ARTIFICIAL INTELLIGENCE

LEI/3, LMA/3, MBE/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença hugomcp@di.ubi.pt, **2022/23**

Weekly Schedule

	MON	R	TUE	R	WED	R	THU	R	FRI	R
8-9	-	-	-	-	_	-	-	-	-	-
9-10	Т	6.01	Р	6.14	-	-	Р	6.14	-	-
10-11	Т	6.01	Р	6.14	-	-	Р	6.14	-	-
11-12	-	-	-	-	-	-	-	-	-	-
12-13	-	-	-	-	-	-	-	-	-	-
13-14	-	-	-	-	-	-	-	-	-	-
14-15	Atendimento	Gab	Р	6.14	-	-	-	-	-	-
15-16	Atendimento	Gab	Р	6.14	-	-	-	-	-	-
16-17	-	-	-	-	-	-	-	-	-	-
17-18	-	-	-	-	-	-	-	-	-	-
18-19	-	-	-	-	-	-	-	-	-	-

Course Web Page

<u>http://di.ubi.pt/~hugomcp/ia</u>

□ News

- Course Program, Evaluation
 Criteria, Bibliography
- Classes (Theoretical Slides + Practical Sheets + Exercises)
- Evaluation (Practical + Exam Marks)

Evaluation Criteria

- **Assiduity (A)** To get approved at this course, students should attend to at least 80% of the theoretical and practical classes
- Practical Project (P) The practical projects of this course weights 30% (6/20) of the final mark
 - (P1) Practical Project 1: Search and Optimization (3/20);
 - Due Date: Monday, November 14th, 2022.
 - (P2) Practical Project 2: Learning (3/20);
 - Due Date: Monday, January 9th, 2023.
 - To get approved at the course, a minimal mark of 5/20 should be obtained in the practical project part;
 - The practical project mark is conditioned to an individual presentation and discussion by each student;
- Written Test (F) Monday, January 9th, 2023, 09:00. Room 6.01
- Mark (M) M = (A >= 0.8) * (P * 6/20 + F * 14/20)
- **Admission to Exams** Students with M >= 6 are admitted to final exams
 - The practical projects mark is considered for all examination epochs;

Main Bibliography

• Stuart Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. Global Edition, ISBN-13: 978-1292401133, 2022.

• Denis Rothman. *Artificial Intelligence by Example*. Expert Insight ISBN-13: 978-1839211539, 2020.

• Michael Woolridge. *A Brief History of Artificial Intelligence*, Flatiron Books, ISBN-13: 978-1250770738, 2021.

Artificial Intelligence By Example

Course Program

- 1. Artificial Intelligence Introduction
 - 1.1 Definitions
 - 1.2 Foundations / History
 - 1.3 Ethical Issues: Risks and Benefits
- 2. Intelligent Agents
 - 2.1 Internal Structure
 - 2.2 Environments
 - 2.3 States

• 3. Problem Solving - Search

- 3.1 Search Algorithms
- 3.2 Uninformed Search
- 3.3 Informed Search (Heuristic-based)
- 3.4 Search in Complex Environments
 - 3.4.1 Local Search and Optimisation
 - 3.4.2 Search in Partially Observable Environments

Course Program

- 4. Problem Solving Adversarial Search
 - 4.1 Game Theory
 - 4.2 Alpha-Beta Tree Search
 - 4.3 Monte Carlo Tree Search
- 5. Problem Solving Constraint Satisfaction Problems (CSPs)
 - 5.1 Definition
 - 5.2 Constraint Propagation in CSPs
 - 5.3 Backtracking Search for CSPs
 - 5.4 Local Search in CSPs

• 6. Knowledge Representation and Planning

- 6.1 Logical Agents
- 6.2 First Order Logic (FOL)
- 6.3 Inference in FOL

Course Program

• 7. Learning

- 7.1 Taxonomy
- 7.2 Decision Trees, Linear Regression and Classification
- 7.3 Model Selection and Optimisation
- 7.4 Nonparametric Models
- 7.5 Ensemble Learning
- 7.6 Probabilistic Models
- 8. Neural Networks and Deep Learning
 - 8.1 Feed Forward Nets
 - 8.2 Convolutional Networks
 - 8.3 Learning Algorithms
 - 8.4 Recurrent Neural Networks
 - 8.5 Transfer Learning and Cross-Domain Learning
- 9. Reinforcement Learning
 - 9.1 Rewards
 - 9.2 Passive Reinforcement Learning
 - 9.3 Active Reinforcement Learning
 - 9.4 Q-Learning and Deep Q-Learning