
ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2022/23



Convolutional Neural Networks (CNNs)

• CNNs are a type of Neural Networks that have been 
augmenting their popularity in most tasks related to Computer 
Vision
• E.g., Image Segmentation, Classification.

• The property of shift invariance gives them the biological 
inspiration of the human visual system and keeps the number 
of weights relatively small, making learning a feasible task.
• In opposition to traditional Feed-forward nets, neurons in 

CNNs are arranged in three dimensions.



Convolutional Neural Networks (CNNs)

• Each layer of a CNN transforms a 3D input into a 3D output.
• This pioneering work in CNNs was due to Yann LeCun (LeNet5) 

after many previous successful iterations since 1988. 
• Initially, the LeNet architecture was used mainly for character 

recognition tasks such as reading zip codes, digits...
• The efficacy of CNNs in visual tasks is the main reason behind 

the popularity of deep learning. They are powering major 
advances in computer vision, with  applications for robotics, 
security and medical diagnosis.



Convolutional Neural Networks (CNNs)

• The typical architecture of CNNs is as follows:

Convolutions + 
Non-linearities

Pooling
Fully Connected

Softmax

These operations are the basic building blocks of most CNNs, so understanding 
how these work is an important step to actually understand the functioning of 
these powerful models.



Convolutional Neural Networks (CNNs)

• Convolution
• This block computes the convolution between an input map 

x with a bank of k multi-dimensional filters f, to obtain the 
results y.

• Formally, the outputs y are given by:



Convolutional Neural Networks (CNNs)

• Convolution (padding and stride)
• Usually it is possible to specify top, bottom, left, right 

paddings (Ph
-, Ph

+, Pw
-, Pw

+) of the input array and 
subsampling strides (Sh,Sw) of the output array.  
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The output size is given by:



Convolutional Neural Networks (CNNs)

• Spatial Pooling
• The typical blocks are the max and sum pooling, 

respectively computing the maximum and the summed 
response of each feature channel in a H’ x W’ patch.

• Pooling progressively reduces the spatial size of the input 
representation.
• This reduces the number of parameters and, therefore, 

controls over fitting;
• Also, it makes the network invariant to small transforms, 

distortions and translations in the input image (a small 
distortion in input will not change the output of pooling).



Convolutional Neural Networks (CNNs)

• Pooling
• Note that Pooling down samples the input volume only 

spatially;
• The input depth is equal to the output depth;
• The pooling operation is often considered deprecated. To 

reduce the size of the representation, in is possible to use 
larger strides in the convolution layers.

Example: max() pooling 



Convolutional Neural Networks (CNNs)

• Non-Linearity
• There are two basic non-linear activation functions used in 

CNNS: “ReLU” (Rectified Linear Units) and “Sigmoid”.

• As advantages with respect to each other, Sigmoid is 
consider not to blow up activation, while ReLU does not 
vanishes the gradient
• In the case of Sigmoid, when the input grows to infinitely large, 

the derivative tends to 0.
• However, in the case of ReLU, there is no mechanism to 

constrain the output of the neuron, as the input is often the 
output)



Convolutional Neural Networks (CNNs)
• Fully Connected layers
• Neurons in a fully connected layer have full connections to all 

activations in the previous layer, as in a regular feed-forward network. 
• In practical terms, these neurons resemble pretty much the neurons in 

”Convolution” layers.
• The only difference between fully connected and Convolution layers 

is that the neurons in the former layer are connected only to a local 
region in the input, and that many of the neurons in a CONV volume 
share parameters.
• However, the neurons in both layers still compute dot products, so 

their functional form is identical. 
• For example, an FC layer with K=4096 that is looking at some input 

volume of size 7×7×512 can be expressed as a Convolution layer with 
F=7 x 7 x 4096 (padding 0, stride 1). 
• In other words, we are setting the filter size to be exactly the size of the 

input volume;
• Hence the output will simply be 1×1×4096.



Convolutional Neural Networks (CNNs)

• Softmax
• Can be seen as the combination of an activation function 

(exponential) and a normalization operator.
• It is usually applied as the transfer function of the last layer 

of the CNN, where the idea is to push up the maximum 
value of the responses to “1”, and all the other values to 
“0”.
• In practice, it simulates the probability of the input 

corresponding to each category, represented by a neuron in 
the output layer. 



Convolutional Neural Networks (CNNs)

•Most of the memory used by CNNs is used in the early 
Convolutional layers, whereas most of the parameters of the 
network are in the fully connected layers. 

• Example VGGNet: 
INPUT: [224x224x3] memory: 224*224*3=150K weights: 0 
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864 
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0 
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456 POOL2: [56x56x128] 
memory: 56*56*128=400K weights: 0 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0 
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216 
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000



Convolutional Neural Networks (CNNs)

• Example VGGNet
• The total memory used is about 4 bytes * 24,000,000 = 93 

MB
• This is required only for the forward step
• In practice, the backward step requires around the double 

memory;
• The network has 138,000,000 parameters to be tuned by 

the back-propagation algorithm.
• It should be noted that the conventional paradigm of a 

linear list of layers has recently been challenged
• Google’s Inception architectures and also Residual 

Networks from Microsoft Research Asia. 
• Both of these feature more intricate and different 

connectivity structures.



Convolutional Neural Networks (CNNs)

Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

• Accuracy vs. Number of operations for a single forward step. 
Circumference radii corresponds to the number of parameters



Convolutional Neural Networks (CNNs)

• An illustration of the most popular deep learning architectures 
is provided in http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/

LeNet AlexNet VGG GoogLeNet Inception Resnet



CNNs: Other Layers

• Dropout Layers. This kinds of layers drops out units of a neural 
network during the learning phase. 
• Typically, a proportion (0, 1) of neurons is randomly chosen and not 

considered for a particular “forward/backward” pass.
• Dropout is an approach to regularization in neural networks which

helps to avoid interdependent learning amongst the neurons.
• Recall that regularization is way to prevent over-fitting, by adding a 

penalty to the loss function. 
• It is applied exclusively to the fully connected layers of a CNN model.



CNNs: Other Layers
• Batch Normalization Layers. To increase the stability of a neural 

network, this kind of layers normalizes the output of a previous layer by 
subtracting the batch mean and dividing by the batch standard 
deviation.
• This kind of layer can be added both after fully connected layers, but 

also after convolutional layers.
• Typically, using batch normalisation: 1) allows higher learning rates; 2) 

makes weights easier to initialise, helping to reduce the sensitivity to
the initial starting weights.
• As the activations of one layer are the inputs of the next one, each

layer in the neural network receives – at each iteration – diferente 
input distributions. This is problematic because it forces each layer to
continuously adapt to its changing inputs.
• Using Batch Normalization allows the layer to learn on a more stable

distribution of inputs (close to a standardized Gaussian distribution) 
and accelerates the training of the network.



Deep Learning Architectures

• Deep Learning architectures are now “in the eye of the 
hurricane”, and have been advancing the state-of-the-art in 
multiple Machine Learning problems (if not all…)
• Recall that the main advantage of Deep Learning-based 

solutions with respect to handcrafted approaches, is that this 
new generation of models also carries out the feature 
extraction phase in an automatic way.

Handcrafted Methods Deep Learning Frameworks



Auto-Encoders

• Autoencoders are a class of Neural Networks that try to 
reconstruct the input itself. They are unsupervised in nature.
• Typically, the general structure of an auto-encoder has two 

parts:
• The Encoder sub-network, that receives the original data and 

obtains a “latent space representation”;
• The Decoder sub-network, that receives the latent code and 

attempts to reproduce the original data.

Latent space



Auto-Encoders

• The first obvious application of auto-encoders is “Data Storage 
and Transmission”
• Starting from a high-volume amount of information (size 

m), the latent code 𝒛 ∈ ℝ𝑛 is able to reconstruct the 
original data only with minor differences;
• Obviously, n << m

• A second obvious application of using auto-encoders is to 
obtain a compact feature representations that can be used by 
Machine Learning models, for classification, regression or 
clustering purposes.
• For such, it is assumed that a similarity between 𝒛1 and 𝒛2

(e.g., in terms of Euclidean/Co-sine distances) corresponds 
directly to the similarity of the corresponding original data



Auto-Encoders
• Subsequently, another ingenious application for auto-encoders was to 

“Generate Data”
• There is a “Generative” paradigm of Machine Learning/Pattern 

Recognition models that attempts to model the phenomena to be 
handled 
• i.e., obtain an approximation of p(C,I), with “I” representing the 

input data and C the corresponding desired response.     
• This is in opposition to the “Discriminative” family of methods, which 

typically attempt to infer p(C|I)
• The idea in auto-encoders was to change some components in the latent 

code, to perceive the corresponding changes in the reconstructed data. 

𝒛
1
3
5

𝒛′

1
3
4

How do/much
the objects
change?

...(unfortunatelly, 
in a chaotic way)



Variational Auto-Encoders
• This kind of models have arisen upon the difficulties in controlling the 

appearance/features of the reconstructed data . 
• Standard autoencoders can obtain compact representations 𝒛 and reconstruct their 

inputs well. 
• However, the main problem, for generation, is that the latent space they convert 

their inputs to and where their encoded vectors lie, may not be continuous, or 
allow easy interpolation.

• The key novelty in variational auto-encoders is a layer that explicitly 
encodes means and standard deviations of the latent representations, 
which are sampled to generate a reconstructed sample.

𝜇 = 0.5, 1.2
𝜎 = [0.1, 0.2]

Sample two values from:
[𝑋1 ∼ 𝑁(0.5, 0.1), 𝑋2 ∼

𝑁(1.2, 0.2)]



Variational Auto-Encoders
• The (𝝁, 𝝈) values allow a 

continuity in the latent 
space, that can be used 
to generate synthetic 
elements according to 
some pre-defined 
properties and 
appearance features

In practice terms, it is assured 
that neighbor elements in the 
latent space correspond to 

similar instances in the image 
space



Adversarial Learning

• Facebook's AI research director Yann LeCun called adversarial 
training “the most interesting idea in the last 10 years in 
Machine Learning”.
• Generative Adversarial Networks (GANs) are architectures that 

use two neural networks, competing one against the other 
(thus the “adversarial”) in order to generate new, synthetic 
instances of data that can pass for real data.
• GANs were introduced in a paper by Ian Goodfellow and other 

researchers at the University of Montreal, including Yoshua Bengio, in 
2014. 

• GANs’ potential for both good and evil is huge, because they 
learn to mimic any distribution of data. 
• GANs can be taught to create worlds eerily like our own in 

almost any domain: images, music, speech, prose… 



GANs
• The basic idea in GANs is to have one network (Generator) 

trying to fool the other one, while the later (Discriminator) tries 
not to be fooled.
• This can be seen as a Police Officer!" Thief game that, 

according to Nash Game  Theory, typically converges into an 
equilibrium state. 



GAN

• The Discriminator network is a typical binary classification 
CNN, that learns to distinguish between fake and real data.
• The Generator network receives one latent code (randomly 

generated, i.e., white noise) and produces one instance.
• The overall cost function is given by a two-player min-max 

game:

• That can be decomposed into:

Discriminator

Generator

“fool” D

“recognize fakes”“recognize genuine”



GAN

• GANs are trained in an iterative way:

1. Generate a set of Fake data F

2. Train the Discriminator (with Real data R (labelled 0) and Fake 
Data F (labelled 1)) //Learns to distinguish R from F

3. Set Discriminator.trainable =FALSE

4. Train the GAN (with Fake Data F (labelled 0)) //Learns to fool D

5.   Move to Step 1.



GANs Applications

• E.g., plausible realistic photographs of human faces:

These persons 
don’t exist!!



GANs Applications

• Image to Image Translation:

Input Input StyleStyle Result Result



Conditional GANs
• Despite the remarkable effectiveness of GANs in generating synthetic 

(artificial) instances of one specific phenomenon, they provide a limited 
control over the specific features of the output.
• Recall that the input is a random noise vector. 

• Class-Conditional GANs (cGANs) introduce the label information to the 
learning architecture, enabling to produce instances of a specific class.
• The Discriminator reports “1” only for genuine images with correct 

labels, and “0” for all other cases (genuine images with bad labels, and 
fake images with any label).



Conditional GANs (Applications)
• “Text-To-Image Synthesis”: This is the problem of asking to a network, to 

generate images with specific features:

• “Style Transfer”: Transferring style between different kinds of objects:


