
ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2022/23

Local Search/Optimization
¨ Up to now, we’ve seen that many different problems can be formulated as

Artificial Intelligence search problems
¨ We have typically… 1) a huge number of states (our state space); 2) a starting

state; and 3) a goal state.
¨ However, for many problems (i.e., mostly of the real-world problems), searching

all possible solutions is not feasible, either because there is a potentially infinite
number of states, or because that number is simply too high.
¨ In local search/optimization problems, we are interested in finding a parameterization for

our model (𝜽 = 𝜃!,…𝜃") that provides a good solution

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

𝜃!
𝜃"

J(𝜽)
Parameters

Objective
Function

Local Search/Optimization
¨ At the bottom line, Local Search involves to search across a sub-space of the

parameterization space (at a given granularity), and find the configurations of 𝜽 that
maximize/minimize the objective function.
¨ Additionally, there are also some constraints that should be satisfied.

¨ Examples:
¨ Circuits Design

¨ Given: a board, a set of components and connections
¨ Goal: place each component in the board, so as to maximize energy efficiency, minimize production costs,…

¨ Logistics
¨ Given: a set of places to be visited/supplied
¨ Goal: Generate the shortest route, to maximize efficiency in terms of fuel consumption

¨ Moreover, optimization is used in a myriad of other areas including medicine,
manufacturing, transportation, supply chain, finance, government, physics,
economics,

¨ The goals range from minimizing the cost in a production system, or - in a hospital -
to minimize the wait time for patients in an emergency room before they are seen
by a doctor. Also, in Marketing, the goals can be to maximize the profit obtained by
targeting the right customers under budget and operational conditions.

¨ Often (or always), it is very hard (NP-complete) to find the optimal solution.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Local Search/Optimization
¨ Broadly, there are two families for local search methods:

¨ Constructive Methods. They start from scratch (∅), and iteratively build a solution.
¨ Repair/ Methods. These methods start from a randomly chosen (or expert-based)

solution and iteratively improve it.

¨ Importantly, Local Search algorithms operate using a single current state
(rather than multiple paths as the previously family of algorithms studied,
e.g., A∗) and move only to neighbors of that state.

¨ At each step we have a complete but imperfect solution to a search
problem.

¨ There are good properties that yield from this
¨ The is a constant dimension in terms of the state space, i.e., it uses very little

memory.
¨ Can find reasonable solutions in very large state spaces, where exhaustive

search would fail miserably.
¨ All states have an objective function
¨ The goal is to find state with max (or min) objective value

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Hill-Climbing

¨ This is the simplest form of Local Search
¨ The idea is to design “a loop that continuously

moves towards increasing value”
¨ It terminates when a peak is reached, i.e.,

when none of the successors of a state
provides a better value for the objective
function.

¨ This paradigm is also known as Greedy Local
Search

¨ It does not look ahead of the immediate
neighbors

¨ If more than one successors have equal
objective value (better than the current state),
it randomly choose among the set of best
successors

¨ It is regarded as “climbing Mount Everest in a
thick fog with amnesia”

It is prune to local maxima, i.e., if
there is one iteration where none
of the successors provide a
better objective value than the
current state, it stops

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Tabu Search

¨ As we’ve seen previously, Hill climbing is too sensitive to local maxima. One
solution is to take steps back from that optimum point and go down to reach the
bottom.

¨ Once the bottom is reached, the search is resumed, hoping that a better solution
will be reached.

¨ This is regarded as a sideway move.
¨ However, we should limit the number of possible sideways moves, in order to

prevent infinite looping. This is exactly the idea of Tabu Search.
¨ We keep a fixed length queue, a.k.a. the Tabu list.
¨ We add the current state to the queue, and drop one element (i.e., the oldest).
¨ We never allow movements to a currently tabu’ed state.
¨ If the size of the tabu’ed set increases, tabu search asymptotically becomes non-

redundant. That is, it would not visit the same state twice.
¨ In practice, tabu list queue size of 100 or such improves the performance of tabu

search over hill climbing in many problems. If the tabu list size is extremely large
or ∞ then tabu search essentially becomes a systematic search.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Simulated Annealing
¨ In practice, Hill-climbing algorithm

is incomplete (*)

¨ In the sense that it does not
guarantee the convergence to a
solution

¨ Then, random walk variants (e.g.,
Tabu Search) are complete, but
extremely inefficient.

¨ The idea to combine both families of
algorithms yielded the Simulated
Annealing algorithm, that considers
a tradeoff between exploration of
the search space and exploitation of
an imperfect solution.

¨ Physical analogy:
¨ “Annealing of metals is the process

used to temper or harden metals and
glass by heating them to a high
temperature and then gradually
cooling them, allowing the material
to coalesce into a low-energy
crystalline state.”

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Simulated Annealing

¨ At every iteration, a random move is chosen.
¨ If it improves the situation then the move is accepted, otherwise it is accepted with some

probability less than 1.

¨ The probability decreases exponentially with the badness of the move. It also
decreases with respect to a temperature parameter T.

¨ Simulated annealing starts with a high value of T and then T is gradually reduced.
At high values of T , simulated annealing is like pure random search. Towards the
end of the algorithm when the values of T are quite small, simulated annealing
resembles ordinary hill-climbing.

¨ Simulated annealing finds a global optimum with probability approaching 1 if we
lower T slowly enough.

¨ The exact bound for parameter t and schedule for T is usually problem
dependent. Thus we need to experiment heavily with every new problem at hand
to see whether simulated annealing makes a difference.

¨ Simulated annealing is a very popular algorithm and has been used to solve
various classes of optimization problems

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Simulated Annealing

¨ The rationale is to allow some apparently “bad transitions”, in the hope of escaping
from local maxima.

¨ However, we should assure that the frequency of such bad moves decreases over
time, i.e., when we should be approaching the global optimum.

¨ Essentially, when the energy of a successor is higher than the current node, we simply
move to that state

¨ Otherwise, we move to the new state with probability modelled by the Boltzmann
distribution:

exp
𝐸!"# − 𝐸

𝑇
¨ T > 0 is the temperature, that starts high and goes (over time) toward 0.
¨ When T is high, the exponent is close to 0, and thus the probability of accepting any

move is close to 1
¨ When T approaches 0, the probability of moving to a worse solution is almost 0.
¨ We decrease T by multiplying it with a constant 𝛼 < 1
¨ When T is high, we are moving in the exploratory phase
¨ When T is low, we approach the exploitation phase

¨ The temperature annealing schedule is crucial (so it needs to be tweaked)
¨ Cool too fast and we do not reach optimality
¨ Slow cooling leads to very slow improvements

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization

¨ Among the three major concepts in Artificial Intelligence, we have:
¨ Linear Algebra
¨ Statistics
¨ Optimization

¨ At the bottom line, optimization refers to “maximizing or minimizing a real
function f(x) by systematically choosing input values from an allowed set and
computing the value of f(x).”

¨ In this setting, x refers typically to the parameters of our model (a.k.a. 𝜽)
¨ Also, it is common to have a set of constraints that can be either hard constraints,

which set conditions for the variables that are required to be satisfied, or soft
constraints, which have some variable values that are penalized in the objective
function if, and based on the extent that, the conditions on the variables are not
satisfied.

¨ A general optimization problem can be formulated as:

min 𝑓(𝒙)
subject to

𝑔𝑖(𝒙) = ci, ∀ 𝑖 ∈ 1, . . , 𝑛
ℎ𝑖(𝒙) ≥ ci, ∀ 𝑖 ∈ 1, . . , 𝑛

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization - Example

¨ Suppose we have a set of observations of an input variable (xi) and the
corresponding outputs (yi), for a particular problem.

¨ As it seems obvious that x, y vary directly in a roughly linear way, we are
interested in obtaining the model that optimally expresses the relationship
between x and y.

¨ Clearly, there are many (infinite) potential solutions to the problem

Finding the best model (i.e., a
straight line y = mx + b) is an
optimization problem, in this
case without constraints

Parameters: (m, b) = 𝜽 = (𝜃1, 𝜃2)

Each straight line has a different
configuration 𝜽, but which one is
the best of all?

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization

¨ A key part of any optimization problem is to perceive how can we distinguish
between two potential solutions, i.e., hoe can we say that “Solution A is better
than solution B”?

It seems obvious that the green line is
better than the red line, as the sum of
distances between the data points and the
model predictions is clearly smaller.

3

3
22

1
1

1 + 2 + 3 < 1 + 2 + 3

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization
¨ Hence, we start by defining an objective function 𝐽 𝜽 that accumulates the

distances between the actual output (yi) and the prediction 𝑓𝜃() given by the
model for a particular input (xi).

𝐽 𝜽 = !
)
∑*+!) (𝑦𝑖 − 𝑓𝜽(𝑥𝑖))2

¨ The optimal model will be given by:

>𝜽 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜽 𝐽(𝜽)

Constant term, that
can be disregarded
from the process

The optimal parameterization will be the argument that minimizes J(𝜽), when searching over all 𝜽
configurations

Euclidean distance

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization
¨ Depending on the type of objective function, constraints and decision variables,

the optimization process can be solved in different ways:
¨ Linear programming: If the functional form is linear and all constraints are also linear.
¨ Non linear programming: If the decision variables are continuous and either the objective

function or constraints are non linear,

¨ The variables can be integer or real, and in the former case, the term
“integer” is commonly added to refer that problem.
¨ For example, If the objective function and constraints are linear and the

decision variable is an integer, it is called a Linear integer programming
problem.

¨ An important property of this class of problems is their convexity, i.e.,
problems where the local and global minima might not coincide.
¨ Such functions are known as Non-convex functions. They might have multiple

local minima

Convex Non-Convex

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Closed-Form
¨ Minimizing 𝐽 𝜽 can be done in one of two ways: 1) using the closed-form

solution; and 2) iteratively, according to gradient descent.
¨ An optimization problem is closed-form solvable if it is differentiable with respect to the

weights 𝜽 and the derivative can be solved.
¨ The closed-form solution is obtained at-once (i.e., non-iteratively) and is exact.
¨ However, using the closed-form might be harder, if the model has a complicated

expression (i.e., far from linear, as in a multi-layer neural network) or the amount of
data is too large (a matrix should be inverted in the process).

¨ Typically, the problem can be formulated as a set of inputs 𝒙𝒊 that should be
mapped to the corresponding y𝒊 elements (𝒙𝒊 ∈ ℝ𝑑 and 𝑦𝒊 ∈ ℝ).

¨ Having a matrix 𝒀 = [𝑦1, … , 𝑦𝑛], representing the observed outputs.
¨ We create a matrix: 𝑿 = [𝒙1, … , 𝒙𝑛]T with 𝒙𝑖 representing each observation

concatenated to a “1” in the final position, i.e., 𝒙𝑖 = [𝒙𝑖 , 1].
¨ We create a matrix of weights 𝜽 = [𝜃1, … 𝜃𝑑, 𝜃𝑏]
¨ The mapping can be formulated as

𝒀 = 𝑿 𝜽, with 𝒀 ∈ ℝ𝑛 , 𝑿 ∈ ℝ)× (/0!), 𝜽 ∈ ℝ(/0!)

bias

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Closed-Form

>𝜽 = argmin 𝜽
1
2

𝑿𝜽 − 𝒀 𝑇 (𝑿𝜽 − 𝒀)

𝜕
𝜕𝜽

=
1
2

𝜽𝑇 𝑿𝑇 𝑿𝜽 − 𝜽𝑇𝑿𝑇𝒀 − 𝒀𝑇𝑿𝜽 + 𝒀𝑇𝒀

= 𝑿𝑇 𝑿𝜽 − 𝑿𝑇𝒀

¨ To find the minimum, we obtains the zeroes of the derivative, by solving
for 𝜽:

2
2𝜽
= 𝑿𝑇 𝑿𝜽 − 𝑿𝑇𝒀) = 0

>𝜽 = (𝑿𝑇 𝑿)4!𝑿𝑇𝒀

This is the tricky
operation. Not only the
matrix might not have
an inverse, but it might
be too expensive to
obtain it (e.g., if there
are too many features)

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Gradient Descent
¨ Gradient descent is a first-order iterative

optimization algorithm for finding the
minimum of a function.

¨ To find a minimum of a function using
gradient descent, one takes multiple
steps proportional to the negative of the
gradient.
¨ This way, it is an iterative algorithm, which

converges to the local minimum if the
learning rate is low enough.

¨ It is based on the observation that if a
multi-variable function f(x) is
differentiable in a neighborhood of a
point xi, then f() decreases fastest if one
goes from xi in the direction of the
negative gradient of f() at x: −∇ f(xi)

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Gradient Descent
¨ In order to obtain the point x that minimizes f(x), we update it according

to the following rule:

¨ In practice, one starts with an initial guess x0 typically random and update
iteratively xt+1 such that the sequence {xi} converges to a minimum.

¨ The learning rate γ plays a major role in the results of the optimization
algorithm.
¨ Too small values would take too long time to achieve a minimum;
¨ Too large values might be even worse: might lead to diverging sequences.

xt+1= xt − γ ∇ f(xt)

Divergence!!Convergence…

Learning rate

𝑦𝑖 = 𝜃0+ 𝜃1 𝑥𝑖

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Gradient Descent Example
¨ Revisiting our previous example, suppose that we want to find the model

(straight line) that better expresses the relationship between the inputs xi
and outputs yi.

𝐽 𝜃0, 𝜃1 =
1
2+
#$!

"

𝜃0 + 𝜃1𝑥𝑖 − 𝑦𝑖 2

¨ Hence, the problem can be regarded as finding the 𝜽 parameters
(unknowns) that minimize J()

y = mx + b

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Gradient Descent
¨ Step 1. Find the partial derivatives of J() with respect to each 𝜃i :

¨ Step 2. Draw the initial values of 𝜃i (0) : (e.g., 𝜽=[1, 0])
¨ Step 3. Define the learning rate (e.g., 𝛾 = 1)
¨ Step 4. Repeat “m” times

¨ Step 4.1. Find the new values of 𝜃i
¨ Important: Update all 𝜃i simultaneously, i.e., do not use 𝜃0 (t+1) to find 𝜃1

(t+1)
¨ Step 4.2. Update all 𝜃i values

¨ 𝜃i t + 1 = 𝜃i t − 𝛾 '(
')&

𝛿𝐽
𝛿𝜃0

= M
*+!

)

𝜃0+ 𝜃1𝑥𝑖 − 𝑦𝑖
𝛿𝐽
𝛿𝜃1

= M
*+!

)

𝜃0+ 𝜃1𝑥𝑖 − 𝑦𝑖 𝑥𝑖

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Gradient Descent Exercise
¨ Consider the following data set. Consider 𝛾 = 1 and 𝜽(0)=[0, 0, 0].
¨ Use the gradient descent algorithm to find the quadratic model that

optimally fits the dataset:

¨ Implement a Python script that obtains the first “n” iterations of 𝜽 values.

𝐽 𝜃0, 𝜃1,𝜃2 =
1
2
M
*+!

)

𝜃0+ 𝜃1𝑥𝑖 + 𝜃2𝑥𝑖2− 𝑦𝑖 2

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Optimization: Linear Programming
¨ Linear Programming (a.k.a. Linear Optimization) is used to solve

mathematical problems in which the relationships are linear in
nature.

¨ The idea in Linear Programming is to maximize or minimize an
objective function, subject to some constraints.

¨ The objective function is a linear function which is obtained from
the mathematical model of the problem. The constraints are the
conditions which are imposed on the model and are also linear.

¨ There are mainly two ways of solving linear programming
problems:
¨ Graphical Method, or Simplex Method.

¨ Graphical Method
¨ Having an objective function 𝐽 𝜽 , and a set of constraints, we start by

drawing the constraints on a graph, to find the feasible region.
¨ The feasible region is the intersection of all the constraints.
¨ Next, we find the vertices of the feasible region and find the value of

𝐽 𝜽 at these vertices.
¨ The vertex that maximizes/minimizes 𝐽 𝜽 is the final answer.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Graphical Method Example

¨ Suppose that we want to maximize: 𝐽 𝜽 = 𝟒𝜽1 - 3𝜽2
¨ Also, there are four constraints:

¨ 𝜽1 + 𝜽2 ≤ 4
¨ 𝜽2 + 𝜽'

𝟐
≤ 3

¨ 𝜽1 ≥ 0
¨ 𝜽2 ≥ 0

¨We start by obtaining the feasible region. Intersection of all
constraints

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨Next, we find the vertices of the polygon that delimitates the
feasible region:

¨ Finally, we obtain the value of 𝐽 𝜽 for all vertices. The vertex
that maximizes 𝐽 𝜽 is the solution.
¨ J(A) = 0-0=0; J(B)=0-9= -9; J(C)=8-6=2; J(D)=0+12=12
¨ 𝐽 𝜽∗ = (𝜃1, 𝜃2)= (0,4)

A= (0,0)

B = (0,3)

C = (2,2)

D = (0,4)
Feasible
Region

Linear Programming: Graphical Method Example

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Graphical Method Exercise

¨Consider the following optimization problem:

𝐽 𝑥1, 𝑥2 = 40𝑥1+ 30𝑥2

subject to:

𝑥1+ 𝑥2 ≤ 12
2𝑥1+ 𝑥2 ≤ 16
𝑥1 ≥ 0, 𝑥2 ≥ 0

¨Obtain the optimal configuration for 𝑥1, 𝑥2 using the
graphical method.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Simplex Method
¨ The Simplex method is mainly used in problems that involve

many (>2) decision variables, due to the difficulties of
representing such high dimensional spaces in a graphical way.

¨ The process starts by transforming all inequalities into
equalities (using slack variables) and then – using linear
algebra – iteratively find pivots and reduce them (pivoting)
until a solution is reached.

¨ Example. Consider the optimization problem solved previously:

𝐽 𝑥1, 𝑥2 = 40𝑥1+ 30𝑥2

subject to:

𝑥1+ 𝑥2 ≤ 12
2𝑥1+ 𝑥2 ≤ 16
𝑥1 ≥ 0, 𝑥2 ≥ 0

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Simplex Method
¨We start by adding two slack variables (y1 and y2) that

convert the inbequatity constraints into equalities.

40𝑥1+ 30𝑥2+ 𝐽() = 0
𝑥1+ 𝑥2+ 𝑦1 = 12
2𝑥1+ 𝑥2+ 𝑦2 = 16

¨Next, we construct the initial simplex matrix:
𝑥1 𝑥2 𝑦1 𝑦2 𝐽
1 1 1 0 0 12
2 1 0 1 0 16

−40 −30 0 0 1 0
¨ Identify the column with the largest (in magnitude) negative

value
¨ The first column will be the initial pivot.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Simplex Method
¨ We then, divide elements in the final column by the corresponding

values in the pivot column.
¨ 12/1 = 12 and 16/2 = 8

𝑥1 𝑥2 𝑦1 𝑦2 𝐽
1 1 1 0 0 12
2 1 0 1 0 16
−40 −30 0 0 1 0

¨ The row with the smallest coefficient is the pivot row.
¨ Hence, pivot row and pivot column define the pivot (2).

¨ Using Linear Algebra and perform pivoting (i.e., set all elements in the pivot
column equal to 0)
¨ Divide elements in the pivot row by the pivot value

𝑥1 𝑥2 𝑦1 𝑦2 𝐽
1 1 1 0 0 12

1
1
2

0
1
2

0 8

−40 −30 0 0 1 0

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Simplex Method
¨ Set all values in the pivot column equal to 0 (Row 1 = Row 1 – Row

2 and Row 3 = Row 3 + 40 Row 2)

𝑥1 𝑥2 𝑦1 𝑦2 𝐽

0
1
2

1 −
1
2

0 4

1
1
2

0
1
2

0 8

0 −10 0 20 1 320
¨Check if the last row has negative values.

¨ If yes (in this case -10) we repeat the process and find the column with
the largest (in magnitude) negative value.

¨ If not, the process stops.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Simplex Method
¨ Repeating the previous steps, we obtain the following matrix:

𝑥1 𝑥2 𝑦1 𝑦2 𝐽
0 1 2 −1 0 8
1 0 −1 1 0 4
0 0 20 10 1 400

¨ The final row is written in equation form, and we get:

𝐽 = 400 − 20𝑦1− 10𝑦2

¨Hence, J = 400 is the maximum value we can get
¨ when y1= y2 = 0

¨ Also, 𝑥1 = 4 and 𝑥2 = 8 is the solution to our problem.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Linear Programming: Simplex Exercise
¨ Solve the following Linear Programming problem through the Simplex

Method:

maximize J(x1,x2,x3) = 3x1 + x2 +3x3

subject to:

2x1 + x2 + x3 ≤ 2

x1 +2x2 +3x3 ≤ 5

2x1 + 2x2 + x3 ≤ 6

x1 , x2 , x3 ≥ 0

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨ Genetic Algorithms (Gas) are a very popular choice, among

search-based optimization methods.
¨ The term optimization refers to find the parameters of a model to get

the best output values.
¨ In practice, it refers to maximizing/minimizing one objective function, by

varying the possible values for the parameters.
¨ GAs were proposed by John Holland and David E. Goldberg

(1970s) and have been used in various optimization problems with
high success.
¨ Traveling Salesman Problems

¨ Used to find an optimal way to be covered by the salesman, in a given map with
the routes and distance between two points.

¨ Vehicle Routing Problems
¨ Used to find an optimal weight of goods to be delivered or an optimal set of

delivery routes when other things like distance,
¨ Finantial Markets

¨ Used to find optimal set or combination of parameters that can affect the market
rules and trades.

¨ Medical Science
¨ Used in predictive analysis like RNA structure prediction, operon prediction, and

protein prediction

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨Genetic Algorithms are typically used in problems that are

nonlinear and where there are multiple correlations between
parameters.
¨ This implies that it is not possible to treat each parameter as an

independent variable which can be solved in an independent way
from the other variables

¨ The first assumption typically made is that the variables
representing the parameters can be represented by bit strings
¨ This means that the variables are discretized in an a priori fashion

and that the range of the discretization corresponds to some power
of 2.

¨ For example, using 10 bits per parameter, it is possible to represent
210 = 1024 values.

¨ Then, there is also an evaluation function, usually given as
part of the problem description

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨ There are some terms used in the context of GAs:

Binary
Strings

Population

Selection

Crossover

Mutation

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨ Step 1: We start with a (random?) population, composed of “n”

elements (strings):

String 1

String 2

String n

Population(t=0)

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨ Step 2 – Selection. After obtaining the values of the objective function

f(String i), ∀ 𝑖 ∈ {1, … , 𝑛}, we select k (out of n) elements to be used as
parents for the next generation.

¨ There are three main ways to perform selection:
¨ Random Selection, by randomly choosing pairs of elements, without the effect of fitness

values.
¨ Tournament Selection, by randomly sampling from the population and then, select with

probabilities p, p(1-p), p(1-p)2,… the best, second-best, third,… elements.
¨ Roulette Wheel, based on the fitness of each element. The size of the proportion of

elements in the roulette wheel varies depending on the fitness value. The selection is
made by raising a random value from the range of all fitness values.

String i

String j

Roullete
There are different variants in this step, as “Elitism”, that guarantees that the
best individual(s(are always selected for the next generation

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨ Step 3 – Crossover. After selecting the parents, crossover is

used for producing new elements. We randomly (or not) select
the position where both elements will be swapped

New elements

Parents

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms
¨ Step 4 – Mutation. Each position of the newly generated

elements will be mutated (randomly changed) with some
probability

✓ ✗ ✓ ✓ ✓

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Genetic Algorithms: Exercise
¨Consider the following

population (at time t=0). Using
the evaluation function f()
below, write the population at
time t=1, when…
¨ Pairs (0, 3), (1, 5), (0, 1), (4, 3),

(0, 2), (2, 4) are used for
selection, respectively at
positions [2,1,3,2,4,2]

¨ For each new element,
respectively the (1), (0), (1,2),
(4,5), (3) and (2) bits will be
mutated.

f(b0b1b2b3b4b5) = ∑%&'
(𝑏%

%

¨Which population (t=0 or t=1)
is “better”? (i.e., has a higher
average f() value)

[0]

[1]

[2]

[3]

[4]

[5]

[b0] [b1] [b2] [b3] [b4] [b5]

