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Abstract—We propose a reversible face de-identification
method for video surveillance data, where landmark-based
techniques cannot be reliably used. Our solution generates a
photorealistic de-identified stream that meets the data protection
regulations and can be publicly released under minimal privacy
concerns. Notably, such stream still encapsulates the informa-
tion required to later reconstruct the original scene, which is
useful for scenarios, such as crime investigation, where subjects
identification is of most importance. Our learning process jointly
optimizes two main components: 1) a public module, that receives
the raw data and generates the de-identified stream; and 2) a
private module, designed for security authorities, that receives
the public stream and reconstructs the original data, disclosing
the actual IDs of the subjects in a scene. The proposed solution
is landmarks-free and uses a conditional generative adversarial
network to obtain synthetic faces that preserve pose, lighting,
background information and even facial expressions. Also, we
keep full control over the set of soft facial attributes to be
preserved/changed between the raw/de-identified data, which
extends the range of applications for the proposed solution. Our
experiments were conducted in three visual surveillance datasets
(BIODI, MARS and P-DESTRE) plus one video face data set
(YouTube Faces), showing highly encouraging results. The source
code is available at https://github.com/hugomcp/uu-net.

Index Terms—Visual Surveillance, Video Processing,
Anonymization, Privacy, Security and Forensics.

I. INTRODUCTION

V Ideo-based surveillance regards the act of watching a
person or a place, esp. a person believed to be involved

with criminal activity or a place where criminals gather1.
While this kind of technologies has been sustaining the growth
of social monitoring and control tools, it also hosts crime pre-
vention measures throughout the world, raising debates about
proper solutions that balance security/privacy issues [50].

Human re-identification has been extensively studied and
solutions are becoming more effective. Zhu et al.[71] ad-
dressed the problem of matching images of different quality,
proposing a classification-verification-classification strategy,
where models are trained iteratively: at first for multi-class
classification and then in a verification setting. Qi [39] de-
scribed a loss-sensitive GAN model, training a model to
distinguish between real/fake samples, while also learning
a generator that produces realistic samples. Upon Lipschitz
regularisation, this technique is claimed to better generalize
than classic GANs. Qi et al. [38] described a localised GAN

H. Proença is with the IT: Instituto de Telecomunicações, Depart-
ment of Computer Science, University of Beira Interior, Portugal, E-mail:
hugomcp@di.ubi.pt

Manuscript received ? ?, 2020; revised ? ?, ?.
1https://dictionary.cambridge.org/dictionary/english/surveillance

Ue

Raw Stream
xi,j,k

De-identified (Public) Stream
ai,j,k

Reversed Stream
ri,j,k

1 5 6
2

3
4

1 Anonymization: ID(x.) 6= ID(a.)

4 Temp. Consist.: ID(ai,j,k) = ID(ai,j,k′ )3 Diversity : ID(ai,.,.) 6= ID(aj,.,.)

2 Reversibility: r. = Ud

(
Ue(x.)

)
= x.

5 Pose Consistency: (xi,j,k , ai,j,k) 6 Background Consist. : (xi,j,k , ai,j,k)

Ud

Fig. 1. Key properties of a reversible video de-identifier: the identity of
every face in the public stream should be obfuscated (1), while keeping
pose (5) and background (6) information, to assure seamless transitions and
photorealism. Also, the de-identified faces should be diverse among identities
(3) and consistent (4) across the frames of a sequence. Finally, it should be
possible to reconstruct the original data (2) exclusively based in the public
stream.

that uses local coordinates to create manifold geometry fea-
tures. The locality nature of these models enables generators
to directly access the local manifold geometry, alleviating
the possibility of mode collapse. Observing that handcrafted-
based methods tend to lose spatial information during the
encoding phase, Tao et al. [55] considered images as two-
order tensors from where a low-dimensional tensor-subspace is
obtained, keeping information of the image structure. Recently,
Wu et al. [57] evaluated empirically the effectiveness of
metric learning solutions in handcrafted/deep-learning repre-
sentations, which have been closely tied to re-id problems.
Assuming the difficulties to obtain ground-truth labels in this
kind of problems, Tao et al. [56] proposed a weighted majority
voting procedure for crowdsource annotations, based in the
expertise of annotators and domain adaptation concepts.

As a response to the increasing effectiveness of re-id meth-
ods, anonymising publicly-recorded video streams is seen as
a solution to privacy concerns, to comply with data protection
regulations like GDPR2 and CCPA3. In this context, the ear-
liest de-identification techniques obfuscated privacy-sensitive
information by low-level image processing operations, such
as downsampling, blurring or masking (e.g., [5] and [35]), but
also destroying privacy-insensitive information and decreasing
photorealism. Recently, more sophisticated techniques were
proposed, based in active appearance models (AAMs) and

2https://eur-lex.europa.eu/eli/reg/2016/679/oj
3https://privacyrights.org/resources/california-consumer-privacy-act-basics
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facial landmarks (e.g., [16], [31] and [47]). In particular,
conditional Generative Adversarial Networks (cGANs) are
a popular choice to control the appearance of synthesised
data, being used in cross-domain image synthesis, text-to-
image translation and fashion synthesis (e.g., [25], [41], [65]
and [69]).

As illustrated in Fig. 1, reversible video de-identification
is a challenging task. Not only the original stream needs to
be seamless modified, keeping concerns about distortions and
other artefacts, but also the IDs must be obfuscated in a
visually pleasant way, while considering constraints such as
background information, pose and lighting conditions.

In this work, we consider the face as the most sensitive
identifier in public data. We propose a reversible face de-
identification solution for video data based in a two-phase
adversarial learning process. In inference time, our model
is decomposed into two disjoint parts: 1) an encoder Ue

that receives the raw data and generates their de-identified
version, ensuring IDs obfuscation and temporal consistency,
while preserving pose, lighting, background information and
facial expressions. This yields the public stream, usable for
analytics tools and social media; and 2) a decoder Ud, avail-
able only to authorities, that reconstructs the original scene
exclusively based in the public stream. Note that neither the
original stream nor any sensitive meta-information are stored
or transmitted over the network, assuring the individuals’ right
to privacy (for public exposure purposes), while still enabling
to disclosure the actual IDs in a crime scene.

The root of our solution is a cGAN composed of two
sequential U-shaped models [44] (hence UU-Net), used re-
spectively for de-identification/reconstruction purposes. At
first, a multi-label CNN classifier is inferred, to estimate the
agreeing/disagreeing labels between image pairs (ID, gender,
ethnicity, hairstyle and age). This model is used in the second
learning phase, which works under the adversarial paradigm: a
generator attempts to fool a PatchGAN [25] discriminator, that
is responsible to distinguish between the raw, anonymised and
reconstructed faces. Depending of the weights given to each
component of the pairwise discriminator responses, we keep
full control over the appearance of the anonymised faces, and
determine the labels that should agree/disagree between the
raw/de-identified faces.

Considering that our method was designed to work in
surveillance data of relatively poor resolution, we kept it
landmarks-free and independent of any face alignment step
based in fiducial points. Instead, its unique pre-requisite is
a face detector (e.g., [42] or [13]). In inference, once the
generator Ue creates the anonymised faces, we use image
steganography [14] to seamlessly hide information of the
bounding boxes in the public stream. This is important for
reconstruction purposes, to define the regions-of-interest re-
versed by the decoder model Ud. In summary, we provide the
following contributions:
• we propose a two-stage learning process and an architec-

ture to de-identify sequences of facial images in visual
surveillance video streams;

• based on the responses provided by an image pairwise
analyzer, we offer full control over the labels that should

agree/disagree between the original/de-identified data;
• using image steganography, we encapsulate the

anonymised faces and the corresponding regions-
of-interests in the public video stream, which can be
released without compromising the individuals’ right to
privacy;

• using exclusively the publicly available data, the second
part of our model reconstructs the original scenes and
disclosures the actual ID of the subjects in a scene. This
module is designed for security authorities, to be used
in crime scenes investigation.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most relevant research in the scope
of the paper. Section III provides a detailed description of
the proposed method. Section IV discusses the results of
our empirical evaluation, and the conclusions are given in
Section V.

II. RELATED WORK

This section summarizes the existing works in the
image/video-based face de-identification context.

A. Image-Based Face De-identification

The earliest methods used simple image processing oper-
ations, such as blacking-out, pixelation or blurring (e.g., [5]
and [35]), yielding poor realistic anonymised data. Later, Blanz
et al. [3] estimated shape, pose and illumination in pairs of
faces, and fitted morphable 3-D models to each one, rendering
new faces by transferring parameters between source/target
models. [36] proposed an eigenvector-based solution in which
faces are reconstructed by a fraction of the eigenface vectors,
such that ID information is lost. Similarly, Seo et al. [49]
were based on watermarking, hashing and PCA representations
of data. Bitouk et al. [4] proposed a method that replaces a
target by a gallery element, selected according to its similarity
to the query. Gross et al. [19] used multi-factor models that
unify linear, bilinear and quadratic data fitting solutions, but
requiring a AAM to provide landmarks information.

The k-Same algorithm [34] provided the rationale for var-
ious techniques. Considering the k-anonymity model [51],
linear combinations of the gallery elements were obtained
per probe, creating realistic anonymised data that depend
on the alignment between the gallery/probe elements. Du et
al. [15] used gallery samples to change each probe, obtaining
”average” faces that lack in terms of photorealism. There are
various recent methods still based in this concept, such as the
k-Same-Net [32] and the attributes preserving approaches due
to Jourabloo et al. [26] and Yan et al. [62].

Upon the deep learning breakthrough, Korshunova et
al. [28] learned one generative model per identity. However,
by restricting the output patches to gallery elements of the
same identity, this solution limits the variability of the results.
Using segmented silhouettes, Brkic et al. [6] proposed a
model where obfuscation depends on the masked input data.
DeepPrivacy [24] anonymises facial images while retaining
the original data distribution, for photorealism purposes. A
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cGAN is the central component of the face/pose encoding
process. Li and Lyu [30] used a face attribute transfer model
to preserve the consistency of non-identity attributes between
input/anonymised data. Sun et al. [53] combined parametric
face synthesis techniques and GANs, keeping control over the
facial parameters while adding fine details and realism into the
resulting images. This approach depends of a computationally
demanding face alignment step. Yamac et al. [61] introduced a
reversible privacy-preserving compression method, that com-
bines multi-level encryption with compressive sensing. Finally,
Gu et al. [20] described a generative adversarial learning
scheme based in image data and passwords that feed the
models using additional input channels. The idea is to train
a generative model that reconstructs the original input only
when the right password is also given.

B. Face De-identification in Videos

The earliest approach was due to Dufaux et al. [16], which
scrambled the quantized transform coefficients of facial blocks
by random flipping/permutations, allowing reversibility but
completely failing in terms of photorealism. Agrawal and
Narayanan [1] performed 3D segmentation (in space and
time) and blurred data in both domains to prevent reversal.
Dale et al. [11] used 3D multilinear models to track the
facial appearance of source/target videos. Using 3D geometry,
they warped the source to the target face, keeping concerns
about the temporal consistency of the result. Samarzija and
Ribaric [47] grouped the gallery faces according to ID/pose
information, representing each cluster by an AAM. Queries
were matched to each AAM and the best match used as
anonymised data.

Ren et al. [43] proposed a GAN-based video face
anonymizer where the de-identified data preserve action in-
formation. Gafni et al. [18] proposed a feed-forward encoder-
decoder architecture that fuses the input to masked outputs
of a U-net backbone. This method requires facial landmarks
to produce visually acceptable high resolution data. Sun
et al. [54] proposed a GAN-based solution that partially
changes the face texture, according to landmarks and head
pose information given as input. Bao et al. [2] proposed a
GAN-based framework to synthesise faces from two input
images, one used for identity and the other for style attributes
preservation. Similarly, Shen and Liu [52] and He et al. [23]
proposed two models based in similar insights. However, both
methods fail essentially in terms of the temporal consistency
across different frames. Maximov et al. [31] proposed the
CIAGAN, also based on conditional GANs, to obtain de-
identified versions of the input, while keeping control of the
soft biometric features of the output. This method produces
highly photorealistic images, yet it requires the availability of
facial landmarks for proper alignment.

There are also various examples of real-time video privacy
protection techniques, where anonymity is assured by face
masking [48], cryptographic obscuration [10], encryption [58]
or blurring [33], but photorealism is not a concern.

C. Face Attributes Transfer

Face de-identification is closely related to transferring
(swapping) attributes in human faces, which has been moti-
vating several works. Zong et al. [68] used mid-level features
of a CNN as disentangled representations of facial features,
while Cao et al. [8] proposed a Multi-task CNN with partially
shared layers that learn facial attributes. Xiao et al. [60]
proposed the ELEGANT framework, that infers a disentangled
representation in a latent space, where the various components
refer different facial attributes in a quasi-independent way.
The Attribute-GAN [23] and Style-GAN [27] are other good
examples of generative models that enable to change facial
features, while retaining all the other kind of information. In
this context, the work due to Qi et al. [38] should also be
mentioned, which uses local coordinate charts to parameterize
the local geometry of data transformations across different
locations on the manifold, preventing vanishing data variations
and mode collapse.

III. THE UU-NET: REVERSIBLE FACE DE-IDENTIFICATION
IN VISUAL SURVEILLANCE VIDEO DATA

A global perspective of our method is shown in Fig. 2. We
divide the learning process into two phases, using insights
from previous published architectures, such as [23], [27]
and [70]: 1) a pairwise attribute matcher Da is inferred,
predicting the agreeing/disagreeing labels (ID, gender, eth-
nicity, age and hairstyle) between image pairs; and 2) the
Da responses are used to constraint the properties of the de-
identified elements in the adversarial learning phase, along
with an adversarial discriminator Df that distinguishes be-
tween the input images and the generator (Ue/Ud) outputs.

A. Learning I: ’Same’/ ’Different’ Pairwise Attributes Classi-
fier

Let xl
i,j,k denote a face ROI in the kth frame of the jth

sequence of the ith subject in the learning set. Also, let
al
i,j,k be the corresponding de-identified data and rl

i,j,k its
reconstructed version. l ∈ Nt is a column-vector containing
the ground-truth attributes of x. We consider t = 4 labels: {ID,
gender, ethnicity, hairstyle}. For every pair of images xl/x′l

′
,

we define a binary column vector b, zeroed in the positions
where labels between l/l’ disagree:

b =
[
1{l1==l′1}, . . . ,1{lt==l′t}

]T
, (1)

being ”==” the equality test operator and 1 the characteristic
function. The attribute classifier Da: Nn × Nn → Nt receives
a pair of images (each of length n) and predicts their common
labels:

b̂ = Da(xl, x′l
′
). (2)

We use a cross-entropy loss for Da, which is optimized
using the ground-truth b and predicted b̂ attributes:

Lce = Eb,b̂ − bT log(b̂)− (
−→
1

T
− bT ) log(1− b̂), (3)
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Fig. 2. Cohesive perspective of the proposed method. At first, we learn a pairwise attributes matcher Da that infers the agreeing/disagreeing labels between
image pairs. Next, a double-U sequential architecture is proposed, where the first part Ue receives the raw data x and creates the de-identified versions a.
The reverser Ud exclusively analyzes the de-identified data and reconstructs the original samples r. The pairwise matcher is the basis of the anonymization,
temporal consistency and diversity losses, along with an adversarial discriminator Da that enforces the facial appearance of the generated data. In inference
time, we crop the head regions and feed the Ue network. Then, using image steganography, the anonymized regions-of-interest are hidden in the published
stream. Such streams are used by the reverser network Ud (available to security authorities), that reconstructs the original scenes.

with
−→
1 representing an all-ones column vector of t compo-

nents, and the logarithmic/subtraction operations being applied
component-wise. The classifier inferred is given by:

D∗a = argmin
Da

Lce. (4)

B. Learning II: Reversible De-Identification

We start by defining the reconstruction loss Lmse, to
guarantee the fidelity of elements reconstructed by Ud with
respect to x. This way, Ud will attempt to reconstruct x,
while at the same time Ue encapsulates hidden features in
a. = Ue(x) that enable such reconstruction:

Lmse = ||x. − Ud

(
Ue(x.)

)
||2. (5)

The adversarial loss is based in a face plausibility dis-
criminator Df , that distinguishes between the input elements
x and their encoded counterparts, either in the de-identified
a. = Ue(x.) or in the reconstructed domain r. = Ud(a.) =

Ud

(
Ue(x.)

)
This loss forces the encoded data to have facial

appearance, as both generators Ue and Ud will attempt to
fool Df during the adversarial learning process. From the
discriminator perspective, the loss is formulated as:

Ladv1 = −2.Ex Df (x.) + Ea. Df (a.) + Er. Df (r.),
s.t. ||Df ||∞ ≤ δgp, (6)

where ||.||∞ denotes the maximum gradient δgp allowed to
avoid mode collapse and enhance training stability, as in
WGAN-GP [21]. The optimal discriminator is formulated as:

D∗f = argmin
Df

Ladv1 . (7)

From the encoder loss perspective, the previously used terms
have opposite sign:

Ladv2 = −Ea Df (a.)− Er Df (r.). (8)

All the remaining terms evolved in the generator use the
pairwise discriminator Da(., .) obtained in the previous phase.

Let s ∈ {−1, 0, 1}t be a column vector where ’1’ values
denote labels that should agree between image pairs, ’-1’
values denote labels disagreement and ’0’ determines the
independence between the raw/de-identified labels (Fig. 3).
During optimization, in a minimization problem context, the
inner product between s and Da(x, a) determines that high
Da() responses will be privileged for positions where si=-1.
Similarly, low responses will be privileged for positions where
si=1 (if si=0, the corresponding value in Da() is ignored, as it
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is cancelled by the inner product operation). This strategy is
used to keep control over the facial attributes that should be
kept/changed, depending of the properties desired for the de-
identified data. In every case, the ID position of s is always set
to -1, guaranteeing the de-identification property of the model.

0
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0
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1
Ge

-1
ID

s: → ”De-identify the data, keeping
the ’gender’ of all elements”

-1
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0
Age

0
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-1
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s: → ”De-identify the data, changing
the ’hairstyle’ of all elements”

0
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0
Age

0
Eth

0
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-1
ID

s: → ”De-identify the data”

Fig. 3. Illustration of the role of s parameterizations in the de-identified data.
We keep control of the soft labels in the de-identified faces, imposing agree-
ment (1), independence (0) or disagreement (-1) between the corresponding
labels in x/r elements.

The anonymization loss forces that the corresponding x./a.
elements follow the attribute configuration determined by s:

Lano = Exi,j,k,ai,j,ks�
(
2.Da(xi,j,k, ai,j,k)− 1

)
, (9)

where � denotes the inner product and the
(
2.Da(., .) − 1

)
term maps the output of Da into the [-1, 1] interval.

The temporal consistency loss guarantees that all samples
of one sequence ai,j,k/ai,j,k′ ,∀k, k′ : k 6= k′, have the same
soft attributes, for photorealism purposes:

Lcon = −Eai,j,k,ai,j,k′
−→
1 T � Da(ai,j,k, ai,j,k′), (10)

with
−→
1 ∈ Nt denoting an all-ones column vector of t

components.
The diversity loss assures that different sequences of one

subject ai,j,./ai,j′,.,∀j, j′ : j 6= j′ are mapped to different
virtual IDs, to avoid any malicious inference of subjects and
scenes patterns:

Ldiv = Eai,j,.,ai,j′,.
−→
1 � Da(ai,j,., ai,j′,.). (11)

Finally, the distribution loss assures that the color distri-
butions of the corresponding x/a elements are similar, again
for photorealism purposes:

Ldis = Exi,j,k,ai,j,kχ
2
h(x),h(a), (12)

where h(.) is the histogram operator and χ2
v(1),v(2) denotes the

Chi-square distance between the distributions of (v(1), v(2)):∑
i
(v(1)i −v(2)i )2

v(1)i +v(2)i

, with v(.)
i denoting the ith bin density.

Overall, the full loss function is the weighted sum of the
above described terms:

U∗e,U
∗
d = arg min

Ue,Ud

ωmseLmse + ωadvLadv2+

ωanoLano + ωconLcon + ωdivLdiv + ωdisLdis, (13)

where ω. are the hyper-parameters that weight each term in
the learning process (details about the values used are given

in Section IV).

C. Image Steganography
Steganography is used in this work for two purposes: 1)

to avoid that the head/face detector has to be used both
in the de-identification and reconstruction phases; and 2) to
assure that the regions-of-interest (ROIs) used to reconstruct
a. elements are the same from where x. were cropped. This is
a sensitive point, as we observed a decrease in the fidelity of
the reconstructed data, in case of misalignments between the
ROIs cropped for corresponding x./a. elements. The output of
the head detector [42] is incapsulated in the public stream,
using the protocol:

message := n + ”,’ + [ROI]n
ROI := x + ”,” + y + ”,” + w + ”,” + h + ”,”

n := {N}
x := {N}
y := {N}
w := {N}
h := {N},

where n denotes the number of bounding boxes in the frame,
[.]n denotes n occurrences of one element, {N} stands for ”one
natural number” and (x, y, w, h) provide the top left corner
(x, y), plus the width w and height h of the ROI bounding
box.

This way, every frame in the public stream encapsulates
(using [14]) a message containing the number and position of
the head regions in the frame. As an example, the message
”2,10,16,9,15,25,45,8,14,” informs about two ROIs, one start-
ing at position (10, 16), with dimensions (9, 15) and another
starting at position (25, 45) with dimensions (8, 14).

D. Inference
For security purposes, the data are de-identified before being

published or transmitted through the network (bottom row of
Fig. 2). This can be done in situ, embedded in the camera
hardware and starts by head detection [42] in each frame. Next,
the detected x. feed the Ue generator, that returns their de-
identified versions a.. Such virtual IDs are then overlapped
in each frame, with image steganography [14] being used to
encapsulate ROIs information.

The second part of the generator Ud is supposed to be
available only to authorities. Upon a security incident, the
de-identified stream contains all the information required to
reconstruct the original scene and disclosure the actual ID of
the subjects there. Using [14], we get the bounding boxes of
the a. elements in each frame and feed Ud, that reconstructs
the corresponding r representations.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Empirical Protocol
Our experiments were mostly conducted in one proprietary

(BIODI) and two freely available visual surveillance datasets
(MARS and P-DESTRE).
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The BIODI4 dataset is proprietary of Tomiworld5, and
is composed of 849,932 images/13,876 sequences, taken
from 216 indoor/outdoor video surveillance sequences. All
images are manually annotated for 14 labels: {’gender’,
’age’, ’height’, ’body volume’, ’ethnicity’, ’hair color’ and
’hairstyle’, ’beard’, ’moustache’, ’glasses’ and ’clothing’
(x4)}. As this set is not annotated for ID, the face recognition
experiments were exclusively performed in the remaining sets.
MARS [67] contains 1,261 IDs from around 20,000 tracklets,
automatically extracted by the Deformable Part Model [17]
detector and the GMMCP [12] tracker. In this set, the soft
labels {’gender’, ’ethnicity”} were automatically inferred by
the Matlab SDK for Face++6 system, and the hairstyle was
manually annotated. Finally, the P-DESTRE [29] provides
video sequences of pedestrians in outdoor environments (taken
from UAVs), and is fully annotated at the frame level, for ID
and 16 soft labels: ’gender’, ’age’, ’height’, ’body volume’,
’ethnicity’, ’hair colour’, ’hairstyle’, ’beard’, ’moustache’,
’glasses’, ’head accessories’, ’body accessories’, ’action’ and
’clothing information’ (x3). It contains 253 identities and over
14.8M bounding boxes.

Complementary, the YouTube Faces [59] dataset was used
to perceive the performance of the proposed solution in case
of learning/test sets with very different features (the tracklets
and the soft labels were obtain as in the MARS set). When
compared to the visual surveillance sets used, images in
this set have substantially higher resolution. Hence, the idea
was to perceive if such amount of additional information
used in the learning phase will enable to obtain sharpen de-
identified/reconstructed samples, regardless of the notoriously
different learning/test domains. The obtained results are dis-
cussed in Section IV-I.

For the image pairwise matcher Da, we used a classic VGG-
like architecture, detailed in Table I. A different model was
inferred independently for each label (ID, gender, ethnicity and
hairstyle). Then, during inference, the pairs of RGB images
to be matched were resized and concatenated along the depth
axis, resulting in 64 × 64 × 6 inputs, from where the 4-
dimensional output vectors were inferred.

For the second learning phase, both the encoder Ue and
decoder Ud models shared the well known U-Net architec-
ture [44], with a minor adaptation to receive 64 × 64 × 4
(encoder) and 64×64×3 (decoder) data. The encoder receives
the raw facial images represented in the RGB space (scaled to
the unit interval) and a forth channel of random values drew
from a standard uniform distribution U(0, 1). The adversarial
discriminative model Df uses the PatchGAN [25] architecture.
Upon empirical optimization and grounded on the human
perception of the a. elements generated, we set δgp=0.01 to
assure the stability of the adversarial learning process and the
weight parameters: ωmse=50, ωadv=1, ωano=1, ωcon=1, ωdis=1
and ωdiv=1.

To our knowledge, there are no prior works to perform
reversible de-identification in video surveillance video data.

4http://di.ubi.pt/∼hugomcp/BIODI/
5https://tomiworld.com/
6http://www.faceplusplus.com/
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Fig. 4. Top rows: surveillance datasets used in the empirical validation of the
method proposed in this paper (BIODI, MARS and P-DESTRE are shown).
The bottom row provides some examples of the YouTube Faces set, used to
perceive the performance of the proposed solution in case of substantially
different features between the learning/test sets.

TABLE I
ARCHITECTURE OF THE CNN MODELS USED IN OUR EXPERIMENTS.

(’NK’: NUMBER OF KERNELS; ’KS’: KERNEL SIZE; ’ST’: STRIDE; ’MM’:
MOMENTUM).

Da model Ue model

Input: (64×64×6)→ Convolution (nk: 16, ks: 3 × 3,
st: 2)→ Batch Normalization (mm: 0.8)→ LeakyReLU
→ Dropout (0.25)→ Convolution (nk: 64, ks: 3 × 3, st:
1)→ Batch Normalization (mm: 0.8)→ LeakyReLU→
Dropout (0.25) → Convolution (nk: 128, ks: 3 × 3, st:
1)→ Batch Normalization (mm: 0.8)→ LeakyReLU→
Dropout (0.25) → [Convolution (nk: 64, ks: 3 × 3, st:
2)→ BN (mm: 0.8)→ LeakyReLU→ Dropout (0.25)]
× 2 → Flatten → Dense (128) → ReLU → Dense (t)
→ Sigmoid

Input: (64×64×4)
→ U-Net [44]

Ud model

Input: (64×64×3)
→U-Net [44]

Df model

Input: (64×64×3)
→ PatchGAN [25]

Though, we considered two baselines to compare the face de-
tection effectiveness in de-identified data: the Super-pixel [7]
method, that replaces each pixel by the average value of the
corresponding super-pixel and the Blur-based method [45],
where images are downsampled to low-resolution and then
upsampled back.

B. Face Detection

The photorealism of the de-identified data was evaluated
by comparing the face detection scores obtained for the raw
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Fig. 5. At left: 3D histograms showing the correlation between the
MTCNN [64] face detection confidence scores fc(.) of x./a. elements, for
the BIODI, MARS and P-DESTRE sets. The corresponding unidimensional
distributions are given at the right side.

x. and the de-identified a. elements, according to [64]. This
method provides a confidence score fc(.) for having a face at a
given position. The results for the three data sets are shown in
Fig. 5, where the 3D histograms at the left column show the
poor correlation between the fc values for x (horizontal axis)
and a elements (vertical axis). The linear correlation values
(Pearson’s coefficients) were of 0.011 (BIODI), 0.023 (MARS)
and 0.025 (P-DESTRE). The unidimensional histograms at
the right side provide the distributions for fc(x)/fc(a) values.
Overall, the average values for fc(a) elements decreased about
2.11% (BIODI), 3.22% (MARS) and 4.40% (P-DESTRE) with
respect to fc(x) (BIODI: fc(x)= 0.954→ fc(a)= 0.931, MARS:
fc(x)= 0.968→ fc(a)= 0.930 and P-DESTRE: fc(x)= 0.918→
fc(a)= 0.877).

Table II summarizes the face detection effectiveness [64]
on a data, with respect to the performance in x elements.
Also, as baselines, we provide the results obtained by two
simple de-identification techniques (due to Butler et al. [7]
and Ryoo et al. [45]). For these experiments, random samples
composed of 90% of the test data were created (drew with
repetition) and the mean Average Precision (mAP) taken in
each split, from where the mean and standard deviation values
were taken. The proposed solution attained mAP values for

TABLE II
COMPARISON BETWEEN THE FACE DETECTION [64] PERFORMANCE IN

THE DE-IDENTIFIED DATA, WITH RESPECT TO THE BASELINE DETECTION
VALUES. AVERAGE ± STANDARD DEVIATION ’MEAN AVERAGE

PRECISION’ (MAP) VALUES ARE GIVEN.

Method Params. BIODI MARS
P-

DESTRE

Baseline Detection mAP [64] (x.) 0.82 ± 0.02 0.84 ± 0.03 0.63 ± 0.01

Proposed

ωmse=50,
ωadv=1,
ωano=1,
ωcon=1,
ωdiv=1,
ωdis=1

0.73 ± 0.06 0.75 ± 0.06 0.59 ± 0.10

Butler et al. [7] 8
superpixels 0.23 ± 0.06 0.21 ± 0.04 0.20 ± 0.04

Butler et al. [7] 16
superpixels 0.36 ± 0.05 0.32 ± 0.04 0.22 ± 0.05

Ryoo et al. [45] resolution
5x3 0.20 ± 0.03 0.19 ± 0.03 0.17 ± 0.02

Ryoo et al. [45] resolution
7x4 0.31 ± 0.04 0.27 ± 0.04 0.16 ± 0.06

a elements that were about 89% (BIODI), 89% (MARS)
and 93% (P-DESTRE) of the values obtained for x. Errors
occurred typically for the poorest resolution samples, where
the detection method was still able to find the original face
but not its de-identified version. Also, we observed that the
de-identified elements tend to have less details (i.e., lower
entropy) than the original samples, which might justify this
gap in performance. The remaining techniques got far worse
performance, even stressing that both not aim at reversibility.

C. Face Recognition
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Fig. 6. Comparison between the decision environments resulting from the
VGG-Face2 [9] face recognition method, working in pairs of images of the
MARS and P-DESTRE datasets (x ↔ x’, left column). The right column
provides the corresponding values when the second image in each pairwise
comparison was de-identified (x ↔ a’).

A second question to address is the possibility of models
being simply swapping faces between identities, rather than
creating virtual IDs. To verify this hypothesis, we learned two
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VGG-Face2 [9] recognizers (MARS and P-DESTRE sets),
including 80% of the IDs in the learning set (x. elements).
Then, in inference time, we sampled the remaining 20%
IDs and created 50K impostors + 10K genuine pairwise
comparisons (x ↔ x’), where the VGG-face2 scores were
obtained. This experiment was repeated when de-identifying
the second image in each pair (i.e., x↔ a’). Results are given
in Fig. 6, that shows the decision environments for MARS
(top plots) and P-DESTRE (bottom plots). The green bars
correspond to the distributions of the genuine scores, while the
red bars denote the impostors distributions. The decidability
values of the decision environments were also obtained:

d′ =
µG − µI√
σ2
G + σ2

I

), (14)

where (µ, σ) denote the mean/standard deviation statistics
and ’G’/’I’ stand for the genuine and impostors pairwise
comparisons. Values decreased from 1.885 (MARS) and 0.839
(P-DESTRE) (x ↔ x’) to 0.162 (MARS) and 0.155 (P-
DESTRE)(x↔ a’), with an evident movement of the genuines
distributions toward the impostors region. The corresponding
decreases in the AUC values were of MARS: 0.962 → 0.570
and P-DESTRE: 0.820 → 0.568, in both cases turning the
identification based in a. elements almost equivalent to a
random choice. Even though, a slight difference between the
right tails of both distributions was observed in MARS/P-
DESTRE sets, which was justified by potential overfitting, i.e.,
lack of sufficient learning data to sustain enough variability in
the de-identification space.

D. Temporal Consistency

The temporal consistency of the de-identified samples is of
most importance for photorealism purposes. In a subjective
evaluation perspective, Fig. 7 provides several examples of (x,
a, r) elements, obtained for frames of a sequence at time t
and t + i. In all cases, the consistency between the overall
appearance of at and at+i is evident.

To obtain a quantitative measure of temporal consistency,
we compared the decision environments for MARS and P-
DESTRE sets when the genuine pairwise comparisons were
exclusively composed of ai,j,t/ai,j,t+k elements, with k ∈
{1, . . . , sl} (sl is the sequence length). The impostors distribu-
tions were obtained as in the previous experiments. The bottom
row in Fig. 7 provides the results, with an evident separation
between the impostors/genuine scores. When comparing both
empirical data distributions against the null hypothesis (’both
samples come from the same distribution’), the Kolmogorov-
Smirnov test enabled to reject the null hypothesis with asymp-
totic p-values lower than 1e−8 in both sets. With respect to
the values given in Fig. 6, note that here only pairs of the
same session were considered genuine, which justifies the
large separability between the genuine/impostors distributions.
In both cases, the genuine scores spread homogeneously along
the unit interval, yet there is a fraction of cases (< 15%)
where consecutive de-identified elements suddenly changed
their appearance and soft labels.
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Fig. 7. Top rows: Examples illustrating the temporal consistency of our solu-
tion, with each group providing two within-subject examples of a sequence x
taken at times t and t+i, i ≥ 1. The central image in each group regard the de-
identified images a, and the reconstructed samples are given at the rightmost
column r. The bottom row shows the decision environments when the genuine
pairwise comparisons were exclusively composed of ai,j,t/ai,j,t+k elements.

E. Soft Labels Consistency/Inter-Session Diversity

The consistency of the soft labels generated and the diversity
of the virtual IDs per subject were evaluated according to
the responses provided by the pairwise labels discriminator
Da. Regarding the soft labels, we were interested in confirm
that the {’gender’, ’ethnicity’, ’hairstyle’} labels inferred
for a. meet the constraints determined by s in the learn-
ing phase. For each ai element, we obtained the Da(ai, xi)
values and measured their Pearson correlation values with
respect to the ground-truth labels, also taking into account
the configuration of s. Having drew 50 random samples
composed of 90% of the test data (with repetition), the
linear correlation values are given in Table III, which were
regarded as good indicators of the consistency between x./a.
soft labels. Some examples of a. elements generated when
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s = [’ID’, ’Gender’, ’Ethnicity’, ’Hairstyle’] = [−1, 1, 1, 1]
(’All Equal’ labels) and s = [−1,−1,−1,−1] (’All Different’
labels) are shown in Fig. 9, enabling to perceive the varying
appearance of a elements according to the s configuration
used in learning. Also, we observed that the ’All Equal’ labels
configuration reduces the variability of the synthesised virtual
IDs, while also increasing the similarity in appearance between
the x./a. elements.

TABLE III
PEARSON CORRELATION BETWEEN THE SOFT LABELS INFERRED FOR THE

DE-IDENTIFIED ELEMENTS A WITH RESPECT TO THE SOFT LABEL
CONFIGURATION DETERMINED BY S.

Soft Label Consistency BIODI MARS P-DESTRE

Gender 0.818 ± 0.096 0.890 ± 0.081 0.803 ± 0.107

Ethnicity 0.702 ± 0.112 0.750 ± 0.099 0.622 ± 0.144

Hairstyle 0.647 ± 0.106 0.663 ± 0.102 0.594 ± 0.118

To illustrate the labels consistency and the diversity of the
virtual IDs generated for each subject, Fig. 8 provides two
embeddings for the projection of the 4,096 coefficients of
the VGG-19 ’fc7’ layer7 for x/a elements into a 2D space,
according to the Neighbourhood Component Analysis [63]
algorithm. A VGG classification model was inferred, using
images x of 50 subjects plus the corresponding 50 virtual
identities a (one sequence per subject) of the P-DESTRE
set, in a classification task (100 classes). Then, six subjects
of a (disjoint) test set were used, with 10 images per sub-
ject/sequence considered. The x elements are denoted by black
borders and the corresponding a de-identified elements appear
borderless. The left embedding corresponds to the ’All Equal’
soft labels configuration, with a relative proximity between the
corresponding x/a elements seen in all cases. In opposition,
when the ’All Different’ soft labels configuration is enforced
(right embedding), the IDs and their counterpart virtual IDs
appear in the antipodes of the embedding. In both types
of embeddings, the virtual IDs a were observed to spread
more than the original elements x, which was justified by the
intrinsic variability of x features plus the stochastic nature of
the de-identification model.

’All Equal’ ’All Different’

x

a

x

a

Fig. 8. Comparison between the 2D embeddings yielding from the x
(black borders)/a (borderless) VGG-19 ’fc7’ representations of six subjects
(corresponding to different colors), using 10 images per sequence. Results
are shown for the ’All Equal’/’All Different’ soft labels configurations.

7https://www.mathworks.com/help/deeplearning/ref/vgg19.html

’All Equal’ Labels(
s=[-1, 1, 1, 1]

)
x a r

’All Different’ Labels(
s=[-1, -1, -1, -1]

)
x a r

Fig. 9. Comparison between the results typically attained when the soft labels
coherence/discrepancy is enforced. The left column provides examples for
soft labels agreement x./a. (’All Equal’), while the right column illustrates
the disagreement labels case (’All Different’).

The diversity of the IDs generated per session is illustrated
in the top rows of Fig. 10, with the bottom row providing
the decision environments when the genuine pairs were exclu-
sively composed of ai,j,./ ai,k,. elements. Here, even though
there was an evident separation between both distributions
(d’=0.491 for MARS and 0.329 for P-DESTRE), genuine
distributions were skewed toward the higher values region (i.e.,
corresponding to the typical genuine region), which suggests
that the IDs generated for different sessions might still share
some undesirable patterns.

F. Reversibility and Input/Output Variability

The models proposed in this paper are stochastic. In infer-
ence time, the encoder Ue receives (apart the RGB data) one
random input channel that has an effect in the system response.
This way, when repeating (excluding the random channel)
the input, there will be some variations in the corresponding
outputs. We measured such variability, in terms of the point-
by-point differences in the de-identified a/a’ and in the recon-
structed r/r’ domains. More importantly, we perceived how
likely such variations imply a change in the ID inferred for the
output image. Results are shown in Fig. 11. The histograms
in the top row provide the point-by-point residuals between
outputs yielding from the same input, in the de-identified (at
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Fig. 10. Top rows: diversity of the de-identified samples for different
sequences of a subject. The bottom row provides the decision environments
obtained for the MARS (at left) and P-DESTRE (at right) sets, when the
genuine pairs were exclusively composed of ai,j,./ ai,k,. (j 6= k) elements.
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Fig. 11. Top row: histograms of the point-by-point residuals between outputs
resulting from the same input data (excluding the noise channel. Results are
given for the de-identified (ai,j,k - a’i,j,k , at left) and reconstructed (ri,j,k -
r’i,j,k , at right) domains. Bottom row: decision environments for MARS (at
left) and P-DESTRE (at right) sets, when the genuine pairwise comparisons
were exclusively composed of different reconstructed images r/r’ resulting
from the same input data.

left) and reconstructed domains (at right). Also, we report the
decision environments for MARS and P-DESTRE sets, when
the genuine pairs were exclusively composed of x elements
and various of their reconstructed versions r.

The residuals obtained were small in all cases, and almost
undetectable under visual inspection: the mean deviation was
close to 0 in both sets, with slightly higher standard deviations

observed for r/r’ elements, probably as a result of additive
deviations. Importantly, the IDs inferred for different r/r’
resulting from the same input were always invariant. This
is confirmed by the absolute separation between the impos-
tors/genuine distributions, and the extremely peaked distribu-
tions for the genuine scores. These observations support the
extremely low probability of switching identities in multiple x
→ a→ r mappings. Also, the varying features among different
x elements and the necessity of their proper reconstruction
(imposed by the Lmse term) justifies why a elements are
different between identities (i.e., too similar a elements for
different IDs will not enable different destiny-reconstructions
r). This is seen both in terms of visual perception and of the
IDs inferred by a facial recognizer.

G. Pose, Background and Facial Expressions Consistency

For photorealism purposes, not only the pose of x./a. ele-
ments should be consistent, but also the background features
in both images should be similar and even the facial expression
should agree. According to our loss formulation and experi-
ments, we observed that the distribution loss term Ldis plays a
key role in guaranteeing such consistencies. To quantitatively
perceive the head pose consistency, we compared the 3D pose
estimation values (yaw, pitch and roll) obtained by the Deep
Head Pose [46] method for x/a elements. As the model was not
specifically trained for each dataset, errors in pose inference
were relatively frequent and covered about 20% of the samples
of the BIODI set, 7% of the elements in MARS and 28%
of the P-DESTRE images. These cases were rejected under
human inspection. For the remaining cases, we measured the
absolute difference between the 3D angle values, obtaining
average yaw errors of 0.177 ± 0.091, 0.184 ± 0.087, 0.140
± 0.075 (BIODI, MARS, P-DESTRE), pitch errors of 0.101
± 0.068, 0.120 ± 0.070, 0.113 ± 0.055 and roll errors 0.021
± 0.006, 0.0.25 ± 0.005, 0.022 ± 0.004 (in radians), which
are illustrated in the second row/forth column cell of Fig. 12.
Regarding the background consistency, we used the cropped
head ROIs as input of a skin-hair-background segmentation
method [37]. According to the obtained segmentation masks,
we zeroed all pixels deemed to correspond to skin/hair and
considered the remaining information as background (denoted
by x(b), a(b)). Next, we measured the point-by-point residuals
(Euclidean distance in the CIE 1976 L∗a∗b∗ color space)
between each pair, obtaining the results shown at the rightmost
column of the top row. Finally, regarding the facial expressions
consistency, in order to objectively perceive the agreement
between the facial expressions of x and corresponding a
elements, we used the [66] method to estimate the facial
expressions (considering exclusively the Neutral (N), Disgust
(D), Surprise (Su) and Smile (Sm) classes) in the MARS,
BIODI and P-DESTRE sets, for x/a elements. The normalized
confusion matrix is shown at the bottom right corner, with
the rows providing the predictions for x and the columns
providing the corresponding predictions for a elements. Inside
each cell, the relative frequency of a pair of predictions is
given, observing the agreement of x/a labels in about 82% of
the cases.
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Fig. 12. Examples illustrating the background consistency (upper row), pose consistency (middle row) and facial expressions consistency (bottom row)
between the raw samples x and their de-identified versions a. The forth column provides a density estimate of the point-by-point `2-norm residuals between
the background regions of the original x and de-identified a images (top row), the density estimates of the absolute residuals between the pose parameters
estimated for textbfx/textbfa (middle row) and the confusion matrix for the facial expressions inferred by [66] for corresponding x (rows)/a (cols) elements.

H. Cross-Domain Adaptability in Surveillance Environments

Being heavily data-driven, the models proposed in this paper
are particularly sensitive to changes in domain, i.e., tend to
face difficulties when the domains of the data used in learn-
ing/inference are different. This section discusses the cross-
domain adaptability of our method, keeping in mind that we
constrained our analysis to visual surveillance environments.
Hence, we considered the MARS and P-DESTRE sets (i.e.,
with ID information available), and evaluated the decreases
in face recognition performance for the cross-domain setting:
using the P-DESTRE (P) in learning/MARS (M) for test
(and vice-versa). We compared the intra- and cross-domain
settings from the temporal consistency, diversity and samples
reconstruction perspectives. Results are summarized in Fig. 13,
in terms of the decidability (14) of the decision environments
and of the Euclidean residuals between the original and the
reconstructed elements. These values should be compared to
the performance reported in Fig. 6 (face recognition), Fig. 7
(temporal consistency) and Fig. 10 (diversity). The images
at the bottom provide examples of the typical appearance of
the worst cross-domain configuration (M → P). Overall, our
perception was that the reconstruction remained effective -
particularly in terms of IDs - yet the photorealism of the de-
identified samples in the cross-domain setting was substan-
tially lower than the observed for the intra-domain setting.
In this context, the background consistency was particularly
affected, which was justified by the difficulty of the encoder

to generate backgrounds notoriously different of the seen in
the training phase.

Experiment M → M P → P P → M M → P

Face recognition (d’) 0.264 ± 0.020 0.161 ± 0.023 0.206 ± 0.059 0.150 ± 0.065x/a’

2.378 ± 0.041 1.429 ± 0.052 1.350 ± 0.070 0.947 ± 0.073
Tempor. Consist. (d’)

ai,j,t/ai,j,t+k

0.489 ± 0.038 0.321 ± 0.028 0.403 ± 0.041 0.305 ± 0.044
Diversity (d’)
ai,j,./ ai,j′,.

17.05 ± 8.90 19.99 ± 10.03 28.80 ± 13.48 31.58 ± 16.36Reconst. Error (`2-norm)
|x− r|2

x a r x a r x a r

x a r x a r x a r

Intra-domain Cross-domain

Fig. 13. Cross-domain adaptability between visual surveillance datasets. We
compare the decidability d′ of the ’Face Recognition’, ’Temporal Consistency’
and ’Diversity’ decision environments in the intra-domain (M→ M and P→
P) and cross-domain (M → P and P → M) settings. Also, the reconstruction
errors in both domains are given, along with examples of the poorest cross-
domain configuration observed (M → P).

The temporal consistency of the ai,j,t/ai,j,t+k elements
also decreased evidently in the cross-domain setting. In op-
position, the face recognition and diversity measurements
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yielded relatively similar values in the intra- and cross-domain
experiments. This points that in a cross-domain scenario,
the de-identified faces will still be diverse and not likely to
be successfully matched with the corresponding IDs in the
original domain, even though the de-identified data is not as
photorealistic as in the intra-domain setting.

It should be noted that we constrained our analysis to visual
surveillance datasets, where - in spite of being acquired in dif-
ferent conditions/environments - datasets evidently share some
properties among them (e.g., outdoor lighting and relatively
poor resolution). As reported in section IV-I, we observed that
in case of substantially different learning/test domains, using
learning sets of higher resolution does not contribute for more
pleasant de-identified/ elements nor sharpen reconstructed
samples, which can be considered a limitation of the proposed
solution.

I. Ablation Experiments, Difficult Cases and Limitations

Parameters Typical Results

ωmse ↓ (÷10)

x r x r x r
- Pixelization; - Blur; - Poor resolution.

ωadv ↓ (÷10)

x a x a x a
- Poor photorealism; - Learning divergence.

ωano ↓ (÷10)

x a x a x a- High similarity xi,j,k/ai,j,k .

ωcon ↓ (÷10)

a1 a2 a1 a2 a1 a2- Poor similarity ai,j,k/ai,j,k+t.

ωdiv ↓ (÷10)

x a x a x a- Unimodal a. elements; Indistinctive ai/aj .

ωdis ↓ (÷10)

x a x a x a
- Poor photorealism.

ωgp ↑ (×10)

x a x a x a
- Poor photo-realism; - Learning divergence.

Fig. 14. Ablation experiments. Typical variations in the results of the proposed
method with respect to changes in each term used in the loss formulation.

The most important variations in the results with respect
to changes in the parameterizations of the loss function are
illustrated in Fig. 14. The left column gives the change in one
parameter with respect to the optimal configuration (described
in sec. IV-A), and the images in the right column illustrate
the typical failure cases. In this experiment, every parameter
was orthogonally decreased (↓) or augmented (↑) one order of

magnitude. At first, when the ωmse weight was decreased, the
reconstructed samples started to appear pixelized and blurred.
As an effect of the variation of ωano weight, x/a resemble
each other in a much more evident way, and in some cases
the Ue model works practically as an identity operator. De-
creasing the weights of the adversarial discriminator ωadv has a
catastrophic effect in the a results, that completely loose their
face appearance. When decreasing the ωdiv parameter, the de-
identified images tend to look alike their x counterparts, while
the ωcon weight stresses the temporal consistency requirements.
By decreasing the value of the ωdis parameter, the resulting
a elements have very different color/brightness distributions
with respect to x, which strongly decreases the photorealism.
Also, another catastrophic change typically occurs when the
maximum gradient δgp allowed for adjusting weights of the
adversarial discriminator increases, causing the divergence of
the training phase.

x a r x a r

x a r x a r

Fig. 15. Results obtained in case of significantly different features between
the learning/test domains. The YouTube faces dataset was used in the learning
phase, with input size extended to 256 × 256 for all models, while inference
was done in the P-DESTRE set. In such setting, the amount of additional
information used in the learning phase doesn’t contribute for visually pleasant
de-identified elements and for sharpen reconstructed samples.

Finally, we used the YouTube video face dataset as learning
data, with input size changed to 256 × 256 for the Da, Ue, Ud

and Df models. Then, the P-DESTRE set was used in infer-
ence. Here, the goal was to perceive if such additional amounts
of learning data contributes to obtain de-identified elements
that are visually pleasant and sharpen reconstructed samples,
when compared to the visual surveillance learning/test sets
configuration. As illustrated in Fig. 15, the results were
considered (under visual inspection) even poorer than when
visual surveillance data were used in the learning/test phases.
Hence, we concluded that the relative similarity between the
learning/test domains is more important than the amount of
information available in each learning element. This feature is
regarded as a limitation/constraint of the proposed solution to
obtain visually pleasant de-identified results.

V. CONCLUSIONS

This paper addressed the security/privacy balance in visual
surveillance environments. While data protection regulations
forbid the public disclosure of personal sensitive information,
there are scenarios, such as crime scene investigation, where
the actual identification of subjects is of most importance.
Accordingly, we described a solution composed of one public
module, that detects the faces in each frame and creates their
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de-identified versions, where the ID information is surrogated
in a photorealistic and seamless way. Such elements are
overlapped in the data stream, which can be published without
compromising subjects’ privacy. This process runs in situ, such
that no privacy-sensitive information is passed through the
network. Next, upon a security incident, a private module
- available to security agencies - is able to reconstruct the
original scene and disclose the actual identity of the subjects
there.

The proposed solution is landmarks-free and suitable for
visual surveillance data. We designed a two-stage learning
process, with a conditional generative adversarial network
composed of two entities (an encoder and a decoder) that have
the common goal of fooling an adversarial opponent. Their
joint optimization enables to intrinsically share knowledge
about the features that should be hidden in the encoded data
in order to later assure proper reconstruction. The whole
process generates realistic faces that preserve pose, lighting,
background and facial expressions. Also, we keep full control
over the facial attributes that are preserved/changed between
the raw and de-identified streams. The experiments were
conducted in three visual surveillance datasets, and support
the usability of the proposed solution, conditioned by a rel-
ative similarity between the domains of the data used in the
learning/inference phases.
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