
from User 
Perspective!



• Pizza is a $45.1 billion industry in the United States.  
• Suppose that one well-known Pizza chain is 

interested in perceiving the relationship between 
the average annual  revenue of its local stores and 
the corresponding startup cost.
• This data will be of maximum interest to define the 

franchise fee for future openings

Example: Pizza Franchising



• It appears that there is a direct relation between 
the annual income of one store, and the cost to 
start the store.

• On average, larger stores sell more Pizza, but also they 
are more costly to set up:

• Furniture, taxes, employees…

Pizza Franchising

Dependent 
Variable

Independent 
Variable

• In this problem we have 36 examples, typically 
designated as “instances”
• N=36

• The independent variables are typically referred to as 
“features” 
• Are the input variables (x)

• The number of features determines the dimensionality 
of the problem 
• d=1

• The dependent variable is typically designated as the 
output, or “target”
• The target distribution determines the type of supervised 

machine learning problem: classification or regression (in 
this case)



• Suppose that the managers of the Pizza chain think 
that it might exist a roughly linear relationship 
between the annual revenue of one store and its 
startup cost:
• This kind of “expert knowledge” is valuable to 

machine learning, as it simplifies the range of models 
that we try.

• Also, one of the Machine Learning’s foundation is 
the Occam’s Razor, a.k.a. the law of parsimony
• Is a problem-solving principle that states that 

"simpler solutions are more likely to be correct than 
complex ones". 

• When comparing hypotheses to solve a problem, one 
should select the solution with the fewest 
assumptions, i.e., the simplest one.

• The idea is attributed to English Franciscan friar 
William of Ockham (1287–1347), a scholastic 
philosopher and theologian. 

Machine Learning I: Model Representation

William of Ockham



• One intuitive analogy is that a 
“model” can be understood as an 
engine, with many screws to be 
adjusted, in order to optimize 
performance.
• Each screw is a “parameter” of the 

model, and should have an optimal 
position, i.e., the one that –
together with the remaining screws
– optimizes the engine performance
• The problem is that each screw

cannot be adjusted independently, 
as changing one position for a screw 
might affect all the remaining ones. 
• Also, testing all the configurations is 

computationally forbidden, and 
might take centuries.  

Machine Learning I: Model Representation

?
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• Linear Model
• According to Occam’s razor (and the administration also!), in the Pizza 

Franchising, we should start by consider a purely linear model to “describe the 
pattern” (i.e., describe the relationship) between the independent(s) and the 
dependent  variables

• Formally, our model (hypothesis) is:   

• The task of Machine Learning is to find us the best possible model, i.e., the 
one that optimally expresses the relationship between the independents 
and dependent variables

• This essentially involves to find the optimal                                     values
• After all, we end up with an “Optimization Problem” in the R2 space

• 𝜃1, 𝜃2 = (0.5, 1)?
• 𝜃1, 𝜃2 = (−10,−0.25)?
• …?

Machine Learning I: Model Representation

ℎ𝜃 𝑥 = 𝜃1. 𝑥 + 𝜃2

𝜽 ∗: (𝜃1, 𝜃2)

Simplest non-constant model!

Model response



• Clearly, there will be models that are better than others:

Machine Learning II: Cost Function

Bad. Terrible!! Good…

…but, which is “the best”?

(𝜃1 = 0, 𝜃2 = 1600) (𝜃1 = −1.15, 𝜃2 = 1005) (𝜃1 = 0.82, 𝜃2 = 446)



• The Cost Function is used to distinguish between two hypotheses, i.e., 
it is used to favor one hypothesis instead of other

• In practice, the cost function receives as input the parameters of one 
model and returns “how good/bad the model is” 

Machine Learning II: Cost Function

• In this problem, we are interested 
in models that are as close as 
possible to the data points

• The “perfect” model will overlap 
exactly all the points in the dataset
• In this case, it is impossible, 

given the type of model 
chosen

• However, the best possible model 
(optimal) should be found



• The Cost Function is typically expressed as:

• It receives the parameters of the model
• In this case, two parameters:

• Formally, J() is a function: R2 à R

 

• In practice, it sums up all the Euclidean distances between the targets
(ground truth) in our dataset and the response given by the model at
each point

• Clearly, if one model is perfect: ℎ𝜃 𝑥 𝑖 = 𝑦 𝑖 , ∀𝑖, and J(...)=0
• At the bottom, Machine Learning is about finding a way to 

minimize J(...)

Machine Learning II: Cost Function

(𝜃1, 𝜃2)

J(𝜃1, 𝜃2) =
!
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2

Why ??

J(…)



• First thought: “Computers are so fast, what if we simply generate millions 
of different hypotheses and pick the best one?”

• This is the “brute-force” approach, that (only) in problems of reduced 
dimensionality might  lead to reasonable results. 

Machine Learning III: Optimization

• The plot given at right 
compares the best model 
obtained “by chance” 
(dependent variable), with 
respect to the numbers of 
models randomly created 
(independent variable).

• In some cases, the best 
random model was “close” to 
the optimal model:
• Cost 645.05
• 𝜃1, 𝜃2 = (0.376, 867.6)
 



• How to obtain the best possible model?

• Find the optimal 𝜽*= (𝜃1, 𝜃2) parameters that minimize J():

• This is an optimization problem (in 2D space), that requires to find 
the derivatives of J() with respect to 𝜽.
• Recall from single variable calculus that (assuming a funcRon f is

diferenRable) the minimum x∗of f has the property that the
derivaRve df/dx is zero at x=x∗

• An analogous result holds in the multivariate case:

Machine Learning III: Optimization

∫
∫ 𝜽

J(𝜽) Partial 
Derivatives∫

∫ +𝟐
J(𝜽)

∫
∫ +&

J(𝜽)

𝜽*= arg min𝜽 J(𝜃1, 𝜃2)



Machine Learning Optimization: Closed-Form
• Minimizing J() is equivalent to minimize:

•  Using matrix form and algebra, we know that:

•  So, we are interested in minimizing the above expression, 
i.e.,

• Applying the distributive property. Also: 

2
$%&

'

𝜃1𝑥
𝑖 + 𝜃2 − 𝑦

𝑖 2

∑$%&' 𝜃1𝑥
𝑖 + 𝜃2 − 𝑦

𝑖 2 = (𝑿𝜽 – y)T (𝑿𝜽 – y)

∫

∫ 𝜽
(𝑿𝜽 – y)T (𝑿𝜽 – y) = 0

∫

∫ 𝜽
𝑿𝑇𝜽𝑇𝑿𝜽– 𝑿𝑇𝜽𝑇y - y𝑇𝑿𝜽 + yTy) = 0

(AB)T = 𝑨𝑇𝑩𝑇

Property: r scalar à rT = r
y𝑇𝑿𝜽 is scalar. y𝑇𝑿𝜽 = (y𝑇𝑿𝜽)𝑇 = y𝑿𝑇𝜽𝑇

X = 𝒙
(𝟏) 𝟏
𝒙(𝟐) 𝟏

Bias!!

𝜽𝟏
𝜽𝟐

×



Machine Learning Optimization: Closed-Form
• Simplifying:

• Applying the derivatives rules:

• Solving with respect to 𝜽 : 

∫

∫ 𝜽
𝑿𝑇𝜽𝑇𝑿𝜽 – 2 ∗ 𝑿𝑇𝜽𝑇y + yTy = 0

2 𝑿𝑇𝑿𝜽 – 2 ∗ 𝑿𝑇y = 0
𝑿𝑇𝑿𝜽 – 𝑿𝑇y = 0
𝑿𝑇𝑿𝜽 =  𝑿𝑇y  

𝑿𝑇𝑿 − 𝟏(𝑿𝑇𝑿)𝜽 = 𝑿𝑇𝑿 − 𝟏𝑿𝑇y  

𝜽* = (XT X)-1 XT y

∫(𝑨𝑿)
∫𝑿

= 𝑨𝑇

∫(𝑿𝑇𝑿)
∫𝑿

= 𝟐𝑿

Matrix Derivatives:



Machine Learning Optimization: Closed-Form

• The closed-form solution should be preferred for “small” datasets
• When computing the matrix inverse is not a concern. 

• For very large datasets, obtaining (XTX)-1 can be extremely costly 
• X has N x (d+1) dimensions

• “N” being the number of instances and “d” the number of features

• Also, there are cases where the (XTX)-1 does no exist 
• e.g., the matrix is non-invertible (singular) in case of perfect multicollinearity
(i.e., w/ dependent features) 

If succeeded, the Closed-Form 
enables us to obtain the 
optimal configuration of the 
hypothesis 𝜽* in a single step  



• As we have seen, the goal is to obtain the 𝜽 parameterization that 
minimizes J():

• (a+b)’ = a’ + b’

Machine Learning Optimization: Partial Derivatives

J(𝜃1, 𝜃2) =
!
"#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 2

∫
∫ +&

J(𝜽) = !
"#
∑$%!# 2 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 𝑥 𝑖

That’s why!

∫
∫ +*

J(𝜽) = !
"#
∑$%!# 2 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖



• In most practical cases, the Closed-Form is hard to obtain, and the 
solution is to use the “Gradient Descent” optimization version:
• Algorithm:

1. Start with some random 𝜽 configuration. 𝜽(0)

2. Change iteratively (and slightly) 𝜽 , to reduce J(𝜽)
1. 𝜽(t+1)= 𝜽(t)-∆ 

3. ∆ defines the “length of steps”
4. (Hopefully) end up in a minimum

Machine Learning Optimization: Gradient Descent

∫
∫ 𝜽

J(𝜽)

The rationale is to iteratively 
move in the steepest descend 
direction, in order to reach the 
(eventually local) minimum

x
x

xx
xx



Machine Learning Optimization: Gradient Descent

𝜃0 = 𝜃0 − ∆
!
#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 𝑥 𝑖

𝜃1 = 𝜃1 − ∆
!
#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖

x
x

Main 
assumption in 

Gradient 
Descent: 

Convexity!



Machine Learning Optimization: Gradient Descent

∫
∫ 𝜽𝟏

J(𝜽)

∫
∫ 𝜽𝟐

J(𝜽)

∫
∫ 𝜽𝟏

J(𝜽)

∫
∫ 𝜽𝟐

J(𝜽)



• Consider the following tiny dataset. Use the gradient descent algorithm 
to obtain the optimal linear regression hypothesis:

• Start with 𝜽𝟏, 𝜽𝟐 = (0,2)
• Use ∆=0.1

Gradient Descent Exercise

X Y

1 2

1.5 2.2

1.8 2.8

2 3.5



• Consider the following tiny dataset. Use the gradient descent algorithm 
to obtain the optimal linear regression hypothesis:

• Start with 𝜽𝟏, 𝜽𝟐 = (0,2)
• Use ∆=1
• Use ∆=0.1
• Use ∆=0.5

•  ∆=1

Gradient Descent Exercise

Diverged!!



• ∆=0.1

Gradient Descent Exercise

Too slow…



• ∆=0.5

Gradient Descent Exercise

Better…



• ∆=1 vs. ∆=0.1 vs. ∆=0.5

• Stop Criterium. There are two classical possibilities:
1. (Naïve) Run for “t” iterations. (Too many? Too few?)
2. (Better) Until it stops to improve (i.e., |𝑱(t) - 𝑱(t-1)|< 𝜀 ). (Good enough for convex 

problems)
3. (Even Better) If there were not minimal improvements for the last “k” 

iterations. 𝑖 ∈ 0, … 𝑝 : |𝑚𝑖𝑛 (𝑱(t-i)) - 𝑚𝑖𝑛 (𝑱)| < 𝜀, “p” known as the “Patience”

Gradient Descent Exercise


