MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics

Hugo Pedro Proenca,
hugomcp@di.ubi.pt, 2024/2025

Machine Syllabus
Learning

* Machine Learning Learning Paradigms
* Linear Regression
* Model Representation
[02] * Cost Function
* Optimization
* Closed-Form
* Gradient Descent

Machine Learning Learning Paradigms

Output
A Large Language Model (LLM): ChatGPT Probabilities
Softmax
Text Task
Prediction | Classifier Linear
V ((Foaanom)=
T Feed
Layer Norm Al
: e —
Multi-Head
eed Attention
Feed Forward Forward ; -~ — N x
12x ‘ — T
N i iem) £dd & Horg Machine Learning
Add & Norm Masked
Layer Norm Multi-Head Multi-Head on User
Attention Attention ; |
$. , , ; Perspective!
S — —
Masked Mult S Al y
Self Attention Positional @_69 ¢ Positional
7y Encoding Encoding
Input Output
Embedding Embedding
Text & Position Embed T
Inputs Qutputs

(shifted right)

Machine Learning Learning Paradigms

Fine Tunning a LLM (ChatGPT)

Step 1: Prepare Data (JSON file)

{"messages"”: [{"role": "system”,
"content”: "You are an assistant that occasionally misspells words" },

{"role": "user”,
"content": "Tell me a story." },

{"role": "assistant”,
"content”: "One day a student went to school.” }]}

Step 2: Upload Data
Ipip install -U openai

import openai
openai.api_key = "YOUR_OPENAI_API_ KEY" i i
openai.File.create(file=open(/path/to/your/data.jsonl’), purpose='fine-tune')) Machine Learni ng
on User
Step 3: Create Job Perspective!

openai.FineTuningJob.create(training_file='your _file_id',model='gpt-3.5-turbo’,)

Step 4: Use Model

completion = openai.ChatCompletion.create(model='gpt-3.5-turbo’,
messages=[{"role": "system", "content": "You are Zordon, leader of the Power Rangers."},
{"role" "user", "content": "Zordon, the Red Ranger has been captured! What do we do?"}])

Pizza Franchising

* Pizza is a $45.1 billion industry in the United States.

e Suppose that one of the most well-known Pizza
chain is interested in perceiving the relationship
between the average annual revenue of its local
stores and the corresponding startup cost.

* This data will be of maximum interest to define the
franchise fee for future openings

Pizza Franchising
2000 T T T T T T

1800 .

Startup Cost
2 o
o o
o o

| |
[o]
o]
(o]
8
(¢}
| |

1200

|
(o]
oo

1000 | | | | |
700 800 900 1000 1100 1200 1300 1400

Annual Revenue

Independent

Pizza Franchising Variable

* It appears that there is a direct relation betwe
the annual income of one store, and the cost to
start the store.

* On average, larger stores sell more Pizza, but also they
are more costly to set up:

 Furniture, taxes, employees...

* In this problem we have 36 examples, typically
designated as “instances”

* N=36
* The independent variables are typically referred to as
“features”
* Are the input variables (x)
* The number of features determines the dimensionality
of the problem
. d=1
* The dependent variable is typically designated as the
output, or “target”

* The target distribution determines the type of supervised
machine learning problem: classification or regression (in
this case)

Annual Fee Startup Cost

1000
1125
1087
1070
1100
1150
1250
1150
1100
1350
1275
1375
1175
1200
1175
1300
1260
1330
1325
1200
1225
1090
1075
1080
1080
1180
1225
1175
1250
1250

750
1125

700

900

900

850

1050
1150
1213
1275
1300
1300
1400
1400
1250
1830
1350
1450
1300
1300
1275
1375
1285
1400
1400
1285
1275
1135
1250
1275
1150
1250
1275
1225
1280
1300
1250
1175
1300
1250
1300
1200

Dependent
Variable

Machine Learning I: Model Representation

* Suppose that the managers of the Pizza chain think
that it might exist a roughly linear relationship
between the annual revenue of one store and its
startup cost:

* This kind of “expert knowledge” is valuable to

machine learning, as it simplifies the range of models
that we try.

* Also, one of the Machine Learning’s foundation is
the Occam’s razor, a.k.a. the law of parsimony
* Is a problem-solving principle that states that

"simpler solutions are more likely to be correct than
complex ones".

* When comparing hypotheses to solve a problem, one
should select the solution with the fewest
assumptions, i.e., the simplest one.

* The idea is attributed to English Franciscan friar
William of Ockham (1287-1347), a scholastic
philosopher and theologian.

William of Ockham

Machine Learning I: Model Representation

* One interesting analogy is that a
“model” can be understood as an
engine, with many screws top be
adjusted, in order to optimize
performance.

* Each screw is a “parameter” of the
model, and should have an optimal
position, i.e., the one that -
together with the remaining screws
— optimizes the engine performance

* The problem is that each screw
cannot be adjusted independently,
as changing one position for a screw

might affect all the remaining ones. / ? ? N

* Also, testing all the configurations is . -
computationally forbidden, and
might take centuries.

Machine Learning I: Model Representation

e Linear Model

* According to Occam’s razor (and the administration also!), in the Pizza
Franchising, we should start by consider a purely linear model to “describe the
pattern” (i.e., describe the relationship) between the independent(s) and the
dependent variables

* Formally, our model (hypothesis) is that:

he(x) = 0,.x+ 0O,

* The task of Machine Learning is to find us the best possible model, i.e.,
the one that optimally expresses the relationship between the
independents and dependent variables

* This essentially involves to find the optimal (le 82) values
* After all, we end up with an optimization problem in the R? space

Machine Learning II: Cost Function

* Clearly, there will be models that are better than others:

(91 - 0, 92 - 1600)

(6, = —1.15,6, = 1005)

800 900 1000 1100 1200 1300 1400
Annual Revenue

1900 1900 1900

1800 X 1800 [X 1800 |

1700 1700 } 1700 |

1600 1600 | - 1600
3 : 3
O 1500 O 1500} 21500
g X g X 2
£ 1400 XX X £ 1400} X X (X § 1400
) & X n

1300% X 1300% X 13007

X X % g oK X X % XK
1200 X X % 1200} X X 1200
X X X 1100
1100 1100}
X
1000 ' ' ‘ ‘ A A X 1000
1000
700 800 900 1000 1100 1200 1300 1400 700 800 900 1000 1100 1200 1300 1400 700
Annual Revenue Annual Revenue
Bad. Terrible!!

Good...

...but “the best’?

Machine Learning II: Cost Function

* The Cost Function should distinguish between two alternate

hypotheses, i.e., it should be used to favor one hypothesis instead of
other

* In practice, the cost function receives the parameters of one model and
returns “how good/bad the model is”

1900

* In this problem, we are interested
in models that are as close as

1800 ¢

1700 ¢

possible to the data points _ 1600
* l.e., the “optimal model” will <§1500— 4
overlap exactly all the points we 5 1400 XXX
have in the dataset 100K 0 B TROX
 Impossible, for the type of 2 ; X

1100

model chosen 1000

700 800 900 1000 1100 1200 1300 1400
Annual Revenue

Machine Learning II: Cost Function

* The Cost Function is typically expressed as J()

* The cost function receives as input, the parameters of the model
* In this case, it receives two parameters: (64,0,

* Hence, the cost function is formally J: RZ 2 R

1 i i
J(Hl, 82) — N]iv=1(h9 (x()) o y())2
Why ?7? /

* In practice, this function sums up all the Euclidean distances between
the targets (ground truth) in our dataset and the values given by the
model at each point

e Clearly, if one model is optimal hy (x() == y(i) and J=0

* At the (almost) end of this story, Machine Learning is about
minimizing J()

Machine Learning Ill: Optimization

* “Computers are so fast these days, what if we simply generate millions of
different hypotheses and pick the best one?”

* This is the “brute-force” approach, that (only) in problems of reduced
dimensionality might lead to reasonable results.

The plot given at right
compares the best model 001
obtained “by chance” 650 ¢
(dependent variable), with “
respect to the numbers of 649
models randomly created

2
_ . Ceasf |
(independent variable). o |
l
647 | A
\ [\
In some cases, the best |/
7 ” 646 | / ¥ \ R
random model was “close” to |/ AN SN
¥ b\-_,("” .,‘v:?_-A,_}__.-r.-«\\r{/ -\\ / N b
the optimal model: 645 — < =2
 Cost 645.05 '

1 1.5 2

Hypotheses Generated <104
- (64,6, = (0.376,867.6)

Machine Learning Ill: Optimization

* How to obtain the best possible model?
* Find the (64, 8,) parameters that minimize J()

* Formally:
0"=arg ming J(64, 6,)

* In practice, this is an optimization problem in 2D space, that
requires to find the derivative of J() with respect to 6.

 Recall from single variable calculus that (assuming a function f is
diferentiable) the minimum x*of f has the property that the

derivative df/dx is zero at x=x*
* An analogous result holds in the multivariate case:

/
f_J(g) / 91J(0) Partial

Derivatives

Machine Learning Optimization: Closed-Form

* Minimizing J() is equivalent to minimize:

N
, . —[x1 1
2(91 x(l) + 02 — y(l))z 2 lxz 1]
=1
e Using matrix algebra, we know that Bias!!

N (6:xO+ 6, - yD)2 = (X0 —y)T (X0 —y)

* So, we are interested in minimizing the above expression,

I.e., [
e (X0 -y)' (X0 -y)=0

* Applying the distributive property. Also: ~ (AB)" = ATBT
rscalar, r'=r ff—e XT0TX0—- X"0Ty - yTX0 +y'y)=0
y'X@ is scalar.

y'X0 = (y'X0)" = yX70"

Machine Learning Optimization: Closed-Form

Matrix Derivatives:

e Simplifying:
f fax
5 XT07X60 — 2« X707y +yTy =0 [x
XX
J&X'X) 2%
[X
* Applying the derivatives rules: [(XTAX)
=AX + AT X

[Xx
2 XTX0 -2+ XTy=0

X'X0 - X'y =0
X7X0 = XTy
(X'X) 1X'X)0 =(X'X) X'y
* Solving with respect to 0O

0*=(X" X)Xy

Machine Learning Optimization: Closed-Form

* The closed-form solution should be preferred for “smaller” datasets
 When computing the matrix inverse is not a concern.

* For very large datasets, obtaining (X"X)! can be extremely costly
e X has N x (d+1) dimensions

* Also, there are cases where the (X"X)! not exists
* e.g., the matrix is non-invertible (singular) in case of perfect multicollinearity

If succeeded, the Closed-
Form enables us to
obtain the optimal

1600 —
configuration of the T o o0
. % : . 1200 —
hypothesis 8 * in a single ol w
Step 800 850

600 ~ T T T T T T 800
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
(7]
0

Machine Learning Optimization: Partial Derivatives

* As we have seen, the goal is to obtain the @ parameterization that
minimizes J():

1 [i
50,6,) = =51, (0,20 + 6, - yO):

° (a_l_b)/:a/_l_b/

/
/6,

1 i i i
J(0) =212 (6:x0 + 6, —y©) x©

’

That’s why!

S 1 l_ l_
fOZJ(H) — 5\,2{\212 (le() + 02 . y())

Machine Learning Optimization: Gradient Descent

* In most practical cases, the Closed-Form is hard to obtain, and the
solution is to use the “Gradient Descent” optimization version:

* Algorithm:
1. Start with some random 0 configuration. 8(°
2. Change iteratively (and slightly) 8 , to reduce J(0)
1. 9t1= gl A ff—eJ(B)
3. (Hopefully) end up in @ minimum

The rationale is to iteratively
move in the steepest descend

direction, in order to reach the -y
(eventually local) minimum B

1000 —|

/' 950

900
o

850

800 —

0 = T T | E— i B00
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

%

Machine Learning Optimization: Gradient Descent

By =6y — A= z L (6,29 + 8, — y©O) xO

6, =60, — A= z L (6,29 + 6, — yO)

Main
assumption in
Gradient 0.
Descent:
Convexity! i

Machine Learning Optimization: Gradient Descent

* Learning Rate
* Too large values lead to divergence

* The optimal value of J() is not achieved, i.e., the best @ configuration is not found
* Too small values slow down the learning process.

* Remark
* The update of parameters should be done simultaneously:

/ J

¢ 9,t1)=9,0-A felJ(B) e auxs= 6,M-A felJ(B)
J J

o 92(t+1)= ez(t)_A fezJ(B) °* auxp,= gz(t)-A fBZJ(H)

« 6,t)=aux,

. 92(t+1)= aux,

Gradient Descent Exercise

* Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:

e Start with 91, 02 = (0,2)

* Use A=0.1
1 2
1.5 2.2 g
1.8 2.8 — 1
2 35 J: 1.7117

Gradient Descent Exercise

* Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:
* Start with 84, 6,=(0,2)
e Use A=1
e Use A=0.1
e Use A=0.5

. A=1

It1J:3.7677 It 2 J: 9.4693 It 8 J: 2798.6514

Diverged!!

Gradient Descent Exercise

* A=0.1
X
X
It1J:1.323 It Sz) J: 0.49594

It 1000 J: 0.48264

A

Too slow...

Gradient Descent Exercise

* A=0.5

It1J:1.46861 It 101 J: 0.49501

It 1000 J: 0.48238

Better...

Gradient Descent Exercise

e A=1vs. A=0.1vs. A=0.5

10

I
—0.1
—0.5

\{:\—— —_—
-

0 | | | 1 | 1 | |
0 100 200 300 400 500 600 700 800 900 1000
teration

Acceptable solution (A= 0.5) Acceptable solution (A= 0.1)

* Stop Criteria:
e “T” iterations
* While it stops to improv (i.e., Jt1) - Jll < g)

