
ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2022/23

State Space Search
¨ An important family of problems is about Search

¨ Search can be applied/used in very heterogenous problems, such as: 1) Finding the
solutions for a puzzle; 2) Finding the shortest path between two positions in a map; 3)
Proof a theorem; or Finding the sequence of moves to win a game*
¨ (*) With game referring to any problem that involves competitors

¨ Formally, a Search problem is based in two parts:
¨ A State, that contains all the information necessary to predict the effects of an action

and to determine whether a state satisfies the goal. We assume that
¨ A set of Operators, that define how a valid state can be transformed into another

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Initial State

States

Operator

State Space Search
¨ Among the set of the possible states, there are two kinds that are particularly

important:
¨ Start State: The state from where the Search begins
¨ Goal State: The state to be reached, i.e., that fully satisfies the goals of the problem.

¨ In this context, a Solution is the sequence of actions (a.k.a. Plan) that
transforms the start state into the goal state.

¨ Example: Water Jug Problem
¨ Suppose you are given two jugs (a 4-liter and a 3-liter), with no markers. Also, there is a

pump that can be used to fill a jug. Find the sequence of actions that enable to get exactly 2
liters of the 4-liter jug.

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

3 liters4 liters

State Space Search
¨ Step 1: Define the data structures required to represent a state.

¨ In this problem, it can be as simple as (x, y), with “x” representing the liters inside the 4-liter
jug, and “y” representing the liters in the 3-liter jug.

¨ Step 2: Define the allowed operations. Example:
¨ (x, y) à (4, y) stands for “Fill the first jug”
¨ (x, y) à (x, 3) stands for “Fill the second jug”
¨ (x, y) à (0, y) stands for “Empty the first jug on the ground”
¨ (x, y) à (x+d, y-d) stands for “pour some water from the second to the first jug”
¨ …

¨ Step 3: Define the start state and expand it, until a solution is reached

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

3 liters4 liters

State Space Search

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

3 liters

4 liters

(0, 0)

(4, 0) (0, 3)

(3, 0)

(3, 3)

(4, 2)

(0, 2)

(2, 0)

(…)

(…)

Exercise: Write a Python program that solves the
Water Jug Problem

Goal State

State Space Search – Hanoi Towers Exercise

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23
Source: https://www.khanacademy.org/computing/computer-science/algorithms/towers-of-hanoi/a/towers-of-hanoi

¨ Suppose you are given a set of three pegs and n disks, with each disk a different
size. There are three pegs (A, B, and C), and let’s identify the disks from 1 (the
smallest disk), to n (the largest disk). Initially, disks are set from n à 1 in peg A.
The goal is to move all disks to peg B, moving one disk at a time and without
having a larger disk on top of a smaller one, at any time.
¨ Formulate the problem as a State Space Search, and implement a Python script that solves it.

State Space Search
¨ In the previous

examples/exercises, the goal was
exclusively to find one solution
(path) to the problem, without
considering its cost.
¨ Hence, the cost of a solution is the

sum of all movements (i.e.,
operations) between the initial and
the goal states.

¨ If all operations have equal cost, the
final cost is given by the depth in the
tree where a solution is found.

¨ However, most of the times, a
solution can be reached by many
different ways, and according to a
different number of steps.
¨ The problem is: How can we find the

optimal solution?

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

Goal State

Goal State

State Space Search

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ Even though there are many variants and strategies for searching in States Spaces,
they can be broadly divided into two main families, depending whether they use
additional knowledge to speed-up (i.e., by ordering the priority of states) the
search process.

Search Algorithms

Uninformed Search Informed Search

Depth-First
(DFS)

Breadth-First
(BFS)

Greedy (GS) A*

Uninformed Search

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ The search algorithms in this family use no additional information on the goal
node other than the one provided in the problem definition.

¨ The plans to reach the goal state from the start state differ only by the order
and/or length of actions. Uninformed search is also called blind search, or brute-
force search.

¨ These algorithms can only generate the successors and differentiate between the
goal state and non goal state.

¨ There are two main strategies for performing this kind of search:
¨ Depth First Search (DFS)
¨ Breadth First Search (BFS)

¨ Keeping information about the states already explored (i.e., from where the
successors were already obtained) and not, the main difference is that DFS works
under the “Stack” paradigm (new nodes go directly to the first position of the “to
be explored” list), while BFS assumes the “Queue” paradigm (i.e., new nodes go to
the last position of the data structure).
¨ Upon an obtained solution, BFS guarantees its optimality, while DFS does not.

Uninformed Search

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ If the states in the solution space can be visited more than one time, a directed
graph is typically used to represent the State Space. Otherwise, a n-ary tree is
used.

¨ In a graph, more than one path can be used to move between two particular
nodes, whereas in a tree, every path is unique.

¨ Search algorithms for graphs must pay particular attention to loops, which will be
an obstacle to find a proper solution.
¨ This is typically done, by keeping independent lists for the “expanded” and “to_expand”

states.
¨ When generating the successors of a state, they will only be inserted at the “to_expand” list if

they are not in none of the data structures

Graph

Tree

Uninformed Search – DFS and BFS

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ Depth-first search and Breadth-first search (DFS and BFS) are algorithms for traversing
or searching a tree or graph data structures.
¨ DFS starts at the initial state node and explores as far as possible along each branch before

backtracking. It uses last in- first-out strategy and hence it is implemented using a Stack.
¨ BFS starts at the initial node and only evaluates nodes in a level when all nodes at the previous levels

were already explored. Uses first in- first-out and is implemented using a Queue.

¨ Algorithm:
1. cur_state = initial_state
2. to_explore = []
3. explored = []
4. push(to_explore, cur_state)
5. WHILE to_explore NOT EMPTY

1. cur = pop(to_explore)
2. if cur == goal_state

Return cur
3. suc = find_sucessors(cur)
4. for s in suc:

1. if s NOT IN explored AND s NOT IN to_explore
push(to_explore, s)

5. push(explored, cur)
6. return None

Uninformed Search – DFS and BFS

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ Exercise: Consider the following Graph. Assuming that all transitions
between states have equal cost, find the order by which states will be
visited, in order to move from ”A” à “H”, using…
¨ DFS and BFS search

A

K

B

J

C

G

F

E

H
I

D

Uninformed Search – Uniform Search (US)

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ In this variant, the costs from moving
between states come into play.
Assuming that we have information
about the cost for reaching a state
(typically, the sum of the costs from all
transitions since the initial state), each
state will be inserted at a specific
position of the “to_explore” data
structure, depending of its cost, with
the cheaper states being at the initial
positions of the list.

¨ In practice, it is equivalent to BFS,
provided all transitions have the same
cost.

¨ Exercise: Find the order by which the
nodes will be visited in the tree, using
US search.

Informed Search – Greedy Search

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ In this family of algorithms, we have information about the goal state,
and – using a heuristic h()– we are able to estimate how far we are from
the goal state.
¨ For example – Manhattan distance, Euclidean distance, etc. (here, the lesser the

distance, the closer the goal). In other cases, similarity-based metrics can be used
in the exact same way (i.e., higher values, higher similarity).

¨ The basic strategy is called Greedy Search (GS) and we always expand
(explore) the state that is closer to the goal.

¨ Exercise: Considering the h() values below each state, find the order by
which states will explored between KàH, using the GS algorithm.

K
2

J
3

G
4

F
2

H
0I

1

Informed Search – A*

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ This variant combines the strengths of uniform-cost search and greedy
search. In this search, the heuristic is the summation of the cost to reach
the current state, denoted by g(x), and the value of the heuristic used in
GS, denoted by h(x). The summed cost is denoted by f(x).

¨ Hence, the nodes will be visited (explored) according to:

𝑓 𝑥 = 𝑔 𝑥 + ℎ 𝑥

¨ h(x) is called the forward cost and is an estimate of the distance of the
current state from the goal state.

¨ g(x) is called the backward cost and is the cumulative cost of a state
from the root state.

¨ Importantly, A* search is optimal when for all nodes, the forward cost
for a node h(x) underestimates the actual cost h*(x) to reach the goal.
This property of A* heuristic is called admissibility.

0 ≤ ℎ 𝑥 ≤ ℎ∗ (𝑥)

Informed Search – A*

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ In terms of pseudo-code, with respect to the uniformed search algorithms, the
difference is that the insertion in that the “to_explore” set is sorted according to
the values of f(), in ascending order.

¨ Algorithm:
1. cur_state = initial_state
2. to_explore = []
3. explored = []
4. push(to_explore, cur_state)
5. WHILE to_explore NOT EMPTY

1. cur = pop(to_explore)
2. if cur == goal_state

Return cur
3. suc = find_sucessors(cur)
4. for s in suc:

1. if s NOT IN explored AND s NOT IN to_explore
to_explore = insert(to_explore, s, f(s))

5. push(explored, cur)
6. return None

Informed Search – A*

Hugo Pedro Proença, hugomcp@di.ubi.pt, 2022/23

¨ Exercise: Find the order by which states will be visited (from nodes
AàH), according to A*, assuming that the values near the edges denote
the corresponding transition costs and the values inside each node
denote h().

A
8

K
6

B
7

J
8

C
6

G
7

F
3

E
3

H
I
8

D
5

2
3

7
22

5

4

3

2

3 4

5 2

3
2

