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Machine Learning Learning Paradigms
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Machine Learning Learning Paradigms

Fine Tunning a LLM (ChatGPT)

Step 1: Prepare Data (JSON file)

{"messages"”: [ {"role": "system”,
"content”: "You are an assistant that occasionally misspells words" },

{"role": "user”,
"content": "Tell me a story." },

{"role": "assistant”,
"content”: "One day a student went to school.” }]}

Step 2: Upload Data
Ipip install -U openai

import openai
openai.api_key = "YOUR_OPENAI_API_ KEY" i i
openai.File.create( file=open(/path/to/your/data.jsonl’), purpose='fine-tune')) Machine Learni ng
on User
Step 3: Create Job Perspective!

openai.FineTuningJob.create(training_file='your _file_id',model='gpt-3.5-turbo’,)

Step 4: Use Model

completion = openai.ChatCompletion.create( model='gpt-3.5-turbo’,
messages=[ {"role": "system", "content": "You are Zordon, leader of the Power Rangers."},
{"role" "user", "content": "Zordon, the Red Ranger has been captured! What do we do?"}])



Pizza Franchising

* Pizza is a $45.1 billion industry in the United States.

e Suppose that one of the most well-known Pizza
chain is interested in perceiving the relationship
between the average annual revenue of its local
stores and the corresponding startup cost.

* This data will be of maximum interest to define the
franchise fee for future openings
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Independent

Pizza Franchising Variable

* It appears that there is a direct relation betwe
the annual income of one store, and the cost to
start the store.

* On average, larger stores sell more Pizza, but also they
are more costly to set up:

 Furniture, taxes, employees...

* In this problem we have 36 examples, typically
designated as “instances”

* N=36
* The independent variables are typically referred to as
“features”
* Are the input variables (x)
* The number of features determines the dimensionality
of the problem
. d=1
* The dependent variable is typically designated as the
output, or “target”

* The target distribution determines the type of supervised
machine learning problem: classification or regression (in
this case)
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Machine Learning I: Model Representation

* Suppose that the managers of the Pizza chain think
that it might exist a roughly linear relationship
between the annual revenue of one store and its
startup cost:

* This kind of “expert knowledge” is valuable to

machine learning, as it simplifies the range of models
that we try.

* Also, one of the Machine Learning’s foundation is
the Occam’s razor, a.k.a. the law of parsimony
* Is a problem-solving principle that states that

"simpler solutions are more likely to be correct than
complex ones".

* When comparing hypotheses to solve a problem, one
should select the solution with the fewest
assumptions, i.e., the simplest one.

* The idea is attributed to English Franciscan friar
William of Ockham (1287-1347), a scholastic
philosopher and theologian.

William of Ockham



Machine Learning I: Model Representation

* One interesting analogy is that a
“model” can be understood as an
engine, with many screws top be
adjusted, in order to optimize
performance.

* Each screw is a “parameter” of the
model, and should have an optimal
position, i.e., the one that -
together with the remaining screws
— optimizes the engine performance

* The problem is that each screw
cannot be adjusted independently,
as changing one position for a screw

might affect all the remaining ones. / ? ? N

* Also, testing all the configurations is . -
computationally forbidden, and
might take centuries.




Machine Learning I: Model Representation

e Linear Model

* According to Occam’s razor (and the administration also!), in the Pizza
Franchising, we should start by consider a purely linear model to “describe the
pattern” (i.e., describe the relationship) between the independent(s) and the
dependent variables

* Formally, our model (hypothesis) is that:

he(x) = 0,.x+ 0O,

* The task of Machine Learning is to find us the best possible model, i.e.,
the one that optimally expresses the relationship between the
independents and dependent variables

* This essentially involves to find the optimal (le 82) values
* After all, we end up with an optimization problem in the R? space




Machine Learning II: Cost Function

* Clearly, there will be models that are better than others:
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Machine Learning II: Cost Function

* The Cost Function should distinguish between two alternate

hypotheses, i.e., it should be used to favor one hypothesis instead of
other

* In practice, the cost function receives the parameters of one model and
returns “how good/bad the model is”
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Machine Learning II: Cost Function

* The Cost Function is typically expressed as J()

* The cost function receives as input, the parameters of the model
* In this case, it receives two parameters: (64,0,

* Hence, the cost function is formally J: RZ 2 R

1 i i
J(Hl, 82) — N ]iv=1(h9 (x( )) o y( ))2
Why ?7? /

* In practice, this function sums up all the Euclidean distances between
the targets (ground truth) in our dataset and the values given by the
model at each point

e Clearly, if one model is optimal hy (x() == y(i) and J=0

* At the (almost) end of this story, Machine Learning is about
minimizing J()



Machine Learning Ill: Optimization

* “Computers are so fast these days, what if we simply generate millions of
different hypotheses and pick the best one?”

* This is the “brute-force” approach, that (only) in problems of reduced
dimensionality might lead to reasonable results.
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Machine Learning Ill: Optimization

* How to obtain the best possible model?
* Find the (64, 8,) parameters that minimize J()

* Formally:
0"=arg ming J(64, 6,)

* In practice, this is an optimization problem in 2D space, that
requires to find the derivative of J() with respect to 6.

 Recall from single variable calculus that (assuming a function f is
diferentiable) the minimum x*of f has the property that the

derivative df/dx is zero at x=x*
* An analogous result holds in the multivariate case:

/
f_J(g) / 91J(0) Partial

Derivatives




Machine Learning Optimization: Closed-Form

* Minimizing J() is equivalent to minimize:

N
, . —[x1 1
2(91 x(l) + 02 — y(l))z 2 lxz 1]
=1
e Using matrix algebra, we know that Bias!!

N (6:xO+ 6, - yD)2 = (X0 —y)T (X0 —y)

* So, we are interested in minimizing the above expression,

I.e., [
e (X0 -y)' (X0 -y)=0

* Applying the distributive property. Also: ~ (AB)" = ATBT
rscalar, r'=r ff—e XT0TX0—- X"0Ty - yTX0 +y'y)=0
y'X@ is scalar.

y'X0 = (y'X0)" = yX70"



Machine Learning Optimization: Closed-Form

Matrix Derivatives:

e Simplifying:
f fax
5 XT07X60 — 2« X707y +yTy =0 [x
XX
J&X'X) 2%
[X
* Applying the derivatives rules: [(XTAX)
=AX + AT X

[Xx
2 XTX0 -2+ XTy=0

X'X0 - X'y =0
X7X0 = XTy
(X'X) 1X'X)0 =(X'X) X'y
* Solving with respect to 0O

0*=(X" X)Xy



Machine Learning Optimization: Closed-Form

* The closed-form solution should be preferred for “smaller” datasets
 When computing the matrix inverse is not a concern.

* For very large datasets, obtaining (X"X)! can be extremely costly
e X has N x (d+1) dimensions

* Also, there are cases where the (X"X)! not exists
* e.g., the matrix is non-invertible (singular) in case of perfect multicollinearity

If succeeded, the Closed-
Form enables us to
obtain the optimal

1600 —
configuration of the T o o0
. % : . 1200 —
hypothesis 8 * in a single ol w
Step 800 850

600 ~ T T T T T T 800
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
(7]
0




Machine Learning Optimization: Partial Derivatives

* As we have seen, the goal is to obtain the @ parameterization that
minimizes J():

1 [ i
50,6,) = =51, (0,20 + 6, - yO):

° (a_l_b)/:a/_l_b/

/
/6,

1 i i i
J(0) =212 (6:x0 + 6, —y©) x©

’

That’s why!

S 1 l_ l_
fOZJ(H) — 5\,2{\212 (le() + 02 . y( ))




Machine Learning Optimization: Gradient Descent

* In most practical cases, the Closed-Form is hard to obtain, and the
solution is to use the “Gradient Descent” optimization version:

* Algorithm:
1. Start with some random 0 configuration. 8(°
2. Change iteratively (and slightly) 8 , to reduce J(0)
1. 9t1= gl A ff—eJ(B)
3. (Hopefully) end up in @ minimum

The rationale is to iteratively
move in the steepest descend

direction, in order to reach the -y
(eventually local) minimum B
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Machine Learning Optimization: Gradient Descent

By =6y — A= z L (6,29 + 8, — y©O) xO

6, =60, — A= z L (6,29 + 6, — yO)

Main
assumption in
Gradient 0.
Descent:
Convexity! i




Machine Learning Optimization: Gradient Descent

* Learning Rate
* Too large values lead to divergence

* The optimal value of J() is not achieved, i.e., the best @ configuration is not found
* Too small values slow down the learning process.

* Remark
* The update of parameters should be done simultaneously:

/ J

¢ 9,t1)=9,0-A felJ(B) e auxs= 6,M-A felJ(B)
J J

o 92(t+1)= ez(t)_A fezJ(B) °* auxp,= gz(t)-A fBZJ(H)

« 6,t)=aux,

. 92(t+1 )= aux,



Gradient Descent Exercise

* Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:

e Start with 91, 02 = (0,2)

* Use A=0.1
1 2
1.5 2.2 g
1.8 2.8 — 1
2 35 J: 1.7117




Gradient Descent Exercise

* Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:
* Start with 84, 6,=(0,2)
e Use A=1
e Use A=0.1
e Use A=0.5

. A=1

It1J:3.7677 It 2 J: 9.4693 It 8 J: 2798.6514

Diverged!!



Gradient Descent Exercise

* A=0.1
X
X
It1J:1.323 It Sz) J: 0.49594

It 1000 J: 0.48264

A

Too slow...



Gradient Descent Exercise

* A=0.5

It1J:1.46861 It 101 J: 0.49501

It 1000 J: 0.48238

Better...



Gradient Descent Exercise

e A=1vs. A=0.1vs. A=0.5
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* Stop Criteria:
e “T” iterations
* While it stops to improv (i.e., Jt1) - Jll < g)



