ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proenca
hugomcp@di.ubi.pt, 2022/23

Linear Discriminants: Exercise

* Consider the following truth tables, corresponding to the classical “AND”,
“OR"” and “XOR” problems:

* Suppose we want to learn three logistic regression classifiers that
appropriatelly discriminate between the “0”|”1” classes

AND XOR
nn nn- nn-
0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

Linear Discriminants: Exercise

* As we previously saw, the logistic regression is only able to find hyperplanes
(straight lines, in 2D data) that separate the subspaces of each class, which
happens in the “AND/OR” problems.

* These are called linear discriminants

. AND g(hg(x)) = g(91x1 + 92X2 + 90)
. p .
h(x) >0 1
) =0 1+e™*
\ . .
h(x) <0 - 1+6_(91x1+ 0,x,+6,)
L
;(:) One appropriate “AND” solution could

be: (61, 92, 80) = (08, 0.8, -1 5)

Linear Discriminants: Exercise

* However, for the “XOR” problem, there is no possible configurations for 8 that
satisfy the requirements:

XOR

« XOR appears to be a very simple problem. However, Minksy and Papert (1969)
showed that this was a big problem for neural network architectures of the
1960s, known as perceptrons.

* The inefficiency of Perceptron networks to solve this problem caused the “NN

winter” (period up to the early 90s, when NN were almost abandoned by the ML
community)

Neural Networks

« Among the three classical approaches for machine learning (pattern
recognition) models, this kind of methods aims at replicate the way
the human brain works:

NEURON

|
: Dendrites {2 A
#- Axon Terminals (receivers)|-._ ’_\ Y
(tramsmitters) [‘ / !

Core

Schwann's
| Cells

{they make
the myelin)

Node of
Ranvler

/
Output

AXOH

(the conducting ~ Myelin Sheath
fiber) (insulating fatty layer that

speeds transmission)

T Inputs

EnchantedLearning.com

* In practice terms, this functioning model has remarkable similarities
to the way our previous models were defined:

* “Mixing” the values from a set of inputs, followed by one non-linear
activation function”.

Neural Networks

* A logistic regression classifier is defined by:

Inputs: X4, Xo,...

1
X)= ———F
fo(x) 1 + 6=(01x,+ 0,0, +6) .2

\ﬁ

Phase 1: /

Convolution Phase 2: Non-linearity
between x and 6

* A Rosenblatt’s perceptron\is defined as:

Inputs Weights Net input Activation
function function

Neural Networks: MLP Architecture

* The key concept of the most classical kind of neural networks (feed-
forward) is to define multiple layers, in which neurons of one layer
receive the input of all neurons in the previous layer.

* These are called neurons in hidden layers
* Neurons in the first layer receive the x input
* They are called neurons in the input layer

* Neurons in the last layer provide the result of the model
* They are called neureris in the output layer

inputs # classes

inputs /2 2 # inputs * 2

Machine Learning: Python MLP

* Let’s start by the easiest part:

* How can | create one “Multi-Layer Perceptron” (MLP) network in Python and
apply it to my problem?

* Step 1: Import the corresponding library:

from sklearn.neural _network import MLPClassifier

» Step 2: Have a X data set with shape (n, 2) and y with shape (n,)
* In practice, X will be a “list of lists” and y will be a list.

X=[[0.,0.],1[1.,1.0]
y =10, 1]
 Step 3: Create the network:
clf = MLPClassifier(solver='Ibfgs’, alpha=1e-5,
hidden_layer sizes=(5, 2), random_state=1)
* Step 4: Start learning:

clf.fit(X, y)
* Step 5: Use it, to predict on new instances:

clf.predict([[2., 2.], [-1., -2.]])

Neural Networks

* When designing a neural network, there are different parameterizations that
have to be chosen, with might determine the system effectiveness:

* The number of neurons in the input/output layers result directly of the problem
considered:

1 001
* Input Layer = Dimension of the Feature Space 2 010
* Output Layer = Number of classes (hot encoded)_______—" 3 100

* In the hidden layers, the number of neurons can vary:
* A too short number might not be enough to model the decision surface desired;
* A too high value might lead to overfitting

* In practice, values between half and the double of the number of neurons in the
input layer are tested

 Regarding the number of hidden layers:
Networks with one layer have the ability to
approximate any linear decision surface
Networks with two layers approximate any
continuous decision surface

Networks with three layers approximate
decision surface

Machine Learning: NN Exercise

A ®B=ﬁ((A /\B)V (=4 /\ﬁB))

* For example, how to infer the weights for a “NOT” neuron, i.e., a neuron that replicates
the functioning of a logical “NOT” operation.

* In this simple case, there are various weight configurations that will work

1

* Considering that:

—— W0=O.5

A i > > out

Machine Learning: NN Example

A ®B=ﬁ((A /\B)V (=4 /\ﬂB))

* Now, how to infer the weights for a “OR” neuron, i.e., a neuron that replicates the
functioning of a logical “OR” operation.

* Again, there are various weight configurations that will work:

* Considering that:

1

W,=-0.5

v

out

Machine Learning: NN Example

A ®B=ﬁ((A /\B)V (=4 /\ﬁB))

* Next, in a similar way, if we want to infer the weights for a “AND” neuron, i.e., a neuron
that replicates the functioning of a logical “AND” operation.

* As in the previous cases, there are various weight configurations that will work:

1

* Considering that:

—— W0='O.5

A

N\

W,=0.4

v

out

Machine Learning: NN Exercise

A ®B=ﬂ((/l /\B)V (=4 /\ﬂB))

* Design a multi-layer network, with the corresponding weights 0, able to solve the
“XOR” problem.

* Considering that:

Machine Learning: NN Exercise

* Considering that:

A ®B=ﬂ((/l /\B)V (=4 /\ﬂB))

* Design a multi-layer network, with the corresponding weights 0, able to solve the
“XOR” problem.

e This will be a network “specific” to reproduce this function.

 However, the big question remains: How to automatically obtain the 0 values?

Neural Networks: Learning

* |n case of multilayered networks, the closed-form equation for the whole
network, the cost function and the corresponding derivatives might not be
easy to obtain.

* Exercise:

e Obtain the function that describes the functioning of the following network,
considering that the transfer functions of all nodes.

Backpropagation

1

1 + e~ W1,0—W1,1%T1—W1,2%2

1
tg =

o 1 + e~ W2,0~W2,1T1—W2,2T2

t1 =

1

[2 e—W3,0—ws,1t1—wW2,2t2

NN =

1

1 . 1
14e~ W1,07W)1,1%) ~W)] 272 Ws,2 14e W2,07W2,1¥F17W2,2%2

—W3,0—W3,1

Backpropagation

J(w) = % D Cost(NN(a), x(i), y(i)))

* Cost (NN(w, x1), y()= [-log (NN(w, x1)), if yi=1

L -log (1 - NN(w, x)), if y()=0

* Therefore, as we did before for the logistic regression classifier, the
cost function is combined in a single function:

J(w) = — — %,y log (NN(w, xV) + (1-y log (1 - NN(w,x)

Backpropagation

* Using the gradient descent (delta rule) learning

strategy previously described, it will be required to
obtain:

o . o 3
8’(1)1,0 . a’wz,o & a'wB,O .
2 =7 o ’ —7
8’(1)1,1 . a’wz,l o awB,l .
b =7 o s =7
8’(1)1,2 . awz,z - a'w3,2 .

...and this is a tiny network...

Backpropagation and the Chain Rule

* “Backpropagation” is the short

name for "backward propagation “local gradient’
of errors” S % J

0(9
& W

* It is an algorithm for supervised

learning of multi-layer artificial
neural networks, based in
gradient descent 1

2% -
* The key concept is the chain / o gradients
rule:

« 8g/6x = 6g/6f . 6f/6x

 Calculates the gradient of the J= 9(f ()
error function with respect to Ny
the neural network's weights; /

* |t is a generalization of the delta -~
rule for perceptrons to |,
multilayer feed-forward neural g

networks. ﬁ\ £

oL
0z

<]
&
&l

Backpropagation: Forward Pass

 Forward Pass:

e Let plii) denote the “inner product”
between the inputs and the weights of the
jt" neuron of the it layer of the network;

 Let s() denote the sigmoid transfer
function;

* Hence, the output of one neuron is given
by S('J)(p(':]))

* We consider that at the input layer the
output is simply given by the network
inputs, i.e., s(p®")=x

e piL) = WL 50%)

. 5(1'*) = S(p(lr*))

e p2Y) = w2 5(1.%)

Backpropagation: Backward Pass

* We start by obtaining the error at the
output layer ellast)

e Use this value to obtain the error at the
previous layer (e(2st1)) and so on...

° e(Iast,*) - S(Iast,*)_y

° e(Iast-l,*) - W(Iast-l,*)T - e(Iast) * [S(p(last-l))]'

e Note that [S(p(last-l))]l= S.(Iast—l) .*(1_S(Iast—1))

1 do(x)
l +e d(x)

= 0(x) - (1 = o(x))

o(x) =

Backpropagation Algorithm

* Having a learning set {(x), y1),... (x(™ y(™} and a NN with “L”
layers.

ulli)=0 //update factor for the 1" layer, it" neuron, j*" weight
For i=1..n

s(1)=x (i) //input layer

Perform forward propagation to obtain s, I=1,..L

Use ylto obtain eV

Obtain el ... e(2)

D) =1 /n ulbii) + STEP wilii) for “non-bias” neuron
D) = 1/n ulbid) for “bias” neurons

