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Pizza Franchising

* Pizza is a $45.1 billion industry in the United States.

e Suppose that one of the most well-known Pizza
chain is interested in perceiving the relationship
between the average annual revenue of its local
stores and the corresponding startup cost.

* This data will be of maximum interest to define the
franchise fee for future openings
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Independent

Pizza Franchising Variable

* It appears that there is a direct relation betwe
the annual income of one store, and the cost to
start the store.

* On average, larger stores sell more Pizza, but also they
are more costly to set up:

 Furniture, taxes, employees...

* In this problem we have 36 examples, typically
designated as “instances”

* N=36
* The independent variables are typically referred to as
“features”
* Are the input variables (x)
* The number of features determines the dimensionality
of the problem
. d=1
* The dependent variable is typically designated as the
output, or “target”

* The target distribution determines the type of supervised
machine learning problem: classification or regression (in
this case)
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Machine Learning I: Model Representation

» Suppose that the experts/administration/managers of the Pizza chain
think that it might exist a roughly linear relationship between the annual
revenue of one store and its startup cost:

* This kind of “expertise” is always valuable to machine learning, as it simplifies the
range of models that we can attempt to create

* Also, one of the Machine Learning’s foundation is the Occam’s razor:

* Known as the law of parsimony

* Is a problem-solving principle that essentially states that "simpler solutions are
more likely to be correct than complex ones".

* When comparing competing hypotheses to solve a problem, one should select the
solution with the fewest assumptions, i.e., the simplest

* The idea is attributed to English Franciscan friar William of Ockham
(1287-1347), a scholastic philosopher and theologian.



Machine Learning I: Model Representation

e Linear Model

* According to Occam’s razor (and the administration also!), in the Pizza
Franchising, we should start by consider a purely linear model to “describe the
pattern” (i.e., describe the relationship) between the independent(s) and the
dependent variables

* Formally, our model (hypothesis) is that:

he(x) = 0,.x+ 0O,

* The task of Machine Learning is to find us the best possible model, i.e.,
the one that optimally expresses the relationship between the
independents and dependent variables

* This essentially involves to find the optimal (le 82) values
* After all, we end up with an optimization problem in the R? space




Machine Learning II: Cost Function

* Clearly, there will be models that are better than others:
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Machine Learning II: Cost Function

* The Cost Function should distinguish between two alternate

hypotheses, i.e., it should be used to favor one hypothesis instead of
other

* In practice, the cost function receives the parameters of one model and
returns “how good/bad the model is”
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Machine Learning II: Cost Function

* The Cost Function is typically expressed as J()

* The cost function receives as input, the parameters of the model
* In this case, it receives two parameters: (64,0,

* Hence, the cost function is formally J: RZ 2 R

1 i i
J(Hl, 82) — N ]iv=1(h9 (x( )) o y( ))2
Why ?7? /

* In practice, this function sums up all the Euclidean distances between
the targets (ground truth) in our dataset and the values given by the
model at each point

e Clearly, if one model is optimal hy (x() == y(i) and J=0

* At the (almost) end of this story, Machine Learning is about
minimizing J()



Machine Learning Ill: Optimization

* “Computers are so fast these days, what if we simply generate millions of
different hypotheses and pick the best one?”

* This is the “brute-force” approach, that (only) in problems of reduced
dimensionality might lead to reasonable results.
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Machine Learning Ill: Optimization

* How to obtain the best possible model?
* Find the (64, 8,) parameters that minimize J()

* Formally:
0"=arg ming J(64, 6,)

* In practice, this is an optimization problem in 2D space, that
requires to find the derivative of J() with respect to 6.

 Recall from single variable calculus that (assuming a function f is
diferentiable) the minimum x*of f has the property that the

derivative df/dx is zero at x=x*
* An analogous result holds in the multivariate case:

/
f_J(g) / 91J(0) Partial

Derivatives




Machine Learning Optimization: Closed-Form

* Minimizing J() is equivalent to minimize:

N
, . —[x1 1
2(91 x(l) + 02 — y(l))z 2 lxz 1]
=1
e Using matrix algebra, we know that Bias!!

N (6:xO+ 6, - yD)2 = (X0 —y)T (X0 —y)

* So, we are interested in minimizing the above expression,

I.e., [
e (X0 -y)' (X0 -y)=0

* Applying the distributive property. Also: ~ (AB)" = ATBT
rscalar, r'=r ff—e XT0TX0—- X"0Ty - yTX0 +y'y)=0
y'X@ is scalar.

y'X0 = (y'X0)" = yX70"



Machine Learning Optimization: Closed-Form

Matrix Derivatives:

e Simplifying:
f fax
5 XT07X60 — 2« X707y +yTy =0 [x
XX
J&X'X) 2%
[X
* Applying the derivatives rules: [(XTAX)
=AX + AT X

[Xx
2 XTX0 -2+ XTy=0

X'X0 - X'y =0
X7X0 = XTy
(X'X) 1X'X)0 =(X'X) X'y
* Solving with respect to 0O

0*=(X" X)Xy



Machine Learning Optimization: Closed-Form

* The closed-form solution should be preferred for “smaller” datasets
 When computing the matrix inverse is not a concern.

* For very large datasets, obtaining (X"X)! can be extremely costly
e X has N x (d+1) dimensions

* Also, there are cases where the (X"X)! not exists
* e.g., the matrix is non-invertible (singular) in case of perfect multicollinearity
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Machine Learning Optimization: Partial Derivatives

* As we have seen, the goal is to obtain the @ parameterization that
minimizes J():

1 [ i
50,6,) = =51, (0,20 + 6, - yO):

° (a_l_b)/:a/_l_b/

/
/6,

1 i i i
J(0) =212 (6:x0 + 6, —y©) x©

’

That’s why!

S 1 l_ l_
fOZJ(H) — 5\,2{\212 (le() + 02 . y( ))




Machine Learning Optimization: Gradient Descent

* In most practical cases, the Closed-Form is hard to obtain, and the
solution is to use the “Gradient Descent” optimization version:

* Algorithm:
1. Start with some random 0 configuration. 8(°
2. Change iteratively (and slightly) 8 , to reduce J(0)
1. 9tN= gl A ff—eJ(B)
3. (Hopefully) end up in @ minimum

The rationale is to iteratively
move in the steepest descend

direction, in order to reach the -y
(eventually local) minimum B
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Machine Learning Optimization: Gradient Descent

By =6y — A= z L (6,29 + 8, — y©O) xO

6, =60, — A= z L (6,29 + 6, — yO)

Main
assumption in
Gradient 0.
Descent:
Convexity! i




Machine Learning Optimization: Gradient Descent

* Learning Rate
* Too large values lead to divergence

* The optimal value of J() is not achieved, i.e., the best @ configuration is not found
* Too small values slow down the learning process.

* Remark
* The update of parameters should be done simultaneously:

/ J

¢ 9,t1)=9,0-A felJ(B) e auxs= 6,M-A felJ(B)
J J

o 92(t+1)= ez(t)_A fezJ(B) °* auxp,= gz(t)-A fBZJ(H)

« 6,t)=aux,

. 92(t+1 )= aux,



Gradient Descent Exercise

* Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:

e Start with 91, 02 = (0,2)

* Use A=0.1
1 2
1.5 2.2 g
1.8 2.8 — 1
2 35 J: 1.7117




Gradient Descent Exercise

* Consider the following tiny dataset. Use the gradient descent algorithm
to obtain the optimal linear regression hypothesis:
* Start with 84, 6,=(0,2)
e Use A=1
e Use A=0.1
e Use A=0.5

. A=1

It1J:3.7677 It 2 J: 9.4693 It 8 J: 2798.6514

Diverged!!



Gradient Descent Exercise

* A=0.1
X
X
It1J:1.323 It Sz) J: 0.49594

It 1000 J: 0.48264

A

Too slow...



Gradient Descent Exercise

* A=0.5

It1J:1.46861 It 101 J: 0.49501

It 1000 J: 0.48238

Better...



Gradient Descent Exercise

e A=1vs. A=0.1vs. A=0.5
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* Stop Criteria:
e “T” iterations
* While it stops to improv (i.e., Jt1) - Jll < g)



Students Performance

* Suppose that we are interested in predicting the
approval rate of a class, based on the students
marks in the first practical work.

* Typically, students that get good marks in the first
work, got approved at the course.

e Students with very low marks at the first work tend
to fail in the final examination.

* Hence, our machine learning model is expected to
predict a binary outcome (1: pass vs. 0: fail)
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Students Performance

* In this kind of problems, the dependent variable assumes a reduced set of labels:
* Emails: “is this a spam or no spam email”? y € {0,1}
* Medical diagnosis: “is the patient ill or healthy” y € {0, 1}
* How will be the weather tomorrow?: “will it be sunny, cloudy or rainy”? y € {0, 1, 2}

* In this case, a best fitting line is not enough
* Even though this line will be the basis of our classification model

/hQ(X) —_ 91.x + 62
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Logistic Regression: Classification

* The obvious idea will be to define a threshold at the classifier output

hg(x), that binarizes the system response:

* Typically, “0.5” would be the choice, for “equal classification risks”

* |t might be more dangerous to predict erroneously one class instead of other one.

* For example, in a machine learning-based systems for medical diagnosis, classes have different
risk.

* Predict a “malignant cancer” on a “healthy” subject represents a unnecessary concern for the
patient and would probably imply to perform additional (an unnecessary) exams.

* However, provide a “healthy” response for a patient suffering of a “malignant cancer” might
represent the patient dead sentence.

. _[0,hg(x) <O
fo) = {1,h2(x) >0

* Hence, the response of our classification system can be seen as a
composition of two functions: f = go h

° ITII I'S /Igll after Ilhll
* We have seen “h” before, but what is “g”?



Logistic Regression: Classification

 Essentially, “g” performs a binarization of its input, and produces ”1”
responses when the input is higher than some threshold, and “0” in the
remaining cases.
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Logistic Regression: Classification

* Assuming the step function as “g”, and f = g o h, obtaining the
automatic optimal parameterization of “f” with respect to our data (i.e.,
machine learning) yields two problems:

* Problem 1: “g” is not differentiable
* |t has not a continuous derivative at a single point
* Problem 2: in every other points “g” has derivative 0

* The solution is to use a function is close to the step function, without
suffering of the above described problems.

e Sigmoid Function

1 T T M ur

o
o]
T

o
o
[
<

Approval
/

o
=N
I
/
Q
~
=
—
Il

02} ~ s

0 2 4 6 8 10 12 14 16 18 20
Work Mark



Logistic Regression: Classification

* Using this composition of functions, our classification system is given
by:

fg(X) — 1 + ehe(x)

* Or:
1
fe(x) o 1+€91x+ 92
* The remaining problema is the same as in linear regression:
* How to find the @ optimal parameterization?

» According to the basic principles of Machine Learning, up to now,
we’ve only defined our model.
* It is also required to define a “Cost Function” (Loss function) that measures
how good it is na hypothesis.
* And a systematic optimization process




Logistic Regression: Cost Function

* As previously, the cost function will measure how well the model
responses (f4(x)) resemble the “ground-truth” (y)

* Intuitively, in cases where the system is supposed to output a “1” and the model
predicts a “1”, the cost should be “0”.

e The same thing should hold for “0” responses.
* However, the cost (loss) should grow in cases when the system response is far
from the ground-truth.
e The log() function is a good choice for representing the desired costs (losses)

* |t varies non-linearly with respect to the distance between the desired and actual responses
* Attempts to avoid “ridiculously wrong responses”.

0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 \

~~~ —log(fe(x)) —log(1 — fy(x))



Logistic Regression: Cost Function

* Hence, the cost function for one instance is given by:

—log(fy(x)), y =1
 Cost(fola).y) = {— log(1 = f4(x)), y =0

* And the cost function for the whole dataset is given by the sum of
the individual costs:

J(8) =TI, (Cost(fo(x), y'?))

* Considering that y can only assume 2 values (0 or 1), we have:

J(0) = -2, yOlog(folx™)) + (1 — y) log(1 — fo(x))



Logistic Regression: Optimization

* The optimization can be done exactly as in the linear regression case.

* Using the gradient descent strategy, it is required to find the derivatives of
the cost function J() with respect to the @ parameters:

/

5J(6)

* In matrix form, we have:

_ T ()= [0 177
« fo(x) = 1+el—9’x 6 [605 61] X [X ’ 1]
* log(fe(x)) = log(r:_f;)

__ log(1+el_0 x)

1+e
S

*log(1 = fe(x)) = —6x — log )



Logistic Regression: Optimization

* Plugging the two simplified expressions in the original cost function, we
obtain:

J(9) = —%Z?’zl —yOlog(1+ e70%) + (1 — y) (—0x — log(1 + e~%))

* Which can be simplified to:

J(0) = - T, yOox — log(1+e~%%)
* Now, as
J e — O ] —0x .
o7 0% = y00x g loa(1+eo) = TG = xifo)
 We have:

5J0) = T, 21, (o) = yO)



Logistic Regression: Multi-class

* Up to now, we’ve only considering binary classification problems.

 When the number of classes (c) is higher than 2, the typical approach is to
train “c” classifiers

. DO N . : . .
* In each classifier f, *"x), instances of the it class are considered positive
examples, whereas instances of al the remaining classes are treated as negative
instances.

* During classification, we pick the class that produces the maximum output
response, i.e.:
max; f5 ' %)
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