
ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2022/23

State Space Search - Antagonism
¨ Up to now, we saw different strategies for searching (traversing) a state space

tree/graph in order to find the (best) path for a solution.
¨ We assume that the best action depends only on the current state of the

environment and of the behavior of the intelligent agent.
¨ However, there are many cases where the environment is populated with

agents that have different goals, and – in most cases – antagonist goals.
¨ In such circumstances, I am not only interested in achieving my goals, but also in

avoiding that my opponent achieves his own goals.
¨ Game theory is a branch of mathematics used to model the interaction

between different agents (players), which are equally rational, in a context with
predefined rules (of playing or maneuvering) and outcomes.

¨ Every player is selfish and tries to maximize the reward obtained using a
particular strategy. Hence, a game is defined as a set of players, actions,
strategies, and a final playoff for which all the players are competing.
¨ Also, it is important to minimize the reward that opponents can obtain, to guarantee that

they do not assume an advantageous position in the game

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax Search
¨ Minimax is an algorithm used in decision making and game theory to find the

optimal move for a player, assuming that the opponent also plays optimally.
¨ It is the most classical choice for two player turn-based games such as Tic-Tac-

Toe, Backgammon, Mancala, Chess, etc.
¨ In Minimax the two players are called maximizer and minimizer.

¨ The maximizer tries to get the highest score possible
¨ The minimizer tries to do the opposite and get the lowest score possible.

¨ The general idea is to expand the state space n steps, and choose the
optimal move at each level, depending if it is a maximizer (agent) or
minimizer (opponent) level.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

In this example, even if there is a potentially better
solution at the Right side, the agent will decide to go
Left, as he anticipates that – if it chooses R – the
opponent will choose a state with a smaller reward
(2)

Minimax
¨ 4 Levels Minimax Example

¨ In the example below, the Agent will decide for a path that expectedly will conduct to a
state of the game that is worse than the current state (-7 relative reward).

¨ Also, there are other branches that will correspond to “win the game”, i.e., fully satisfy the
problem objectives (∞ reward).

¨ However, assuming that the opponent will always do the smart choice, the best thing to do
is evolve to such worse state.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

max

min

max

min

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

initial call: minimax(root, DEPTH, True)
function minimax(node, depth, maximizing_player):

if depth == 0 OR node is a terminal node
return f(node) #heuristic of “node”

if maximizing_player then
value = −∞
for each child of node do

value = max(value, minimax(child, depth − 1, FALSE))
return value

else
value = +∞
for each child of node do

value = min(value, minimax(child, depth − 1, TRUE))
return value

Minimax

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax - Exercise

¨ Consider the following tree, using the △/▽ notation for nodes (states), that
represents whether the node is of maximizer (△) or minimizer (▽) kind.
¨ Provide the values obtained at each node, using the minimax algorithm.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax – Alfa-Beta Pruning

¨ Alfa-beta Pruning is an optimization technique for the minimax algorithm.
¨ It reduces the computation time significantly, allowing to search much faster and

go into deeper levels in the game tree.
¨ The general idea is to cut off branches in the game tree which need not be

searched because there already exists a better move available.
¨ It is called Alpha-Beta pruning because it passes 2 extra parameters in the

minimax function, namely Alpha and Beta.
¨ Alfa is the best value that a maximizer node can guarantee at that level or above.
¨ Beta is the best value that a minimizer node can guarantee at that level or above.
¨ They are initialized such that 𝛼 = −∞;𝛽 = ∞
¨ At every node where 𝛽 ≤ 𝛼, the search stops there, and no deeper levels should

be visited.
¨ This is actually the pruning operation

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax – Alfa-Beta Pruning
initial call: minimax(root, DEPTH, True, -∞, ∞)
function minimax(node, depth, maximizing_player, alpha, beta):

if depth == 0 OR node is a terminal node
return f(node) #heuristic of “node”

if maximizing_player then
value = −∞
for each child of node do

value = max(value, minimax(child, depth − 1, FALSE, alpha, beta))
alpha = max(alpha, value)
if beta ≤ alpha

break
return value

else
value = +∞
for each child of node do

value = min(value, minimax(child, depth − 1, TRUE, alpha, beta))
beta = min(beta, value)
if beta ≤ alpha

break
return value

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax – Alfa-Beta Pruning

¨ Example: Consider the following tree. Run the Alfa-beta Minimax Pruning
Algorithm to find the pruned branches.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax – Alfa-Beta Pruning

¨ Example: Consider the following tree. Run the Alfa-beta Minimax Pruning
Algorithm to find the pruned branches.

B is a Minimizer and one of his successors already returned “5”. Hence, the value
returned by B to its predecessor (A) will always be ≤ 5. However, as E is a maximizer
and one of his successors returned “6”, it will always return a value ≥ 6. Hence any
value coming from the right branch of E (independently of the depth of that branch) will
be useless

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax – Alfa-Beta Pruning

¨ Example: Consider the following tree. Run the Alfa-beta Minimax Pruning
Algorithm to find the pruned branches.

A is a maximizer and has already “5” returned from B. Hence the value returned by A ≥
5. As C is a minimizer it will return something ≤ 2. Hence. Any value from the right
branch of C will be useless (and should be pruned)

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Minimax – Exercise: Alfa-Beta Pruning

¨ Exercise: Indicate which branches of the tree can be pruned, according to Alfa-
Beta pruning strategy.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Monte Carlo Tree Search

¨ Games like tic-tac-toe, checkers or chess can arguably be solved using the
minimax algorithm.

¨ However, things can get a little tricky when there are many potential
actions to be taken at each state.
¨ This is because minimax explores all the nodes available. It becomes

difficult to solve a complex problem.
¨ Monte Carlo Tree Search (MCTS) is a heuristic search algorithm for some

kinds of decision processes.
¨ The terminology comes from the original Monte Carlo method, that

uses random sampling for deterministic problems which are difficult
or impossible to solve using other approaches, and dates to the
1940s.

¨ In 1987, Bruce Abramson combined minimax search with an
expected-outcome model based on random game playouts to the end,
instead of the usual static evaluation function.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Monte Carlo Tree Search

¨ The rationale of MCTS is to analyse/expand first the most promising
moves, expanding the search tree based on random sampling of the
search space.

¨ The application of Monte Carlo tree search is based on playouts, a.k.a.
roll-outs.
¨ In each playout, the game is played out to the very end by selecting moves at

random.
¨ The final game result of each playout is then used to weight the nodes in the game

tree so that better nodes are more likely to be chosen in future playouts.
¨ The process has four main phases:

¨ Selection
¨ Selecting good child nodes, starting from the root node R, that represent states leading to

better overall outcome (win).
¨ Expansion

¨ If L is a not a terminal node, create one or more child nodes and select one of these (C).
¨ Simulation (rollout)

¨ Run a simulated playout from C until a result is achieved.
¨ Backpropagation

¨ Update the current move sequence with the simulation result.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Monte Carlo Tree Search

¨ Selection: Start from root R and select successive child nodes until a leaf node L is reached.
The leaf is any node that has a potential child from which no simulation (playout) has yet
been done.

¨ Expansion: Unless L ends the game decisively (e.g., win/loss/draw) for either player, create
one (or more) child nodes and choose node C from one of them. Child nodes are any valid
moves from the game position defined by L.

¨ Simulation: Complete one random playout from node C. This step is sometimes also called
playout or rollout. A playout may be as simple as choosing uniform random moves until the
game is decided.

¨ Backpropagation: Use the result of the playout to update information in the nodes on the
path from C to R.
¨ In case of a two-player game, the states corresponding to moves from the same/opponent players should

be updated accordingly.

Source: https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

R

L
C

loose

worse

Better (opponent)

