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• Pizza is a $45.1 billion industry in the United States.  
• Suppose that one of the most well-known Pizza 

chain is interested in perceiving the relationship 
between the average annual  revenue of its local 
stores and the corresponding startup cost.
• This data will be of maximum interest to define the 

franchise fee for future openings

Pizza Franchising



• It appears that there is a direct relation between 
the annual income of one store, and the cost to 
start the store.

• On average, larger stores sell more Pizza, but also they 
are more costly to set up:

• Furniture, taxes, employees…

Pizza Franchising

Dependent 
Variable

Independent 
Variable

• In this problem we have 36 examples, typically 
designated as “instances”
• N=36

• The independent variables are typically referred to as 
“features” 
• Are the input variables (x)

• The number of features determines the dimensionality 
of the problem
• d=1

• The dependent variable is typically designated as the 
output, or “target”
• The target distribution determines the type of supervised 

machine learning problem: classification or regression (in 
this case)



• Suppose that the experts/administration/managers of the Pizza chain 
think that it might exist a roughly linear relationship between the annual 
revenue of one store and its startup cost:

• This kind of “expertise” is always valuable to machine learning, as it simplifies the 
range of models that we can attempt to create

• Also, one of the Machine Learning’s foundation is the Occam’s razor:  
• Known as the law of parsimony

• Is a problem-solving principle that essentially states that "simpler solutions are 
more likely to be correct than complex ones". 

• When comparing competing hypotheses to solve a problem, one should select the 
solution with the fewest assumptions, i.e., the simplest

• The idea is attributed to English Franciscan friar William of Ockham 
(1287–1347), a scholastic philosopher and theologian. 

Machine Learning I: Model Representation



• Linear Model
• According to Occam’s razor (and the administration also!), in the Pizza 

Franchising, we should start by consider a purely linear model to “describe the 
pattern” (i.e., describe the relationship) between the independent(s) and the 
dependent  variables

• Formally, our model (hypothesis) is that:   

• The task of Machine Learning is to find us the best possible model, i.e., 
the one that optimally expresses the relationship between the 
independents and dependent variables
• This essentially involves to find the optimal                          values
• After all, we end up with  an optimization problem in the R2 space

Machine Learning I: Model Representation

ℎ𝜃 𝑥 = 𝜃1. 𝑥 + 𝜃2

(𝜃1, 𝜃2)



• Clearly, there will be models that are better than others:

Machine Learning II: Cost Function

Bad. Terrible!! Good…

…but “the best”?

(𝜃1 = 0, 𝜃2 = 1600) (𝜃1 = −1.15, 𝜃2 = 1005) (𝜃1 = 0.82, 𝜃2 = 446)



• The Cost Function should distinguish between two alternate 
hypotheses, i.e., it should be used to favor one hypothesis instead of 
other
• In practice, the cost function receives the parameters of one model and 

returns “how good/bad the model is” 

Machine Learning II: Cost Function

• In this problem, we are interested 
in models that are as close as 
possible to the data points

• I.e., the “optimal model” will 
overlap exactly all the points we 
have in the dataset
• Impossible, for the type of 

model chosen



• The Cost Function is typically expressed as J()
• The cost function receives as input, the parameters of the model

• In this case, it receives two parameters:
• Hence, the cost function is formally J: R2 ! R

• In practice, this function sums up all the Euclidean distances between
the targets (ground truth) in our dataset and the values given by the
model at each point

• Clearly, if one model is optimal ℎ𝜃 𝑥 𝑖 == 𝑦 𝑖 and J=0
• At the (almost) end of this story, Machine Learning is about

minimizing J()

Machine Learning II: Cost Function

(𝜃1, 𝜃2)

J(𝜃1, 𝜃2) =
!
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2

Why ??



• “Computers are so fast these days, what if we simply generate millions of 
different hypotheses and pick the best one?”

• This is the “brute-force” approach, that (only) in problems of reduced 
dimensionality might  lead to reasonable results.

Machine Learning III: Optimization

• The plot given at right 
compares the best model 
obtained “by chance” 
(dependent variable), with 
respect to the numbers of 
models randomly created 
(independent variable).

• In some cases, the best 
random model was “close” to 
the optimal model:
• Cost 645.05
• 𝜃1, 𝜃2 = (0.376, 867.6)



• How to obtain the best possible model?
• Find the (𝜃1, 𝜃2) parameters that minimize J()
• Formally:

𝜽*= arg min𝜽 J(𝜃1, 𝜃2)
• In practice, this is an optimization problem in 2D space, that 

requires to find the derivative of J() with respect to 𝜽.
• Recall from single variable calculus that (assuming a func@on f is

diferen@able) the minimum x∗of f has the property that the
deriva@ve df/dx is zero at x=x∗

• An analogous result holds in the multivariate case:

Machine Learning III: Optimization

∫
∫ 𝜽

J(𝜽) Partial 
Derivatives

∫
∫ +𝟐

J(𝜽)

∫
∫ +%

J(𝜽)



Machine Learning Optimization: Closed-Form
• Minimizing J() is equivalent to minimize:

• Using matrix algebra, we know that

• So, we are interested in minimizing the above expression, 
i.e.,

• Applying the distributive property. Also: 

0
&'%

(

𝜃1𝑥
𝑖 + 𝜃2 − 𝑦

𝑖 2

∑&'%( 𝜃1𝑥
𝑖 + 𝜃2 − 𝑦

𝑖 2 = (𝑿𝜽 – y)T (𝑿𝜽 – y)

∫

∫ 𝜽
(𝑿𝜽 – y)T (𝑿𝜽 – y) = 0

∫

∫ 𝜽
𝑿𝑇𝜽𝑇𝑿𝜽– 𝑿𝑇𝜽𝑇y - y𝑇𝑿𝜽 + yTy) = 0

(AB)T = 𝑨𝑇𝑩𝑇

r scalar, rT = r
y𝑇𝑿𝜽 is scalar. 

y𝑇𝑿𝜽 = (y𝑇𝑿𝜽)𝑇 = y𝑿𝑇𝜽𝑇

X = 𝒙𝟏 𝟏
𝒙𝟐 𝟏

Bias!!



Machine Learning Optimization: Closed-Form
• Simplifying:

• Applying the derivatives rules:

• Solving with respect to 𝜽 :

∫

∫ 𝜽
𝑿𝑇𝜽𝑇𝑿𝜽 – 2 ∗ 𝑿𝑇𝜽𝑇y + yTy = 0

2 𝑿𝑇𝑿𝜽 – 2 ∗ 𝑿𝑇y = 0

𝜽* = (XT X)-1 XT y

𝑿𝑇𝑿𝜽 – 𝑿𝑇y = 0
𝑿𝑇𝑿𝜽 =  𝑿𝑇y

𝑿𝑇𝑿 − 𝟏(𝑿𝑇𝑿)𝜽 = 𝑿𝑇𝑿 − 𝟏𝑿𝑇y

∫(𝑨𝑿)
∫𝑿

= 𝑨𝑇

∫(𝑿𝑇𝑿)
∫𝑿

= 𝟐𝑿

∫(𝑿𝑇𝑨𝑿)
∫𝑿

= 𝑨𝑿 + 𝑨𝑻 𝑿

Matrix Derivatives:



Machine Learning Optimization: Closed-Form

• The closed-form solution should be preferred for “smaller” datasets
• When computing the matrix inverse is not a concern. 

• For very large datasets, obtaining (XTX)-1 can be extremely costly 
• X has N x (d+1) dimensions

• Also, there are cases where the (XTX)-1 not exists 
• e.g., the matrix is non-invertible (singular) in case of perfect multicollinearity

If succeeded, the Closed-
Form enables us to 
obtain the optimal 
configuration of the 
hypothesis 𝜃* in a single 
step  



• As we have seen, the goal is to obtain the 𝜽 parameterization that 
minimizes J():

• (a+b)’ = a’ + b’

Machine Learning Optimization: Partial Derivatives

J(𝜃1, 𝜃2) =
!
"#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 2

∫
∫ +%

J(𝜽) = !
"#
∑$%!# 2 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 𝑥 𝑖

That’s why!

∫
∫ ++

J(𝜽) = !
"#
∑$%!# 2 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖



• In most practical cases, the Closed-Form is hard to obtain, and the 
solution is to use the “Gradient Descent” optimization version:
• Algorithm:

1. Start with some random 𝜽 configuration. 𝜽(0)

2. Change iteratively (and slightly) 𝜽 , to reduce J(𝜽)
1. 𝜽(t+1)= 𝜽(t)-∆

3. (Hopefully) end up in a minimum

Machine Learning Optimization: Gradient Descent

∫
∫ 𝜽

J(𝜽)

The rationale is to iteratively 
move in the steepest descend 
direction, in order to reach the 
(eventually local) minimum

x
x

xx
xx



Machine Learning Optimization: Gradient Descent

𝜃0 = 𝜃0 − ∆
!
#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖 𝑥 𝑖

𝜃1 = 𝜃1 − ∆
!
#
∑$%!# 𝜃1𝑥

𝑖 + 𝜃2− 𝑦
𝑖

x
x

Main 
assumption in 

Gradient 
Descent: 

Convexity!



Machine Learning Optimization: Gradient Descent

∫
∫ 𝜽𝟏

J(𝜽)

∫
∫ 𝜽𝟐

J(𝜽)

∫
∫ 𝜽𝟏

J(𝜽)

∫
∫ 𝜽𝟐

J(𝜽)



• Consider the following tiny dataset. Use the gradient descent algorithm 
to obtain the optimal linear regression hypothesis:

• Start with 𝜽𝟏, 𝜽𝟐= (0,2)
• Use ∆=0.1

Gradient Descent Exercise

X Y

1 2

1.5 2.2

1.8 2.8

2 3.5



• Consider the following tiny dataset. Use the gradient descent algorithm 
to obtain the optimal linear regression hypothesis:

• Start with 𝜽𝟏, 𝜽𝟐= (0,2)
• Use ∆=1
• Use ∆=0.1
• Use ∆=0.5

• ∆=1

Gradient Descent Exercise

Diverged!!



• ∆=0.1

Gradient Descent Exercise

Too slow…



• ∆=0.5

Gradient Descent Exercise

Better…



• ∆=1 vs. ∆=0.1 vs. ∆=0.5

• Stop Criteria:
• “T” iterations
• While it stops to improv (i.e., 𝑱(t+1) - 𝑱(t) < 𝜀 )

Gradient Descent Exercise

Acceptable solution (∆= 0.1)Acceptable solution (∆= 0.5)



• Suppose that we are interested in predicting the 
approval rate of a class, based on the students 
marks in the first practical work. 
• Typically, students that get good marks in the first 

work, got approved at the course.
• Students with very low marks at the first work tend 

to fail in the final examination.
• Hence, our machine learning model is expected to 

predict a binary outcome (1: pass vs. 0: fail)

Students Performance



• In this kind of problems, the dependent variable assumes a reduced set of labels:
• Emails: “is this a spam or no spam email”?  𝑦 ∈ {0, 1}
• Medical diagnosis: “is the patient ill or healthy” 𝑦 ∈ {0, 1}
• How will be the weather tomorrow?: “will it be sunny, cloudy or rainy”? 𝑦 ∈ 0, 1, 2

• In this case, a best fitting line is not enough
• Even though this line will be the basis of our classification model

Students Performance

ℎ𝜃 𝑥 = 𝜃1. 𝑥 + 𝜃2



• The obvious idea will be to define a threshold at the classifier output 
ℎ𝜃 𝑥 , that binarizes the system response:

• Typically, “0.5” would be the choice, for “equal classification risks”
• It might be more dangerous to predict erroneously one class instead of other one.
• For example, in a machine learning-based systems for medical diagnosis, classes have different 

risk.
• Predict a “malignant cancer” on a “healthy” subject represents a unnecessary concern for the 

patient and would probably imply to perform additional (an unnecessary) exams.
• However, provide a “healthy” response for a patient suffering of a “malignant cancer” might 

represent the patient dead sentence.

• 𝑓 𝑥 = <0, ℎ𝜃 𝑥 < 0
1, ℎ𝜃 𝑥 ≥ 0

• Hence, the response of our classification system can be seen as a 
composition of two functions: 𝑓 = 𝑔 𝜊 ℎ

• “f” is “g” after “h”

• We have seen “h” before, but what is “g”?

Logistic Regression: Classification



• Essentially, “g” performs a binarization of its input, and produces ”1” 
responses when the input is higher than some threshold, and “0” in the 
remaining cases.
• Step function:

Logistic Regression: Classification

False negatives

False positive

True positives

True negatives



• Assuming the step function as “g”, and 𝑓 = 𝑔 𝜊 ℎ, obtaining the 
automatic optimal parameterization of “f” with respect to our data (i.e., 
machine learning) yields two problems:

• Problem 1: “g” is not differentiable
• It has not a continuous derivative at a single point

• Problem 2: in every other points “g” has derivative 0

• The solution is to use a function is close to the step function, without 
suffering of the above described problems. 

• Sigmoid Function

Logistic Regression: Classification

𝑔 𝑥 =
1

1 + 𝑒,-



• Using this composition of functions, our classification system is given
by:

𝑓𝜽 𝑥 =
1

1 + 𝑒(#(*)
• Or:

𝑓𝜽 𝑥 = "
"#$)$*+ )%

• The remaining problema is the same as in linear regression:
• How to find the 𝜽 optimal parameterization?

• According to the basic principles of Machine Learning, up to now, 
we’ve only defined our model. 

• It is also required to define a “Cost Function” (Loss function) that measures
how good it is na hypothesis.

• And a systematic optimization process

Logistic Regression: Classification



• As previously, the cost function will measure how well the model 
responses (𝑓𝜽 𝑥 ) resemble the “ground-truth” (y)

• Intuitively,  in cases where the system is supposed to output a “1” and the model 
predicts a “1”, the cost should be “0”.

• The same thing should hold for “0” responses.
• However, the cost (loss) should grow in cases when the system response is far 

from the ground-truth.
• The log() function is a good choice for representing the desired costs (losses)
• It varies non-linearly with respect to the distance between the desired and actual responses

• Attempts to avoid “ridiculously wrong responses”.  

Logistic Regression: Cost Function

𝑦 = 1 𝑦 = 0

−log(𝑓𝜃 𝑥 ) −log(1 − 𝑓𝜃 𝑥 )



• Hence, the cost function for one instance is given by:

• 𝐶𝑜𝑠𝑡 𝑓𝜃 𝑥 , 𝑦 = F
−log(𝑓𝜃 𝑥 ) , 𝑦 = 1

− log 1 − 𝑓𝜃 𝑥 , 𝑦 = 0

• And the cost function for the whole dataset is given by the sum of 
the individual costs:

• Considering that y can only assume 2 values (0 or 1), we have:

Logistic Regression: Cost Function

J(𝜽) = !
#
∑$%!# 𝐶𝑜𝑠𝑡 𝑓𝜃 𝑥

(𝑖) , 𝑦(𝑖)

J(𝜽) = − +
,
∑-.+, 𝑦 𝑖 log 𝒇𝜽 𝑥

(𝑖) + (1 − 𝑦 𝑖 ) log 1 − 𝑓𝜽 𝑥
(𝑖)



Logistic Regression: Optimization

• The optimization can be done exactly as in the linear regression case.
• Using the gradient descent strategy, it is required to find the derivatives of 

the cost function J() with respect to the 𝜽 parameters: 

• In matrix form, we have:

• f𝜽 𝒙 = "
"#$,𝜽

&𝒙

• log(𝑓𝜽 𝒙 ) = log( "
"#$,𝜽

&𝒙)

= − log("#$
,𝜽&𝒙

"
)

• log(1 − 𝑓𝜽 𝒙 ) = −θ𝐱 − log("#$
,𝜽&𝒙

"
)

∫
∫ 𝜽

J(𝜽)

𝜽= [𝜃0, 𝜃1]T 𝒙(i)= [𝑥(i), 1]T



Logistic Regression: Optimization

• Plugging the two simplified expressions in the original cost function, we 
obtain:

• Which can be simplified to:

• Now, as

• We have:

J(𝜽) = − ,
-
∑./,- − 𝑦 𝑖 log 1 + 𝑒0𝜽𝒙 + (1 − 𝑦 𝑖 ) (−𝜃𝑥 − log 1 + 𝑒0𝜽𝒙 )

J(𝜃) = − ,
-
∑./,- 𝑦 𝑖 𝜃𝑥 − log 1 + 𝑒0𝜽𝒙

∫

∫ /0
𝑦 𝑖 𝜃𝑥 = 𝑦 𝑖 𝜃𝑥 ∫

∫ 𝜃𝑗
log 1 + 𝑒𝜽𝒙 =

𝑥𝑗𝑒,/-

1 + 𝑒𝜽𝒙
= 𝑥0&𝑓/(𝑥)

∫

∫ /0
𝐽(𝜽) = ∑&'%( 𝑥𝑖𝑗 𝑓𝜃 𝑥

𝑖 − 𝑦 𝑖



Logistic Regression: Multi-class

• Up to now, we’ve only considering binary classification problems.
• When the number of classes (c) is higher than 2, the typical approach is to 

train “c” classifiers
• In each classifier 𝑓𝜃

(𝑖)(𝑥), instances of the ith class are considered positive 
examples, whereas instances of al the remaining classes are treated as negative 
instances.

• During classification, we pick the class that produces the maximum output 
response, i.e.:

maxi 𝑓𝜃
(𝑖)(𝑥)

𝑓𝜃
(0)(𝑥) 𝑓𝜃

(1)(𝑥) 𝑓𝜃
(2)(𝑥)


