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Abstract—Inferring soft biometric labels in totally uncontrolled
outdoor environments, such as surveillance scenarios, remains a
challenge due to the low resolution of data and its covariates
that might seriously compromise performance (e.g., occlusions
and subjects pose). In this kind of data, even state-of-the-art
deep-learning frameworks (such as ResNet) working in a holistic
way, attain relatively poor performance, which was the main
motivation for the work described in this paper. In particular,
having noticed the main effect of the subjects’ “pose” factor, in
this paper we describe a method that uses the body keypoints
to estimate the subjects pose and define a set of regions of
interest (e.g., head, torso, and legs). This information is used to
learn appropriate classification models, specialized in different
poses/body parts, which contributes to solid improvements in
performance. This conclusion is supported by the experiments
we conducted in multiple real-world outdoor scenarios, using the
data acquired from advertising panels placed in crowded urban
environments.

Index Terms—Pedestrian attribute recognition, skeleton detec-
tion, pose estimation, segmentation.

I. INTRODUCTION

Being often the first mentioned attribute to describe a
person, gender estimation is useful in many areas of computer
vision, such as surveillance, forensic affairs, marketing, and
human-robot interaction. In the first decade of this century,
datasets were small and most approaches were based on
handcrafted features such as Histogram of Oriented Gradients
(HOG). However, after the advent of deep learning frame-
works, scholars focused on collecting extensive labeled data
and developing deeper networks.

In the literature, gender estimation from facial images has
received more attention than whole-body. However, in this
paper, we use full-body images since in Pedestrian Attribute
Recognition (PAR) scenarios not only the quality of facial
regions decreases, but also the body features are more robust
to far distances.

[1] proposes a fine-tuned CNN model to predict the gender
from the “front”, “back” and “both” views. They employ a
parsing mechanism via the decompositional neural network
(DNN) to remove the background. The foreground is then
parsed in the upper and lower bodies so that the two CNNs
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are fine-tuned. As a conclusion, feeding upper-body images
to the network slightly improves the results. However, they
have gray scaled and forced-squared the images which cause
the loss of color-based features and data deformation. In [2],
authors apply HOG alongside a CNN and concatenate the
extracted features that are used as the input of a Softmax
classifier. Although the expressiveness of the data is protected
in this method, feature redundancy in the last layer can lead
to a biased model that degrade the performance in real-world
applications. [3] presents another work that adopts an extra
thermal camera for data acquisition. Using CNN methods, they
extract the features from visible images and thermal maps and
fuse them in score level by exploiting Support Vector Machine
(SVM) learner. As they apply thermal images for recognition,
the algorithm can fail in crowded places with occlusion, which
is a real and critical scenario.

In addition to the mentioned weaknesses, the datasets in pre-
vious works are mainly collected from one location which can
cause some easiness such as: monotonous illumination, stable
camera settings, controlled occlusion, similar background, and
controlled distance acquisition. While in this paper, we collect
a dataset from outdoor and indoor advertisement panels in
more than 100 cities of Portugal and Brazil∗.

Further, we propose a Pedestrian Gender Recognition Net-
work (PGRN) which provides several decisions based on the
subject pose and some Regions of Interest (RoI) so that the
decision with maximum certainty is reported as the final
recognition (Fig. 1). The performed experiments on three
datasets show the superiority of the proposed algorithm in
comparison with the state-of-the-art methods, as detailed in
section 3.

II. PEDESTRIAN GENDER RECOGNITION NETWORK
(PGRN)

Regarding the impact of pose variation on the biometric
system performance, we develop our proposed algorithm on
a human body keypoint detection and tracker platform. In
general, the suggested PGRN is divided into the following
steps: training the baseline network called Base-Net, key point
detection and tracking, pose extraction, RoI extraction, fine-
tuning Pose-Sensitive Networks (PSN), and score fusion.

∗https://tomiworld.com/locations/
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Fig. 1: Overview of the proposed algorithm called PGRN. Taking advantage of the human detector, skeleton detector, and
human tracker, we extract the bounding boxes alongside 16 body keypoints for each person. Afterward, the training set is split
into three subsets corresponding to the desired poses (i.e. frontal, rear, and lateral). The RoIs are then extracted and fed to the
Pose-Sensitive Network (PSN) which is constructed from three specialized ResNet50 networks. The weights of a pre-trained
network (i.e. Base-Net) are shared with each of these PSNs to reduce the time of training. Finally, the most confident score
from the RoIs is considered as the final score for recognition.

A. Base-Net

Although the pre-trained CNNs on the ImageNet dataset
have shown promising results on various recognition tasks, it
is interesting to note that training from scratch or updating the
weights of all layers necessarily leads to better results upon
the availability of sufficient data. As we have collected a large
proprietary dataset (i.e. Biometria e Deteção de Incidentes
(BIODI)), the weights of the network trained on the ImageNet
dataset are considered as the initial weights for our model.
Afterward, the whole layers of the network are trained on raw
images of the BIODI. This network is named as Base-Net that
later will be used for transferring the knowledge to the PSNs.

B. Body Key-Point Detection and Tracking

BIODI is composed of 216 video clips of wild visual
surveillance environments taken from different countries. We
started by analyzing each video using a state-of-the-art ap-
proach called Alphapose [4] that is an accurate real-time and
multi-person skeleton detector based on an object detection
method named Faster-RCNN [5]. This object detector provides
the bounding boxes (BBs) of multiple humans in each frame.
Then, the human BBs are fed to the Spatial Transformer
Network (STN) [6], which yields high quality dominant human
proposals. In other words, the out put of the STN are some
transformed human proposals, therefore, after estimating the
skeleton of each person using the Single Person Pose Estimator
(SPPE) [7], each set of the body keypoints needs to be mapped
to the original image coordinate using a de-transformer net-
work.

So far, the detection of BBs and skeleton of each person
in each frame is done. To perform the tracking, the straight
forward approach is to connect the current skeletons to the
closest skeletons in the next frame. However, this method
produces errors when there are several poses close to each

other. Therefore, we apply Poseflow [8] that works based on
a small inter-frame skeleton distance (dc) and a large intra-
frame skeleton distance (df ) of the form Eq. 1. Finally, we
storage all the BBs and body keypoints related to each human
subject to the disk for the next step.
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where S1 and S2 are two skeletons related to two different
individuals in a frame in B(Sn

1 ) and B(Sn
2 ) bounding boxes,

respectively. fn
1 and fn

2 are extracted features of these boxes
and n ∈ {1, ..., N} in which N represents the number of
body keypoints, and σ1, σ2, and λ can be determined in a
data-driven manner.

C. Pose Inference

For a biometric system specialized in specific human body-
pose, various body gestures provide different features, there-
fore, unseen poses in the test set highly impact its performance.
On the other hand, pose-specialized networks are not able to
learn the important features if we split the train set to many
subsets of different poses. Regarding this matter and number
of images of our dataset, we considered only the three most
common poses of pedestrians, including ”frontal”, ”rear”, and
”lateral” views.

As the BBs are extracted using an object detector, the
aspect ratio (width/height) of each BB is 1.75. We visualized
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quite a few numbers of body keypoints (see Fig. 2(a)) on the
resized images (175x100) and discovered that individuals with
shoulder-width lower than nine pixels (out of 100 pixels) in
the invariant-scale RoIs can be a nominate for lateral view
images. It worth mentioning that, we considered the other body
keypoints to perform this experiment, however, the best results
are obtained using the shoulder-width points. If pi = (xi, yi)
represents the coordinates of body points, the desired poses
are:

Pose ≡

{
Frontal view; if xv − xz < −9
Rear view; if xv − xz > 9
Lateral view; if |xv − xz| =< 9 pixels,

(2)

where (xv, yv) and (xz, yz) respectively are 13th and 14th

body-point coordinates illustrated in Fig. 2(a).

D. RoI: Segmentation and Cropping Strategies

By joining the exterior body points p we obtain a polygon,
we find it useful to create a mask by applying Convex-Hull
on this set. For N points p1, ..., pN , the Convex-Hull is the
set of all convex combinations of its points such that in a
convex combination each point has a positive weight wi. These
weights are used to compute a weighted average of the points.
For each choice of weights, the obtained convex combination
is a point in the Convex-Hull. Therefore, choosing weights in
all possible ways, we can form a black polygon-shape as Fig.
2(b). In a single equation, the Convex-Hull is the set:

CH(N) =

{
N∑
i=1

wipi : wi ≥ 0 for all i, and

N∑
i=1

wi = 1

}
.(3)

Figure 2 illustrates this process for a sample image. To avoid
information lost when performing the Convex-Hull algorithm,
we consider two extra points (xl, yl) and (xr, yr) near the ears.
Therefore, yl = yr = yn+yh

2 and xl = xn−yl , xr = xn−yr,
where (xn, yn) and (xh, yh) are 9th and 10th body-point
coordinates illustrated in Fig. 2 (a), respectively. The polygon-
mask is then produced by painting inside of the obtained
Convex-Hull with black, and this mask is employed to segment
the raw images.

Considering that the facial region carries information about
most human traits, including gender, we used different sets of
body points such as the elbow, chest-bone, head, neck, and
shoulders to crop the head. Under visual inspection, the best
results are obtained using the head, chest-bone, and shoulders’
points that have been shifted out ten pixels.

E. Pose Sensitive Network and Score Fusion

The Pose Sensitive Network (PSN) is composed of three
sub-networks, specialized in three poses (i.e. frontal, rear, and
lateral poses). Using weight-sharing, the knowledge of the
Base-Net is transferred to these sub-nets. For each image,
there are three patches (i.e. head, polygon, whole image)
corresponding to three PSNs (see Fig. 1). The obtained scores
for each patch are then concatenated, and the highest one is
selected as the final score of the image, which means that the
model decides based on a optimistic perspective. For example,

(a) (b)

(c)

Fig. 2: Foreground segmentation process. After determining
the exterior border using the Convex-Hull, a mask is created
and the foreground is cropped. (a) Body keypoints (b) Red
points are considered as a reference for adding two green
points near the head so that the polygon-crop contains the
head and hair (c) Samples of segmented images which will
have a black background in training phase.

in case of partial body-occlusion and low score recognition for
the full-body image, the model presumably decides based on
the head-crop region.

III. EXPERIMENTS AND DISCUSSION

First, we describe the strategy of the data collection and
discuss the unique features of the collected dataset. We then
briefly explain the two public datasets for which we evaluated
our model. Finally, after describing the experimental settings,
we provide the results.

A. Datasets

In general, deep-learning-based biometric systems are sen-
sitive to data variability. Due to the environment and subject
dynamics, a biometric system trained in a specific place cannot
produce the best results in unseen places. This even becomes
more critical in universal systems dealing with humans as the
subject of interest, because not only the environment alters,
but the styles of clothing and body pose differ in various
situations. For instance, the recognition rate will be highly
affected in a cold and rainy night as people usually cover
their bodies, heads, and faces while carrying an umbrella
which has occluded the upper body. Therefore, regarding the
lack of datasets that cover a wide range of variations in the
environment and pedestrian, we collected the BIODI dataset
from 36 advertisement panels in Portugal and Brazil at indoor
and outdoor locations; different moments of the day including
morning, noon, evening and night; and various weathers. Table
I summarizes the statistics of this dataset. Each panel has
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Factors Statistics

No. of videos, subjects, and BBs 216, 13876, 503433
Length of videos 7 minutes
Frame rate extraction 7 frames/sec.
Aspect ratio of BBs (Height/Width) 1.75
No. of frontal, rear, and lateral BBs 256485, 235564, 11384

TABLE I: Statistics of the BIODI dataset

one embedded camera with 1.5-meter vertical distance from
the ground. Table II shows several samples of the BIODI
dataset. It worth mentioning that this private dataset has been
annotated manually for 16 soft biometric labels including
gender, age, weight, race, height, hair color, hair style, beard,
mustache, glasses, head attachments, upper-body cloths, lower-
body clothes, shoes, accessories, and action.

To make our results reproducible, we report the performance
of our method on public datasets such as PETA (excluding
MIT) and MIT. Briefly, MIT pedestrian dataset consists of 888
outdoor images with 64x128 pixels annotated for frontal and
rear views. Approximately, half of the images are in frontal
view, and female’s share is one-third of the dataset. PETA
is a collection of 19000 images consisting of 10 different
datasets, including the MIT dataset. However, MIT is excluded
from PETA since the proposed model will be evaluated on it,
separately. It is worth mentioning that, in PETA benchmark,
the number of males and females are almost the same and
there is no view-wise annotation.

B. Experimental Settings

In our experiments, we use Python 3.5 and Keras 2.1.2 API
on top of the Tensorflow 1.13. In order to avoid over fitting,
we add the batch normalization, max pooling, and drop out
layers to the ResNet50. The learning rate is set to 0.005 for
the Stochastic Gradient Descent (SGD) optimizer. It is worth
mentioning that we resized the images to 175 x 100 pixels,

Description Samples

Outdoor, Noon, Occlusion

Outdoor, Summer, Night

Outdoor, Winter, Night

Outdoor, Fall, Evening

Outdoor, Summer, morning

Indoor, Spring, Occlusion

TABLE II: Sample images of the BIODI dataset that guaran-
tees a wide spectrum of subject and environment changes.

applied standardization per image, and performed horizontal
mirror augmentation.

We evaluate the proposed model on three datasets BIODI,
MIT, and PETA such that 70% of the BIODI (i.e. 352400
images) and PETA (i.e. 12680 images) datasets are allocated
to the training phase. As MIT is a small dataset with 888
images, we used 50% of the data for test phase to have stable
results beacuse in each test-run the recognition rate have some
variations.

C. Results and Discussion

Considering the explanations in the previous section, the
ex periments were conducted in three forms: raw images,
head-cropped regions, and polygon-shape regions. Afterward,
each trained model is tested. Table III shows the results of
the proposed model on the RoIs which indicates that lateral-
view state is the most difficult recognizable pose with around
84% and 80% accuracy for the BIODI and PETA datasets,
respectively. Furthermore, Frontal-Net outperformed the Base-
Net by 1.6% while Rear-Net improved the results from 84.49%
to 85.18%, and Lateral-Net estimated the gender slightly
better. Moreover, the increase of the 2% accuracy in polygon-
crop images shows that the background negatively affects the
performance of the networks. Hence, developing the powerful
segmentation algorithms for human full-body is suitable for
further studies.

Table IV shows the evaluation of the proposed approach
on MIT dataset. Notably, we achieve an average accuracy of
90.0%, 87.9%, and 89.0% for the frontal, rear, and mixed-
view images, respectively, that are outperforming the results
obtained by other methods.

IV. CONCLUSIONS AND FUTURE WORKS

Regarding the ubiquitous surveillance cameras and the low-
quality facial acquisitions, it is necessary to develop methods
that deal with full-body images, occlusions, pose variation, and
various illuminates. To this end, we proposed an algorithm for
pedestrian gender recognition in crowded urban environments
so that the output of a body-joints detector is applied for
splitting the images into three common poses. Further, tak-
ing advantage of transfer learning, the specialized networks
were fine-tuned for extracted RoIs. Extensive experiments on
multiple challenging datasets showed that proposed PGRN can
effectively estimate the gender and consistently outperform the
state-of-the-art methods. As the next step, we have focused on
developing an end-to-end network capable of estimating body
related soft biometric traits such as weight, age, height, and
race.
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