
ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2022/23

• Consider the following truth tables, corresponding to the classical “AND”,
‘’OR’’ and “XOR” problems:

• Suppose we want to learn three logistic regression classifiers that
appropriatelly discriminate between the ”0”|”1” classes

Linear Discriminants: Exercise

X1 X2 Y

0 0 0

0 1 0

1 0 0

1 1 1

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 1

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0

AND OR XOR

✓ ✓ ✗

• As we previously saw, the logistic regression is only able to find hyperplanes
(straight lines, in 2D data) that separate the subspaces of each class, which
happens in the “AND/OR” problems.

• These are called linear discriminants

Linear Discriminants: Exercise

X2

X1

AND 𝑔 ℎ𝜃 𝒙 = 𝑔(𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃0)

1
1 + 𝑒!"

One appropriate “AND” solution could
be: (𝜃1, 𝜃2, 𝜃0) = (0.8, 0.8, -1.5)

ℎ(𝑥) ≈ 0
ℎ(𝑥) > 0

ℎ(𝑥) < 0
= #

#$%!(#!$!% #"$"% ##)

• However, for the “XOR” problem, there is no possible configurations for 𝜽 that
satisfy the requirements:

• XOR appears to be a very simple problem. However, Minksy and Papert (1969)
showed that this was a big problem for neural network architectures of the
1960s, known as perceptrons.
• The inefficiency of Perceptron networks to solve this problem caused the “NN

winter” (period up to the early 90s, when NN were almost abandoned by the ML
community)

Linear Discriminants: Exercise

X2

X1

XOR

?

• Among the three classical approaches for machine learning (pattern
recognition) models, this kind of methods aims at replicate the way
the human brain works:

• In practice terms, this functioning model has remarkable similarities
to the way our previous models were defined:

• “Mixing” the values from a set of inputs, followed by one non-linear
activation function”.

Neural Networks

Inputs
Output

Core

• A logistic regression classifier is defined by:

𝑓𝜽 𝒙 =
1

1 + 𝑒!("$#$$ "%#%$ "&)

• A Rosenblatt’s perceptron is defined as:

Neural Networks

Inputs: x1, x2,...

Phase 1:
Convolution
between x and 𝜽

Phase 2: Non-linearity

• The key concept of the most classical kind of neural networks (feed-
forward) is to define multiple layers, in which neurons of one layer
receive the input of all neurons in the previous layer.

• These are called neurons in hidden layers
• Neurons in the first layer receive the x input

• They are called neurons in the input layer
• Neurons in the last layer provide the result of the model

• They are called neurons in the output layer

Neural Networks: MLP Architecture

classes# inputs

inputs /2 ! # inputs * 2

• Let’s start by the easiest part:
• How can I create one “Multi-Layer Perceptron” (MLP) network in Python and

apply it to my problem?
• Step 1: Import the corresponding library:

• Step 2: Have a X data set with shape (n, 2) and y with shape (n,)
• In practice, X will be a “list of lists” and y will be a list.

• Step 3: Create the network:

• Step 4: Start learning:

• Step 5: Use it, to predict on new instances:

Machine Learning: Python MLP

from sklearn.neural_network import MLPClassifier

X = [[0., 0.], [1., 1.]]
y = [0, 1]

clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
hidden_layer_sizes=(5, 2), random_state=1)

clf.fit(X, y)

clf.predict([[2., 2.], [-1., -2.]])

• When designing a neural network, there are different parameterizations that
have to be chosen, with might determine the system effectiveness:
• The number of neurons in the input/output layers result directly of the problem

considered:
• Input Layer = Dimension of the Feature Space
• Output Layer = Number of classes (hot encoded)

• In the hidden layers, the number of neurons can vary:
• A too short number might not be enough to model the decision surface desired;
• A too high value might lead to overfitting
• In practice, values between half and the double of the number of neurons in the

input layer are tested

Neural Networks

• Regarding the number of hidden layers:
Networks with one layer have the ability to
approximate any linear decision surface
Networks with two layers approximate any
continuous decision surface
Networks with three layers approximate any
decision surface

1
2
3

0 0 1
0 1 0
1 0 0

• Considering that:

𝐴 '𝐵 = ¬ ((𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵))

• For example, how to infer the weights for a “NOT” neuron, i.e., a neuron that replicates
the functioning of a logical “NOT” operation.
• In this simple case, there are various weight configurations that will work

Machine Learning: NN Exercise

A ¬

1

W0=0.5

W1=-1

out

• Considering that:

𝐴 '𝐵 = ¬ ((𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵))

• Now, how to infer the weights for a “OR” neuron, i.e., a neuron that replicates the
functioning of a logical “OR” operation.
• Again, there are various weight configurations that will work:

Machine Learning: NN Example

B

⋁

1

W0=-0.5

W1=1

out

A

W2=1

• Considering that:

𝐴 '𝐵 = ¬ ((𝐴 ,𝐵) ⋁ (¬𝐴 ,¬𝐵))

• Next, in a similar way, if we want to infer the weights for a “AND” neuron, i.e., a neuron
that replicates the functioning of a logical “AND” operation.
• As in the previous cases, there are various weight configurations that will work:

Machine Learning: NN Example

B

⋀

1

W0=-0.5

W1=0.4

out

A

W2=0.4

• Considering that:

𝐴 "𝐵 = ¬ ((𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵))

• Design a multi-layer network, with the corresponding weights 𝜽, able to solve the
“XOR” problem.

Machine Learning: NN Exercise

A

B

⋁

⋀

¬

?

?

?

• Considering that:

𝐴 "𝐵 = ¬ ((𝐴 '𝐵) ⋁ (¬𝐴 '¬𝐵))

• Design a multi-layer network, with the corresponding weights 𝜽, able to solve the
“XOR” problem.

• This will be a network “specific” to reproduce this function.
• However, the big question remains: How to automatically obtain the 𝜽 values?

Machine Learning: NN Exercise

A

B

⋁

⋀
¬

¬

⋀

Neural Networks: Learning

• In case of multilayered networks, the closed-form equation for the whole
network, the cost function and the corresponding derivatives might not be
easy to obtain.

• Exercise:
• Obtain the function that describes the functioning of the following network,

considering that the transfer functions of all nodes.

W1

W2

W3

x1

x2

Backpropagation
W1

W2

W3

x1

x2

1

1

1

J(w) = #
/
∑𝐶𝑜𝑠𝑡(𝑁𝑁 𝜔, 𝑥 𝑖 , 𝑦 𝑖)

• Cost (NN(w, x(i)), y(i))= -log (NN(w, x(i))), if y(i)=1

-log (1 - NN(w, x(i))), if y(i)=0

• Therefore, as we did before for the logistic regression classifier, the
cost function is combined in a single function:

J(w) = − &
'
∑(y(i) log (NN(w, x(i))) + (1−y(i)) log (1 − NN(w,x(i)))

Backpropagation

Backpropagation

•Using the gradient descent (delta rule) learning
strategy previously described, it will be required to
obtain:

…and this is a tiny network...

Backpropagation and the Chain Rule
• “Backpropagation” is the short

name for "backward propagation
of errors”

• It is an algorithm for supervised
learning of multi-layer artificial
neural networks, based in
gradient descent

• The key concept is the chain
rule:
• δg/δx = δg/δf . δf/δx

• Calculates the gradient of the
error function with respect to
the neural network's weights;

• It is a generalization of the delta
rule for perceptrons to
multilayer feed-forward neural
networks.

• Forward Pass:
• Let p(i,j) denote the “inner product”

between the inputs and the weights of the
jth neuron of the ith layer of the network;

• Let s() denote the sigmoid transfer
function;

• Hence, the output of one neuron is given
by s(i,j)(p(i,j))

• We consider that at the input layer the
output is simply given by the network
inputs, i.e., s(p(0,*))=x

• p(1,*) = w(1,*) s(0,*)

• s(1,*) = s(p(1,*))
• p(2,*) = w(2,*) s(1,*)

• …

Backpropagation: Forward Pass

p(i,*) = w(i,*) s(i-1,*) s(i,*) = s(p(i,*))

• We start by obtaining the error at the
output layer e(last)

• Use this value to obtain the error at the
previous layer (e(last-1)) and so on...

• e(last,*) = s(last,*) – y
• e(last-1,*) = w(last-1,*)T . e(last) .* [s(p(last-1))]’
• Note that [s(p(last-1))]’= s(last-1) .*(1-s(last-1))

Backpropagation: Backward Pass

e(i,*) = w(i,*)T . e(i+1) .* [s(p(i))]’

• Having a learning set {(x(1), y(1)),… (x(n),y(n))}, and a NN with “L”
layers.

u(l,i,j)=0 //update factor for the lth layer, ith neuron, jth weight
For i=1..n

s(1)=x(i) //input layer
Perform forward propagation to obtain s(l), l=1,..L
Use y(i) to obtain ei

(L)

Obtain e(L-1),...,e(2)

u(l,i,j) = u(l,i,j) + s (l,j) ei
(l+1)

D(l,i,j) = 1/n u(l,i,j) + STEP w(l,i,j) for “non-bias” neurons
D(l,i,j) = 1/n u(l,i,j) for “bias” neurons

Backpropagation Algorithm

