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REGINA—Reasoning Graph Convolutional
Networks in Human Action Recognition

Bruno Degardin , Vasco Lopes, and Hugo Proença , Senior Member, IEEE

Abstract— It is known that the kinematics of the human
body skeleton reveals valuable information in action recognition.
Recently, modeling skeletons as spatio-temporal graphs with
Graph Convolutional Networks (GCNs) has been reported to
solidly advance the state-of-the-art performance. However, GCN-
based approaches exclusively learn from raw skeleton data, and
are expected to extract the inherent structural information on
their own. This paper describes REGINA, introducing a novel
way to REasoning Graph convolutional networks IN Human
Action recognition. The rationale is to provide to the GCNs
additional knowledge about the skeleton data, obtained by hand-
crafted features, in order to facilitate the learning process, while
guaranteeing that it remains fully trainable in an end-to-end
manner. The challenge is to capture complementary information
over the dynamics between consecutive frames, which is the
key information extracted by state-of-the-art GCN techniques.
Moreover, the proposed strategy can be easily integrated in the
existing GCN-based methods, which we also regard positively.
Our experiments were carried out in well-known action recogni-
tion datasets and enabled to conclude that REGINA contributes
for solid improvements in performance when incorporated to
other GCN-based approaches, without any other adjustment
regarding the original method. For reproducibility, the REGINA
code and all the experiments carried out will be publicly available
at https://github.com/DegardinBruno.

Index Terms— Action recognition, graph convolutional
networks, human behavior analysis, skeleton-based action
recognition.

I. INTRODUCTION

THE remarkable effectiveness of the human visual percep-
tion system to recognize motion patterns has been inspir-

ing decades of research in the computer vision community
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Fig. 1. Rationale for the strategy proposed to improve temporal graph
convolution strategies. When compared to the conventional scheme (at left),
we consider two additional components: 1) a set of handcrafted features (lower
layer on the right side); that are integrated into the temporal convolutional
kernel patches (light blue), according to 2) a learnable temporal convolutional
layer (in red). This information is further fused to the skeleton sequence
information, according to the conventional temporal convolutional kernels.

[1]–[6]. In particular, the ability to instinctively recognize
other humans actions has been vital for the survival of the
specie itself. However, action recognition can be particu-
larly hard to perform automatically, due to the sophistication
and complexity of movements, the inter-dissimilarity between
humans, the background clutter and viewpoints [7]–[9]. This is
an extremely crowded topic in the research community, where
skeleton-based approaches have been gaining popularity, due
to their ability to partially handle these challenges: they
are known to faithfully handle variations in appearance and
cluttered backgrounds, which allowed the pioneering skeleton-
based action recognition techniques [10]–[13] to learn and
extract relevant patterns.

The appearance of data-driven approaches (i.e., deep
learning-based) facilitated the perception of human poses
on image data, through efficient pose estimation algorithms
[14]–[17], which has propelled a growing number of skeleton-
based techniques and large-scale datasets [18]–[20]. This
ability to extract high-level features with deep learning-based
architectures has paved the way to structured skeleton-based
approaches, such as convolutional neural networks (CNNs)
with pseudo-images [21]–[23] and recurrent neural net-
works (RNNs) with sequence coordinate vectors [24]–[26].
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More recently, graph convolutional networks (GCNs) were
introduced [27], to model skeleton data by means of spatiotem-
poral graph convolutions [6]. Due to its intrinsic ability to
exploit the skeleton inherent graph structure, several variants
were subsequently introduced, typically proposing additional
modules [28]–[31] and multi-streams [1], [3], [32] strategies.

In spite of the rapid progresses observed in recent years, two
major shortcomings remain: 1) the high-level formulation of
temporal graph convolutions constrains its design in comput-
ing them over a root node temporal neighbor set. Despite its
neighborhood importance, this results in losing the skeleton
global view, in particular concerning its temporal evolution;
and 2) current methods use a spatial adjacency matrix to define
the graph spatial topology and only assume its natural temporal
adjacency, pre-defining the temporal receptive fields heuristi-
cally. Even though [1], [3], [29] present a learnable spatial
adjacent matrix and graph shifting, our experiments point for
local and temporal limitations of the encoding process, losing
the holistic perspective in their temporal convolutions.

As a response to the above problems, in this paper we
describe REGINA, a novel graph convolution architecture
that can be easily integrated into the existing GCN-based
techniques and enables solids improvements in performance
with respect to the baselines. REGINA extends GCNs by
employing shallow temporal representations to obtain a learn-
able temporal adjacency configuration, adjusting the temporal
receptive fields. The proposed architecture is composed of a
new graph convolution layer that learns the temporal impor-
tance of actions, which is trainable in an end-to-end manner,
exploiting the skeleton data in a complementary way apart
motion between frames.

The proposed strategy addresses naturally the previously
mentioned problems: instead of using GCNs that only con-
sider the temporal adjacency, we integrate a handcrafted self-
similarity matrix (SSM) to the temporal graph convolution
part, aimed to enhance the global connectivity across the tem-
poral axis. Specifically, by extracting the SSM with point-wise
convolutional kernel patches, the temporal graph receptive
fields can be weighted based in the skeleton corresponding
temporal differences, assigning local weights in direct propor-
tion to the difference values and, consequently, considering an
action holistic view. As illustrated in Fig. 1, the SSM is fed
into a 2-dimensional convolutional layer before weighting each
sample from the temporal convolution kernel. As different
graph convolutional layers may require different temporal
receptive fields [33], [34], the temporal configuration is learned
and adjusted based on the SSM descriptor. Therefore, the
proposed scheme will behave similarly to a self-attention
module computed over time, which takes into account the
temporal differences and gets self-optimized through the
2-dimensional convolutional layer by adjusting those weights.
The self-similarity descriptor choice is justified empirically,
based in the experiments carried out, which showed the
robustness of the SSM descriptor to pose and camera vari-
ance. Additionally, as described in Section IV-B, REGINA
outperforms the conventional temporal convolutions strategies
and can be easily integrated to state-of-the-art GCN-based
techniques, enabling consistent improvements in performance

in well-known datasets. A cohesive view of the proposed
REGINA strategy, incorporated within a spatiotemporal graph
convolutional network is given in Fig. 2.

In summary, our main contributions are three-fold: 1) We
propose a graph convolution architecture that fuses shallow
temporal representations to spatiotemporal GCNs, enabling
to retain the skeleton global information, while extracting
other higher-level spatiotemporal semantic features; 2) we
experimentally show the ease of incorporating REGINA into
the state-of-the-art GCN-based approaches, which does not
prevent them from being trained in an end-to-end manner,
enabling solid improvements in performance over the base-
lines; 3) we report competitive results with respect to the state-
of-the-art techniques in large-scale datasets (NTU RGB+D
and Kinetics-Skeleton) for skeleton-based action recognition.

The remainder of this paper is organized as follows:
Section II summarizes the related work and in Section III we
describe in detail the REGINA strategy. Section IV discusses
our experiments and results and, finally, Section V concludes
this paper.

II. RELATED WORK

Due to the rise of deep learning-based architectures over the
last decade, an evolution in the action recognition challenges
has been witnessed. From the temporal information extraction
breakthrough in video data, using 3-dimensional convolutional
networks (3D ConvNets) [2], [4], [5], to the successful appli-
cation of graph convolutional networks (GCNs) [1], [3], [6]
to model skeleton-based data as a graph over the spatial and
temporal domains.

A. Skeleton-Based Action Recognition

Human pose estimation [17], [35], [36] is acknowledged
as one of the most important cues in behavior analysis/action
recognition topics. Typically, pose estimation techniques pro-
vide 3D representations of the subject skeleton, attenuating
the variations in appearance that RGB and depth data rep-
resentations contain, while obtaining semantically rich and
very descriptive representations that drive the learning process
exclusively over human dynamics. Consequently, skeleton data
ignited a variety of scientific works in action recognition, from
the pioneering techniques based in handcrafted features to the
current data-driven state-of-the-art approaches (deep learning-
based).

Handcrafted feature methods capture the actions dynamics
patterns by designing algorithms based on physical human
foreknowledge. Such patterns can be self-similarity descrip-
tors [10] to capture the temporal evolution of actions in
a nearly view-independent paradigm, or Lie group curves
[12], [13], to model the relative geometry between differ-
ent body parts (providing a more meaningful representation
than their absolute locations), or even covariance matrixes of
joint trajectories [37], that hierarchically encode the temporal
dependencies.

The existing deep learning-based architectures can be fur-
ther classified into three categories. CNN-based methods, that
represent the skeleton sequence data as pseudo-images through
pre-processing transformations, such as temporal cylindrical
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Fig. 2. Cohesive view of the REGINA incorporation in a spatio-temporal graph convolutional network (ST-GCN) [6]. A skeleton sequence is used
as input of the network, where a spatio-temporal graph is constructed over the sequence. The spatial adjacency matrix handles the intra-frame (spatial)
convolutions, while our temporal adjacency matrix handles the inter-frame (temporal) convolutions. The temporal graph convolution will consider the skeleton
joint information (from the spatial graph convolution) and its global information in terms of temporal progression through the optimized temporal adjacency
matrix. Finally, a standard Softmax layer predicts the corresponding action class.

coordinates [21], color series representing the skeletons [22],
or temporal concatenation of the skeleton sequence raw
coordinates [23]. RNN-based approaches, which are com-
monly applied over each human body joint coordinate vector,
model the skeleton data as a sequence to learn its long-term
contextual information, with a focus on resorting to LSTMs
[24]–[26]. More recently, spatiotemporal GCNs successfully
generalized the convolution from image to graph [1], [3], [6],
[38], [39], being justified by their improved representation of
structural information embedded in skeleton data, modeling
the data as a graph with vertices (joints) and edges (bones),
rather than vector sequences or 2D grids. This kind of
models has been consistently advancing the state-of-the-art
performance over the last years. Later on, Plizzari et al. [40]
proposed to use the leading neural architecture for Natural
Language Processing, Transformers, based on self-attention.
The authors substitute regular graph convolutions with a two-
stream transformer self-attention operator, which is spatially
and temporally applied directly on nodes. However, similar
to conventional graph convolutions, the temporal stream
transformer (T-TR) analyses the same joint independently
across time.

B. Graph Convolutional Networks

Considering that skeleton information can be naturally
embedded in graphs, the work by Yan et al. [6] inspired
several variants of spatiotemporal GCNs, by modeling skele-
tons as graph structures. The basis is that, for each node
(joint), a layer-wise update is performed with a heuristically
predefined neighborhood (adjacent joints). Additional modules
were proposed, such as graph directions [29] and attention
mechanisms [30]. Observing that the human body physical
connections tend to constraint the learned graph structure,
Shi et al. [3] proposed an adaptive adjacency matrix. More
recently, spatial and temporal shift convolutions were also
considered [1], having as goal to increase the flexibility of
the resulting graph structure.

Given the important role of GCNs in skeleton-based action
recognition, we observed that most state-of-the-art approaches
underestimate the importance of handcrafted-based features,
due to the challenge in representing the whole human skele-
ton dynamic complexity. Notwithstanding, we consider that

handcrafted-based techniques still provide valuable informa-
tion about the skeleton spatial arrangement and temporal
kinematics. In a way similar to the well-known optical flow
technique [41], there is no doubt that CNN-based methods
significantly overcome the performance of optical flow-based
methods. However, fusion optical-flow to CNN-based fea-
tures [42]–[45] not only advanced the state-of-the-art but has
also inspired future works. Our proposal, REGINA, is the first
to use handcrafted features at the core of GCNs. In opposition
to previously published approaches, it is the first of its kind to
provide an easy integration to other methods, by not modeling
the raw skeleton information from scratch, and - instead -
providing foreknowledge to GCNs as a way to conduct their
learning process.

III. REGINA: PROPOSED GRAPH

CONVOLUTIONAL ARCHITECTURE

As stated above, our rationale is that the richness of
skeleton-based data expedites the understanding of human
actions. In this section, we describe in detail our proposed
graph convolutions architecture that fuses skeleton-based shal-
low representations into graph convolutional units, which
enables to analyze complementary information and enhances
the effectiveness of GCNs on this task.

A. Reasoning Skeleton Information

The pioneering action recognition techniques were able to
extract consistent patterns of the human kinematics by resort-
ing to foreknowledge formulations that analyse the natural
body dynamics and extract skeleton information.

Having noticed the constrained structure of typical
GCN-based techniques due to their high-level formulation,
we propose to consider self-similarity descriptors between
representations of time-frame pairs. Such kind of information,
combined with skeleton-based sequences, explicitly describes
the temporal difference evolution for each time frame skeleton
pose, which provides additional information to the networks
that should useful in the optimization process (learning). The
underlying idea is that - this way - the graph is not required
anymore to implicitly estimate the global skeleton information,
and can analyze other types of (orthogonal) features, making
the recognition of human actions an easier task.
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Fig. 3. Example of the Self-Similarity Matrix (SSM) intra and inter-
action variance over the NTU RGB-D [20] dataset. The first-row illustrates
two actions done by different people and under different pose (Jump Up,
in the leftmost columns and Throw, in the rightmost columns). The bottom
row provides the corresponding SSM yielding from the corresponding skeleton
sequences.

Having observed the SSM features permanence with respect
to variations in pose and identity, we decided to use this kind
of handcrafted features in our action recognition experiments.
However, it should be noted that the proposed strategy can
use other types of handcrafted information, that can seemingly
integrated in our architecture without any other adaptions
required. However, for the proof-of-concept reported in this
paper, we resorted to the use of SSM in all experiments.
As illustrated in Fig. 3, the SSM patterns can easily provide
discriminating/permanent auxiliary information to the GCN,
enabling the network to analyze other kinds of information.
In this example, regarding the action “jump up”, the two
hotspots (e.g., in lower diagonal) reflect the body’s move-
ment’s flexion (before jumping) and the highest attainable
height from jumping up, the differences in the resulting SSM
values are obvious.

Aiming at perceiving the robustness of SSM descrip-
tor as generic features, we qualitatively evaluated them by
visualizing the feature embedding yielding from a state-of-the-
art action recognition technique (ST-GCN)and SSM. We ran-
domly selected 50 skeleton sequences of each class from the
cross-view validation benchmark of the NTU RGB+D [20]
dataset, and then extracted the features of the skeleton
sequences using our primary baseline pre-trained on the
respective training benchmark, spatiotemporal graph convo-
lutional networks (ST-GCN) [6], and the SSM descriptor used
in our experiments. These features were then projected into
the 2-dimensional space using t-SNE [46] technique. Figure 4
provides an illustration of the resulting embedding, where
colors represent the different actions (classes), and each point
represents one instance of the corresponding class.

Formally, let V ∈ R
n×t×c denote the skeleton sequence

representation with n joints, t frames, and c dimensions of
joint coordinates. Given a set of skeleton points V j = {vi j },
i ∈ {1, . . . , n} at time t , in this paper, we obtain the
self-similarity matrix S using the mean Euclidean distance
(� − 2 norm) between skeleton poses at any moments p and
q of the sequence:

dpq = 1

N

∑

i

‖vip − viq‖2, (1)

Fig. 4. Feature Embedding. Illustration of the Feature embedding (using
t-SNE [46]) obtained for ST-GCN [6] and SSM features on the cross-view
validation benchmark of the NTU RGB+D [20] dataset. Each point represents
one skeleton video sequence, with elements belonging to the same class (total
of 60 classes) appearing in the same color.

where vip and viq denote corresponding skeleton joints at
times p and q on the sequence. Consequently, by obtaining
a distance value between representations for all time-frame
pairs, the self-similarity matrix descriptor yields a hollow
square symmetric matrix of size t × t .

B. REGINA + Graph Convolutional Networks

The recent appearance of Graph Convolutional Net-
works (GCNs) enabled the extraction of embedded patterns
over the spatial and temporal axes of a skeleton sequence,
essentially by generalizing convolutions from images to
graphs. However, due to their high-level formulation, graph
convolutions are performed locally by taking into account
exclusively a root node neighboring set. Recent studies
reported that considering only local connections might be sub-
optimal for recognizing skeleton-based actions [1], [3], [29],
[38]. These findings provided our motivations to take advan-
tage of the valuable hard-coded knowledge from handcrafted
shallow representations and design a graph convolution that
not only considers an action holistic perspective in conven-
tional graph convolutions, but can also be easily integrated
into the current GCN-based approaches.

Let the skeleton-based data used in GCN be denoted as a
spatiotemporal graph G = (V, E), with n skeleton joints and
t frames. Therefore, the skeleton sequence’s feature map can
be denoted as X ∈ R

n×t×c, with c channels representing the
joints coordinates. Typically, in spatial graph convolutions, one
adjacency matrix A and one identity matrix I are used to define
the intra-body joints connections, which can be dismantled into
three partitions p (regarding the set of neighbors resulting from
the spatial configuration proposed in [6]) where A + I = ∑

p
Ap . In a single frame, the graph convolution is given by:

Y =
p∑

i=1

�
− 1

2
i Ai�

− 1
2

i XWi , (2)

where the degree matrix �ii
p = ∑

j (A
i j
p ) denotes the number

of edges attached to each joint node, to normalize the adja-
cency matrix Ap . Wp are the stacked weight vectors for each
partition group p.
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Over the temporal axis, graphs are defined over consecutive
frames, where most skeleton-based GCN approaches [3], [6],
[29], [31] use 1-dimensional kernels as the conventional tem-
poral graph convolution operators, where the receptive fields
are defined beforehand. Despite the temporal neighborhood
importance, it is obvious that the skeleton global perspective
is lost in this operation.

Considering the above weaknesses, we propose an adaptive
and learnable graph convolution network that mainstreams the
temporal evolution expressiveness (from the skeleton holis-
tic perspective) over the corresponding temporal receptive
fields from the temporal graph convolutions, that can also
be interpreted as a learnable temporal adjacency matrix. As
stated above, the self-similarity matrix S explicitly describes
the temporal difference for each time-frame with respect
to every other time-frames. However, since multiple graph
convolutional layers are used, different layers contain mul-
tilevel semantic information, and the raw integration of S in
(2) would result in the same rigid and pre-defined temporal
configuration to every layer. For our purposes, it was consid-
ered essential to adapt the handcrafted features to different
semantic levels. Hence, we resorted to a convolutional layer
over the self-similarity descriptor, in order to adaptively learn
the temporal configuration that fits optimally the hierarchical
structure of GCNs. An illustration of this idea is provided in
our reasoning graph convolutional unit in Fig. 1. Hence, our
major contribution can be defined as:

Rk = (
(SkW)�J k

)�
, (3)

where Sk is the representation of the temporal evolution
from the SSM comprised by the kernel size of the temporal
convolutional kernel patch k. J k is an all-ones vector of size c,
and W ∈ R

t×t×C denotes the filter weights from the temporal
convolutional layer with t as the kernel size. This way, we are
able to adaptively optimize our handcrafted descriptor, and
the reasoning term is obtained for all feature channels in the
graph convolution by incorporating (3) in (2), according to the
Hadamard product:

Y =
P∑

p=1

�
− 1

2
p Ap�

− 1
2

p
(
X � R)

Wp (4)

By incorporating the 2D convolution matrix directly into the
skeleton receptive fields of graph convolutions, we are able to
provide global information of the corresponding skeleton with-
out dismissing its partition strategies applied to the neighbor
set of each node. Furthermore, due to its simple formulation,
our contribution in (3) is able to be easily integrated into other
GCN-based methods, without preventing them from being
trained in an end-to-end manner, as described in Section IV-B.

IV. EXPERIMENTS AND DISCUSSION

In this section, we start by comparing the effectiveness
of two state-of-the-art GCN-based techniques with/without
our contribution (REGINA). Then, we compare our best
performing models to the state-of-the-art approaches over both
benchmarks of the well-known NTU RGB+D [20] dataset and
Kinetics-Skeleton [18].

A. Datasets, Evaluation Metrics and Experimental Settings

1) Datasets: Our experiments were conducted on two well-
known datasets NTU RGB-D [20] and Kinetics-Skeleton [18].
NTU RGB-D [20] is currently the most widely used human
labelled set for evaluating skeleton-based action recognition
methods in 3-dimensional space. This set is composed of
56,880 video samples, with 60 action classes. Data were
captured from highly restricted camera views providing 3D
skeleton and RGB-D data from 40 volunteers for each
action sample, with 25 joints for each skeleton. The authors
have recommended two benchmarks: 1) cross-subject, where
models are trained with 20 subjects and tested with the
remaining 20 subjects; and the 2) cross-view setting: where
models are trained with camera views 2 and 3 and tested on
camera view 1.

Kinetics-Skeleton is a human action dataset with 300,000
video clips in 400 action classes. Since it only provides
RGB videos without skeleton data, we obtain skeleton data
by human pose estimation with OpenPose toolbox [15]. The
human poses generated are in 2-dimensional space coordinates
(x, y) with 18 joints from the RGB videos. However, we also
use as input the confidence score c associated with each joint,
such as the joint feature vector becomes (x, y, c). We select
the two skeleton sequences with the highest average joint
confidence scores when multiple persons are present in the
scenes.

2) Evaluation Metrics: We followed the NTU RGB-D [20]
and Kinetics-Skeleton [18] convention and evaluated the
recognition performance by reporting the Top-1 and Top-5
recognition accuracy on both benchmarks.

3) Experimental Settings: The skeleton sequences temporal
length were normalized to t = 300 frames in both datasets.
Therefore, each self-similarity descriptor corresponding to one
skeleton sequence is defined by a 300 × 300 matrix. For
a fair comparison, the skeleton data was pre-processed as
described in [6] and [3] for the ST-GCN and 2s-AGCN exper-
iments, respectively. The methods that were used as baseline
comparisons with/without the proposed REGINA were not
adapted in any manner. The unique adaptation was that, when
considering our proposal, instead of the one-dimensional graph
convolutions, we used our temporal graph convolution scheme.
All experiments reported in this paper follow these guidelines
and settings.

B. Baselines Comparison

We evaluated the REGINA effectiveness with respect to
two state-of-the-art GCN approaches over both evaluation
protocols from NTU RGB-D [20] dataset, and the large-scale
benchmark Kinetics-Skeleton [18]. Furthermore, we combined
our approach with multi-stream architectures to illustrate the
robustness of our proposal to different kinds of features.

1) GCN-Based + REGINA Fusion: In order to verify
REGINA effectiveness when fused to GCN-based techniques,
we considered two baselines: the spatiotemporal GCN [6],
ST-GCN, and a two-stream adaptive GCN (2s-AGCN) [3],
being both described in Section II. As these baselines use
one-dimensional kernels in their temporal convolutions, some
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TABLE I

COMPARISON OF REGINA + GCN-BASED RESULTS. PERFORMANCE
COMPARISON WHEN FUSING THE PROPOSED REGINA ARCHITEC-

TURES TO TWO STATE-OF-THE-ART METHODS. RESULTS ARE

PROVIDED FOR BOTH BENCHMARKS OF

THE NTU RGB+D [20] SET

TABLE II

COMPARISON OF REGINA + GCN-BASED RESULTS.
PERFORMANCE COMPARISON WHEN FUSING THE PROPOSED

REGINA ARCHITECTURES TO TWO STATE-OF-THE-ART

METHODS OVER THE KINETICS-SKELETON [18] DATASET

adaptations were carried out in the original implementations to
add our temporal graph convolutions scheme in each method,
without any further changes in each original framework.
Noting that REGINA does not prevent any of those methods
from being trained in an end-to-end manner, we also used the
default learning settings, reporting the obtained performance in
Tables I and II. Results show that the REGINA scheme was
able to improve the overall GCN effectiveness, contributing
for improvements in performance. This is most evident in
the “ST-GCN + REGINA” configuration in both datasets,
where an improvement of 2.1 percentual points (i.e., decreas-
ing the Top-1 error rates over 12%) in the Cross-Subject
evaluation benchmark. With respect to the 2s-AGCN network,
the performance improvements were not as much significant,
and were mostly observed in the Cross-View setting. In our
viewpoint, this was due to the learnable graph topology of that
technique, which has additional flexibility to better suit the
hierarchical structure of GCNs, reducing the benefits due to
the inclusion of the SSM-based handcrafted features. Also, the
REGINA scheme’s improvements over the Kinetics-Skeleton
were not as notable as for the NTU RGB+D dataset. This
is justified by the quality of the skeleton pose from the data,
and 2-dimensional space skeleton poses are less informative
than 3-dimensional space. While NTU RGB+D was human
labelled in 3-dimensional space, the Kinetics-Skeleton was
obtained with a pose estimation algorithm from RGB images
only, and the errors are much more frequent.

2) Multi-Stream Architectures + REGINA Fusion: Most
of the state-of-the-art methods utilize multi-stream fusion
strategies. As a baseline to verify whther REGINA also
contributes for improvements in performance for such kind
of architectures, we considered a two-stream adaptive GCN

TABLE III

COMPARISON OF REGINA EFFECTIVENESS IN MULTI-STREAM
ARCHITECTURES. PERFORMANCE COMPARISON REGARDING THE

INTEGRATION OF REGINA IN DIFFERENT FEATURE STREAMS

(JOINTS AND BONES) OVER BOTH BENCHMARKS

OF THE NTU RGB+D [20] SET

TABLE IV

COMPARISON OF REGINA EFFECTIVENESS IN MULTI-STREAM ARCHI-
TECTURES. PERFORMANCE COMPARISON REGARDING THE INTEGRA-

TION OF REGINA IN DIFFERENT FEATURE STREAMS (JOINTS AND
BONES) OVER THE KINETICS-SKELETON [18] DATASET

(2s-AGCN) [3], which resorts not only to joints information
(first-order) but also the second-order information (bones) of
the skeleton-based data. Each stream of this framework is
trained individually, combining both features to obtain the final
class prediction.

The bones information is found by the difference between
coordinates of two connected joints. For instance, for a bone
with its source joint vi = (xi , yi , zi ) and target joint v j =
(x j , y j , z j ), the corresponding vector is given by bvi ,v j =
(x j −xi , y j − yi , z j −zi). Considering that the human skeleton
is an acyclic graph, we can assign each bone to a unique
target joint. Moreover, as the skeleton central joint cannot
be assigned to any bone, there is one bone less than joins
in a skeleton, and - thus - an empty bone was added to the
central joint to simplify the network design. We then obtain
the self-similarity descriptor for the second-order information,
similarly to the joints graph described in (1).

The results are shown in Tables III and IV. As can be
seen, the REGINA scheme has - again - contributed for
improvements in the results on both datasets. This is more
evident in the joint-stream than in the bone-stream, which
was justified by the fact that joints are less informative and
discriminative than bones, where we already have the length
and direction information.

C. State-of-the-Art Comparison

To objectively perceive whether REGINA provides consis-
tent advances over the state-of-the-art, in this section we com-
pare the results attained by REGINA with/without the ST-GCN
and 2s-AGCN architectures in both benchmarks of the NTU
RGB-D [20] dataset and on Kinetics-Skeleton [18] dataset.
As previously stated, the state-of-the-art can be considered
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TABLE V

NTU RGB+D RECOGNITION RESULTS. PERFORMANCE SUMMARY OF THE REGINA ARCHITECTURE FUSED TO THE ST-GCN AND 2S-AGCN

ARCHITECTURES, WITH RESPECT TO THE STATE-OF-THE-ART METHODS IN SKELETON-BASED ACTION RECOGNITION OVER

BOTH BENCHMARKS FROM THE NTU RGB+D [20] DATASET

to comprise three categories: 1) handcrafted feature methods;
2) manually structured skeleton data approaches (CNNs and
RNNs); and 3) and graph-based architectures. Our results are
summarized in Tables V and VI, being the methods grouped
according to this criterion, in the “Type” column. As can be
seen, REGINA is the first attempt to combine methods of
two of out of these families: handcrafted features-based and
graph-based networks.

The first observation was the overwhelming performance
of graph-based architectures, when compared to the manually
structured-based skeleton ones, such as CNNs and RNNs.
Even though the latter approaches can be considered to
still successfully extract structural information according to
their data-driven architectures, it was evident solid improve-
ments can be attained when modeling the skeleton data
as a graph. Furthermore, despite the relatively poor perfor-
mance of standalone handcrafted-based shallow representa-
tions, an overall improvement in performance can be obtained
if handcrafted-based features are seemingly integrated more
sophisticated Graph-based techniques, as the results of
“ST-GCN + REGINA” (for both Cross-Subject, Cross-View
settings and Kinetics-Skeleton) and “2s-AGCN + REGINA”
(for the Cross-View setting and Kinetics-Skeleton).

The results obtained also turn evident the relatively poor
performance of the ST-GCN model, when compared to
the deep reinforcement learning GCN (DPRL+GCNN) [39],
where this method resorts to reinforcement learning to select
keyframes through a frame distillation network to refine the
GCN. However, the ST-GCN enhanced by our proposal is
able to overcome DPRL-GCNN performance over NTU RGB-
D [20], which we also consider to provide a sifgnificant
cue over the improvements that would also be attained if
fused to other similar techniques. In our view, this is mostly
due to the fact that the optimized temporal adjacency matrix
provides self-attention information to specific frames, while

TABLE VI

KINETICS-SKELETON RECOGNITION RESULTS. PERFORMANCE

SUMMARY OF THE REGINA ARCHITECTURE FUSED TO THE

ST-GCN AND 2S-AGCN ARCHITECTURES, WITH RESPECT
TO THE STATE-OF-THE-ART METHODS IN SKELETON-BASED

ACTION RECOGNITION OVER THE

KINETICS-SKELETON [18] DATASET

keeping the property of automated training in an end-to-end
manner. Overall, our experiments point out that using graph
convolutional networks fused to handcrafted-based feature
layer can be considered an improvement for action recognition.
Specifically, REGINA is able to achieve competitive results,
bringing gains up to 2.1 and 1.3 percentile points within the
ST-GCN and 2s-AGCN, respectively on NTU RGB-D, and
overcoming the state-of-the-art methods on both datasets.

D. Ablation Studies

In order to perceive the most important REGINA compo-
nents and evaluate the overall robustness of our method to
changes in parameterization, we varied the distance metrics
used to obtain the self-similarity descriptor, the convolutional
kernel size used in the handcrafted-feature fusion. Also,
we performed additional experiments that show the importance
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TABLE VII

SELF-SIMILARITY’S DISTANCE METRICS RESULTS. PERFORMANCE

SUMMARY OF DIFFERENT DISTANCE METRICS OVER THE

CROSS-VIEW BENCHMARK OF NTU RGB+D [20]

TABLE VIII

EFFECTIVENESS OF THE TEMPORAL ADJACENCY MATRIX.

PERFORMANCE COMPARISON OF THE RESULTS OBTAINED

WITH/WITHOUT THE CONVOLUTIONAL LAYER. RESULTS

ARE GIVEN FOR THE Cross-View BENCHMARK

OF NTU RGB+D [20] SET

of the learnable temporal adjacency importance over the
handcrafted features.

1) Role of the Distance Metrics: We compare two different
distance metrics between time-frame pairs in obtaining each
skeleton sequence self-similarity matrix: a) the Manhattan
distance, also known as � − 1 norm, which expresses the
sum of individual coordinates shifting difference between two
skeleton poses from different temporal instances; and b) the
Euclidean distance, also known as � − 2 norm, that expresses
the direct distance from one pose to another from the temporal
skeleton difference perspective. As shown in Table VII, the
self-similarity descriptor using with the � − 1 norm and fused
to the ST-GCN [6] network is already able to improve the
baseline performance. However, since the similarity between
two time-frame pairs only considers the distance between the
same joints, without any structural information, directions or
angles, better expressiveness of the temporal kinematics can
be captured by the � − 2 norm, which justifies the optimal
performance observed for that distance function.

2) Learnable Temporal Adjacency Matrix Effectiveness:
As described in Section III-B, the temporal adjacency matrix
consists of a convolutional layer on top of the handcrafted
feature, which then becomes a learnable matrix that con-
trols the GCN temporal receptive fields through the self-
similarity matrix. For ablation purposes, we manually removed
the convolutional layer and observed the resulting REGINA
performance, with results shown in Table VIII. The obtained
values show that the learnable temporal adjacency matrix has
the ability to adapt to different semantical levels, which is
beneficial for the hierarchical GCN as different layers contain
multilevel semantic information. This way, REGINA architec-
ture without the convolutional layer can be seen as a rigid and

TABLE IX

IMPORTANCE OF THE KERNEL SIZE FROM THE LEARNABLE

TEMPORAL ADJACENCY MATRIX OVER THE HANDCRAFTED

FEATURE. RESULTS REGARD THE RECOGNITION PERFORMANCE

OVER THE Cross-View BENCHMARK OF THE NTU RGB+D [20]

SET, WITH DIFFERENT KERNEL SIZES (k) OF THE

CONVOLUTIONAL LAYER ON TOP OF THE

HANDCRAFTED FEATURE

pre-defined temporal configuration (self-similarity descriptor)
to every layer. Despite still contributing for improvements in
performance than the ST-GCN [6] alone, this fusion scheme
is clearly sub-optimal. Consequently, the graph convolution
architecture with the learnable temporal adjacency matrix
achieves consistently higher performance than its counterpart.

3) Exploring the Convolutional Kernel Size: Finally,
we conducted some experiments on REGINA, when varying
the kernel size (k) of the learnable adjacency matrix (Conv2D
Layer in Fig. 1). Based in the results reported in Table IX,
we can see that our model performance reaches a peak when
k = 3, meaning that we have nine temporal comparisons (from
the self-similarity matrix) being fed into the convolutional
kernel. For smaller kernel sizes (k = 1), we only perform
one comparison per convolution operation, which decreases
the information feed to the subsequent layer of the network.
In opposition, for larger k > 3 values, the performance was
observed to decrease again, which we justified to the too high
number of temporal comparisons fed into the convolutional
kernel, that affects the discriminability of the descriptor itself
(i.e., it is a weighted mean of too many values). This has
a negative effect in the extraction of short-term temporal
adjacency features, which results in lower performance.

V. CONCLUSION AND FURTHER WORK

The automated and reliable recognition of human actions
has been the focus of substantial research efforts, being
accepted that it will support various applications in the secu-
rity/forensics domains. In this context, Graph Convolutional
Networks-based (GCNs) approaches have been advancing
consistently the state-of-the-art performance, being currently
the most popular kind of approaches for this problem. In this
paper, we proposed REGINA, an architecture that can be
faithfully integrated into the state-of-the-art GCNs techniques
and enables consistent improvements in performance over
the baselines. The idea is to fuse the information naturally
extracted by GCNs to particularly interesting handcrafted
representations (SSM), which provide complementary infor-
mation to the networks and intuitively enables that the net-
works focus in extracting alternate (orthogonal) information
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to the SSM during the optimization process. As a result, the
network has access to additional cues that were observed
to contribute for improvements in performance. Also, the
proposed REGINA scheme is able to overcome the limitations
of conventional temporal convolutions, by capturing discrim-
inative features over the temporal dynamics. Our experiments
pointed out for highly encouraging results, where REGINA
+ state-of-the-art GCN techniques - is able to push forward
their performance on two challenging benchmarks. Our efforts
are currently focused in finding/describing automatically other
kinds of handcrafted features that will also be positively com-
bined to the automatically extracted by GCN-based networks.
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