
MACHINE
LEARNING

MEI/1

University of Beira Interior,
Department of Informatics
Hugo Pedro Proença,
hugomcp@di.ubi.pt, 2019/2020

Machine
Learning

[02]

2

Syllabus

•Machine Learning Learning Paradigms
• Linear Regression
•Model Representation
• Cost Function
• Optimization
• Closed-Form
• Gradient Descent

A Large Language Model (LLM): ChatGPT

Machine Learning Learning Paradigms

Machine Learning
on User

Perspective!

Fine Tunning a LLM (ChatGPT)

Machine Learning Learning Paradigms

{"messages": [{"role": "system",
 "content": "You are an assistant that occasionally misspells words" },
 {"role": "user",
 "content": "Tell me a story." },
 {"role": "assistant",
 "content": "One day a student went to school." }]}

Step 1: Prepare Data (JSON file)

!pip install -U openai
import openai
openai.api_key = "YOUR_OPENAI_API_KEY"
openai.File.create(file=open('/path/to/your/data.jsonl’), purpose='fine-tune',)

Step 2: Upload Data

openai.FineTuningJob.create(training_file='your_file_id',model='gpt-3.5-turbo',)

Step 3: Create Job

completion = openai.ChatCompletion.create(model='gpt-3.5-turbo',
 messages=[{"role": "system", "content": "You are Zordon, leader of the Power Rangers."},
 {"role" "user", "content": "Zordon, the Red Ranger has been captured! What do we do?"}])

Step 4: Use Model

Machine Learning
on User

Perspective!

• Pizza is a $45.1 billion industry in the United States.
• Suppose that one of the most well-known Pizza

chain is interested in perceiving the relationship
between the average annual revenue of its local
stores and the corresponding startup cost.
• This data will be of maximum interest to define the

franchise fee for future openings

Pizza Franchising

• It appears that there is a direct relation between
the annual income of one store, and the cost to
start the store.

• On average, larger stores sell more Pizza, but also they
are more costly to set up:

• Furniture, taxes, employees…

Pizza Franchising

Dependent
Variable

Independent
Variable

• In this problem we have 36 examples, typically
designated as “instances”
• N=36

• The independent variables are typically referred to as
“features”
• Are the input variables (x)

• The number of features determines the dimensionality
of the problem
• d=1

• The dependent variable is typically designated as the
output, or “target”
• The target distribution determines the type of supervised

machine learning problem: classification or regression (in
this case)

• Suppose that the experts/administration/managers of the Pizza chain
think that it might exist a roughly linear relationship between the annual
revenue of one store and its startup cost:

• This kind of “expertise” is always valuable to machine learning, as it simplifies the
range of models that we can attempt to create

• Also, one of the Machine Learning’s foundation is the Occam’s razor:
• Known as the law of parsimony

• Is a problem-solving principle that essentially states that "simpler solutions are
more likely to be correct than complex ones".

• When comparing competing hypotheses to solve a problem, one should select the
solution with the fewest assumptions, i.e., the simplest

• The idea is attributed to English Franciscan friar William of Ockham
(1287–1347), a scholastic philosopher and theologian.

Machine Learning I: Model Representation

• Linear Model
• According to Occam’s razor (and the administration also!), in the Pizza

Franchising, we should start by consider a purely linear model to “describe the
pattern” (i.e., describe the relationship) between the independent(s) and the
dependent variables

• Formally, our model (hypothesis) is that:

• The task of Machine Learning is to find us the best possible model, i.e.,
the one that optimally expresses the relationship between the
independents and dependent variables
• This essentially involves to find the optimal values
• After all, we end up with an optimization problem in the R2 space

Machine Learning I: Model Representation

ℎ𝜃 𝑥 = 𝜃1. 𝑥 + 𝜃2

(𝜃1, 𝜃2)

• Clearly, there will be models that are better than others:

Machine Learning II: Cost Function

Bad. Terrible!! Good…

…but “the best”?

(𝜃1 = 0, 𝜃2 = 1600) (𝜃1 = −1.15, 𝜃2 = 1005) (𝜃1 = 0.82, 𝜃2 = 446)

• The Cost Function should distinguish between two alternate
hypotheses, i.e., it should be used to favor one hypothesis instead of
other
• In practice, the cost function receives the parameters of one model and

returns “how good/bad the model is”

Machine Learning II: Cost Function

• In this problem, we are interested
in models that are as close as
possible to the data points

• I.e., the “optimal model” will
overlap exactly all the points we
have in the dataset
• Impossible, for the type of

model chosen

• The Cost Function is typically expressed as J()
• The cost function receives as input, the parameters of the model

• In this case, it receives two parameters:
• Hence, the cost function is formally J: R2 ! R

• In practice, this function sums up all the Euclidean distances between
the targets (ground truth) in our dataset and the values given by the
model at each point

• Clearly, if one model is optimal ℎ𝜃 𝑥 𝑖 == 𝑦 𝑖 and J=0
• At the (almost) end of this story, Machine Learning is about

minimizing J()

Machine Learning II: Cost Function

(𝜃1, 𝜃2)

J(𝜃1, 𝜃2) =
!
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2

Why ??

• “Computers are so fast these days, what if we simply generate millions of
different hypotheses and pick the best one?”

• This is the “brute-force” approach, that (only) in problems of reduced
dimensionality might lead to reasonable results.

Machine Learning III: Optimization

• The plot given at right
compares the best model
obtained “by chance”
(dependent variable), with
respect to the numbers of
models randomly created
(independent variable).

• In some cases, the best
random model was “close” to
the optimal model:
• Cost 645.05
• 𝜃1, 𝜃2 = (0.376, 867.6)

• How to obtain the best possible model?
• Find the (𝜃1, 𝜃2) parameters that minimize J()
• Formally:

𝜽*= arg min𝜽 J(𝜃1, 𝜃2)
• In practice, this is an optimization problem in 2D space, that

requires to find the derivative of J() with respect to 𝜽.
• Recall from single variable calculus that (assuming a func`on f is

diferen`able) the minimum x∗of f has the property that the
deriva`ve df/dx is zero at x=x∗

• An analogous result holds in the multivariate case:

Machine Learning III: Optimization

∫
∫ 𝜽

J(𝜽) Partial
Derivatives

∫
∫ +𝟐

J(𝜽)

∫
∫ +%

J(𝜽)

Machine Learning Optimization: Closed-Form
• Minimizing J() is equivalent to minimize:

• Using matrix algebra, we know that

• So, we are interested in minimizing the above expression,
i.e.,

• Applying the distributive property. Also:

0
&'%

(

𝜃1𝑥
𝑖 + 𝜃2 − 𝑦

𝑖 2

∑&'%(𝜃1𝑥
𝑖 + 𝜃2 − 𝑦

𝑖 2 = (𝑿𝜽 – y)T (𝑿𝜽 – y)

∫

∫ 𝜽
(𝑿𝜽 – y)T (𝑿𝜽 – y) = 0

∫

∫ 𝜽
𝑿𝑇𝜽𝑇𝑿𝜽– 𝑿𝑇𝜽𝑇y - y𝑇𝑿𝜽 + yTy) = 0

(AB)T = 𝑨𝑇𝑩𝑇

r scalar, rT = r
y𝑇𝑿𝜽 is scalar.

y𝑇𝑿𝜽 = (y𝑇𝑿𝜽)𝑇 = y𝑿𝑇𝜽𝑇

X = 𝒙𝟏 𝟏
𝒙𝟐 𝟏

Bias!!

Machine Learning Optimization: Closed-Form
• Simplifying:

• Applying the derivatives rules:

• Solving with respect to 𝜽 :

∫

∫ 𝜽
𝑿𝑇𝜽𝑇𝑿𝜽 – 2 ∗ 𝑿𝑇𝜽𝑇y + yTy = 0

2 𝑿𝑇𝑿𝜽 – 2 ∗ 𝑿𝑇y = 0

𝜽* = (XT X)-1 XT y

𝑿𝑇𝑿𝜽 – 𝑿𝑇y = 0
𝑿𝑇𝑿𝜽 = 𝑿𝑇y

𝑿𝑇𝑿 − 𝟏(𝑿𝑇𝑿)𝜽 = 𝑿𝑇𝑿 − 𝟏𝑿𝑇y

∫(𝑨𝑿)
∫𝑿

= 𝑨𝑇

∫(𝑿𝑇𝑿)
∫𝑿

= 𝟐𝑿

∫(𝑿𝑇𝑨𝑿)
∫𝑿

= 𝑨𝑿 + 𝑨𝑻 𝑿

Matrix Derivatives:

Machine Learning Optimization: Closed-Form

• The closed-form solution should be preferred for “smaller” datasets
• When computing the matrix inverse is not a concern.

• For very large datasets, obtaining (XTX)-1 can be extremely costly
• X has N x (d+1) dimensions

• Also, there are cases where the (XTX)-1 not exists
• e.g., the matrix is non-invertible (singular) in case of perfect multicollinearity

If succeeded, the Closed-
Form enables us to
obtain the optimal
configuration of the
hypothesis 𝜃* in a single
step

• As we have seen, the goal is to obtain the 𝜽 parameterization that
minimizes J():

• (a+b)’ = a’ + b’

Machine Learning Optimization: Partial Derivatives

J(𝜃1, 𝜃2) =
!
"#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 2

∫
∫ +%

J(𝜽) = !
"#
∑$%!# 2 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 𝑥 𝑖

That’s why!

∫
∫ ++

J(𝜽) = !
"#
∑$%!# 2 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖

• In most practical cases, the Closed-Form is hard to obtain, and the
solution is to use the “Gradient Descent” optimization version:
• Algorithm:

1. Start with some random 𝜽 configuration. 𝜽(0)

2. Change iteratively (and slightly) 𝜽 , to reduce J(𝜽)
1. 𝜽(t+1)= 𝜽(t)- ∆

3. (Hopefully) end up in a minimum

Machine Learning Optimization: Gradient Descent

∫
∫ 𝜽

J(𝜽)

The rationale is to iteratively
move in the steepest descend
direction, in order to reach the
(eventually local) minimum

x
x

xx
xx

Machine Learning Optimization: Gradient Descent

𝜃0 = 𝜃0 − ∆
!
#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 𝑥 𝑖

𝜃1 = 𝜃1 − ∆
!
#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖

x
x

Main
assumption in

Gradient
Descent:

Convexity!

Machine Learning Optimization: Gradient Descent

∫
∫ 𝜽𝟏

J(𝜽)

∫
∫ 𝜽𝟐

J(𝜽)

∫
∫ 𝜽𝟏

J(𝜽)

∫
∫ 𝜽𝟐

J(𝜽)

• Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:

• Start with 𝜽𝟏, 𝜽𝟐 = (0,2)
• Use ∆=0.1

Gradient Descent Exercise

X Y

1 2

1.5 2.2

1.8 2.8

2 3.5

• Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:

• Start with 𝜽𝟏, 𝜽𝟐 = (0,2)
• Use ∆=1
• Use ∆=0.1
• Use ∆=0.5

• ∆=1

Gradient Descent Exercise

Diverged!!

• ∆=0.1

Gradient Descent Exercise

Too slow…

• ∆=0.5

Gradient Descent Exercise

Better…

• ∆=1 vs. ∆=0.1 vs. ∆=0.5

• Stop Criteria:
• “T” iterations
• While it stops to improv (i.e., 𝑱(t+1) - 𝑱(t) < 𝜀)

Gradient Descent Exercise

Acceptable solution (∆= 0.1)Acceptable solution (∆= 0.5)

