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Abstract. The iris is currently accepted as one of the most accurate traits for bio-
metric purposes. However, for the sake of accuracy, iris recognition systems rely
on good quality images and significantly deteriorate their results when images
contain large noisy regions, either due to iris obstructions (eyelids or eyelashes)
or reflections (specular or lighting). In this paper we propose an entropy-based iris
coding strategy that constructs an unidimensional signal from overlapped angular
patches of normalized iris images. Further, in the comparison between biometric
signatures we exclusively take into account signatures’ segments of varying di-
mension. The hope is to avoid the comparison between components corrupted by
noise and achieve accurate recognition, even on highly noisy images. Our experi-
ments were performed in three widely used iris image databases (third version of
CASIA, ICE and UBIRIS) and led us to observe that our proposal significantly
decreases the error rates in the recognition of noisy iris images.

1 Introduction

Continuous efforts have been made in searching for robust and effective iris coding
methods, since Daugman’s pioneering work on iris recognition was published. Iris
recognition has been successfully applied in such distinct domains as airport check-
in or refugee control. However, for the sake of accuracy, current systems require that
subjects stand close (less than two meters) to the imaging camera and look for a period
of about three seconds until the data is captured. This cooperative behavior is indispens-
able to capture images with enough quality to the recognition task. Simultaneously, it
restricts the range of domains where iris recognition can be applied, namely within het-
erogeneous lighting conditions or under natural lighting environments. In this context,
the overcome of these imaging constrains has motivated the efforts of several authors
and deserves growing attention from the research community.

Although some of the published iris recognition algorithms perform a noise detec-
tion stage and produce a binary mask - used to avoid that noisy components of the bio-
metric signatures are taken into account - we believe that highly heterogeneous lighting
environments (specially under natural light) lead to the appearance of regions which,
even for humans, are very difficult to classify as ”noisy” or ”noise-free”. Figure 1 illus-
trates some of the noise factors that result of less constrained image capturing environ-
ments. In figure 1b large iris regions obstructed by reflections (lighting and specular)
can be observed, some of them very difficult to distinguish from the noise-free ones.
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(a) Iris image with good quality. (b) Noisy iris image.

Fig. 1. Comparison between a good quality image and a noise-corrupted one. Figure 1a was
captured under high constrained imaging conditions and is completely noise-free. Oppositely,
figure 1b incorporates several types of noise, resultant from less constrained imaging conditions.
It can be observed several iris obstructions - due to eyelids and eyelashes - and large regions of
the iris corrupted by reflections, either lighting or specular.

In this paper our main goal is to propose an iris coding and comparison strategy
with high robustness to noise. We start by measuring the entropy of consecutive and
overlapped angular patches of normalized iris images. This gives an unidimensional
signal that contains enough information to distinguish between individuals and, for this
reason, is used as biometric signature. Further, in the comparison between signals we
take into account shifted segments of varying dimension. The rationale is to profit the
portions of the signals that were extracted from noise-free regions and hope that they
contain enough information to reliably perform recognition.

Our experiments were performed in three iris image databases with different amounts
of noise (third version of CASIA [1], ICE [2] and UBIRIS [3]). For comparison, we se-
lected three of the most cited iris recognition algorithms (Daugman’s [4], Wildes’ [5]
and Tanet al.’s [6]), that we believe to represent the majority of the published ap-
proaches. As described in the results’ section, although the proposed method obtained
roughly similar results to the other algorithms in the less noisy data sets (CASIA and
ICE), it achieved smaller error rates in the recognition of the highly noisy iris images
of the UBIRIS database. However, it should be stressed that some of this improvement
was obtained at the expenses of a significant increase in the computational requirements
of our proposal, since its computation time was about the double of the compared algo-
rithms.

The remaining of this paper is organized as follows: section 2 briefly summarizes
the most cited iris recognition methods. A detailed description of the proposed feature
extraction and comparison method is given in section 3. Section 4 reports the exper-
iments and discusses the results and, finally, section 5 presents the conclusions and
points some directions for our further work.
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2 Iris Recognition

Figure 2 illustrates the typical stages of iris recognition systems, which, in spite of the
specificities of the different proposals, share the given structure. The initial stage deals
with iris segmentation. This process consists in localize the iris inner (pupillary) and
outer (scleric) borders, assuming either circular or elliptical shapes for both of the bor-
ders. In 1993, J. Daugman [4] proposed an integro-differential operator to find both the
iris inner and outer borders. Similarly, [7] proposed integro-differential operators that
search over theN3 space, with the goal of maximizing the equations that identify the
iris borders. Wildes [5] achieved iris segmentation through a gradient based binary edge
map construction followed by circular Hough transform. In [8], the authors proposed
a method based in Wildes’ method, that, together with a clustering process, achieves
robustness for non-cooperative imaging environments.

Fig. 2.Typical stages of iris recognition systems.

In order to compensate variations in the pupils size and in the image capturing dis-
tances, it is usual to translate the segmented iris data into a fixed length and dimension-
less polar coordinate system. This stage is usually accomplished through the method
proposed by Daugman [9].

Regarding feature extraction, iris recognition approaches can be divided into three
major categories: phase-based methods (e.g., [4]), zero-crossing methods (e.g., [10])
and texture-analysis based methods (e.g., [5]). Daugman [4] used multiscale quadrature
wavelets to extract texture phase information and obtain an iris signature with 2048 bi-
nary components. Boles and Boashash [10] computed the zero-crossing representation
of a 1D wavelet at different resolutions of concentric circles. Wildes [5] proposed the
characterization of the iris texture through a Laplacian pyramid with 4 different levels
(scales).

Lastly, the comparison between iris signatures is performed, producing a numeric
dissimilarity value. If this value is higher than a threshold, the system outputs anon-
match, meaning that each signature belongs to different irises. Otherwise, the system
outputs amatch, meaning that both signatures were extracted from the same iris. In this
stage, it is common to apply different distance metrics (Hamming [4], Euclidean [11],
Weighted Euclidean [12]) or methods based on signal correlation [5].
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3 Proposed Recognition Method

As observed by Maet al. [13], iris features tend to run in the radial direction, meaning
that the most valuable information can be found by examining variations in the angular
direction of the iris. Also, as reported by Tisseet al. [14], independently of the pupil
dilation, the small-scale radial features of the iris remain stable.

Since the work of Shannon [15], the measuring of entropy has been widely used
in the information theory domain and, more particularly, in image processing. Its use
was recently reported for several purposes, namely to describe the visual information
of images (e.g., [16] and [17]). It is defined as the average number of binary symbols
necessary to code an input, given the probability of that input appearing an a stream.
High entropy is associated with a high variance in the pixel values, while low entropy
indicates that the pixel values are fairly uniform, and hence little detail can be derived
from them. The information contained in an image can be regarded as mathematically
identical to negative entropy. If any possible intensity value is likely to be next to any
other there would be no information present. In this context, the probabilities of which
pixel is going to be next to which other gives the information.

Let I be a grayscale image quantized tol intensity levels, the image entropyh() :
NN×N → R+ is given by

h(I) = −
l∑

i=1

pi(I) log2(pi(I)) (1)

wherepi is the probability of theith quantized intensity level in the imageI

pi(I) =
1

r × c

r∑
r′=1

c∑
c′=1

I{I(r′,c′) ∈ [infi,supi]} (2)

wherer andc are the number of columns and rows of the image,I(r′, c′) is the
intensity value of the pixel(r′, c′), [infi, supi] is the interval of intensities of theith
quantized level andI{.} is the characteristic function.

3.1 Feature Extraction

As illustrated by figure 3, our feature extraction strategy measures the entropy of over-
lapped angular windows of the normalized iris images. The goal is to construct an uni-
dimensional signals that contains information about the variations in the image entropy
across the angular iris direction, which is believed to provide the most valuable discrim-
inating biometric information.

Let N be a segmented and normalized iris image, withrN rows andcN columns
(rN × cN ). Also, let Wi be anrN × (cW + 1) image window, centered in theith

column ofN and composed by the columns{i− cW

2 , . . . , i+ cW

2 } of N . The extracted
signals = {s1, . . . , scN

} containscN components given by

si = h(Wi) (3)
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Fig. 3. Proposed feature extraction strategy. We construct an unidimensional signal through the
measuring of the entropy of overlapped angular patches of normalized iris images. Each compo-
nent of the signals is given by the image entropy of the image window centered at thei column,
spanned over all the rows of the normalized image and with fixed width.

Figure 4 contains examples of signals extracted from three normalized iris images.
Figures 4a and 4b respectively illustrate signals extracted from a noise-free and a noisy
image of the same iris. Here, the high similarity between the first 150 components of
both signals can be observed. These components were extracted from the noise-free
regions of the noisy iris image. Figure 4c represents a signal extracted from a different
iris and the differences regarding any of the other signals are evident.

As described in the next sub-section, the main challenge is to reliably conclude
about the subjects’ identity independently of the signal variations that result from differ-
ent imaging environments and noisy imaging conditions. This is the goal of our feature
comparison method.

3.2 Feature Comparison

The underlaying idea of our proposed feature comparison method was published in [18]
and consists in the direct correspondence between the number of compared components
of the biometric signatures and the dissimilarity threshold that distinguish between
matches and non-matches. The goal is to perform recognition of an individual using
exclusively small portions of its biometric signature, those that are not corrupted by any
type of noise.

In the following discussion, we will use a superscript to distinguish between sig-
nals extracted from different iris images, such ass1 ands2. Also, s1(a, b) denotes the
shifted segment (a positions) of the signals1 with b components, such thats1(a, b) =
{sa, . . . , s(a+b) mod cN

}.
The functiont(x) : N → R gives the threshold that distinguishes between match

and non-match comparisons for signatures withx components

t(x) =
(Md −md)(x−ml)

Ml −ml
+ md (4)

whereml andMl are respectively the minimum and maximum number of com-
ponents of the comparable signals andmd andMd are the minimum and maximum
threshold values,ml < Ml andmd < Md.

The functionfc(s1, s2) performs the comparison between segments ofs1 ands2

and produces the decision about the identity of the subjects from where the signals
were extracted:

fc(s1, s2) =
{

Match , d(s1(ai, bj), s2(ai, bj)) ≤ t(bj)
Non−Match , otherwise

(5)
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(a) Signal extracted from a noise-free image of subject 1.

(b) Signal extracted from a noisy image of subject 1.

(c) Signal extracted from subject 2.

Fig. 4. Examples of the unidimensional extracted signals. Figures 4a and 4b contain signals ex-
tracted from different images of the same iris, respectively from a noise-free (figure 4a) and a
noisy (figure 4b) image. It is notorious the similarity between the first 150 components of the
signals, which were extracted from the noise-free regions on both images. Also, the difference
between both signals and the illustrated in figure 4c (extracted from an image of a different iris)
is evident.

whereml ≤ ai, bj ≤ Ml andd() is the Euclidean distance.

4 Experiments and Discussion

To enable the test of the proposed recognition method, we analyzed the available iris
image databases and selected the most appropriate for our purposes. In the following



A Robust Iris Coding Strategy 7

we briefly describe the available public iris image databases and the data sets choused
for our experiments.

4.1 Iris Databases

There are presently seven public and freely available iris image databases for biometric
purposes: Chinese Academy of Sciences [1] (CASIA, three distinct versions), Multi-
media University (MMU), University of Bath (BATH), University of Olomuc (UPOL),
Iris Challenge Evaluation [2] (ICE), West Virginia University (WVU) and University
of Beira Interior [3] (UBIRIS).

CASIA database is by far the most widely used for iris biometric purposes and
has three distinct versions. However, its images incorporate few types of noise, al-
most exclusively related with eyelid and eyelash obstructions, similarly to the images
of the MMU and BATH databases. UPOL images were captured with an optometric
framework, obtaining optimal images with extremely similar characteristics. Although
ICE and WVU databases contain images with more noise factors, their lack of images
with significant reflections within the iris rings constitutes a weak point, regarding the
simulation of less constrained imaging conditions. Oppositely, images of the UBIRIS
database were captured under natural lighting and heterogenous imaging conditions,
which explains their higher heterogeneity.

Due to this, we selected 800 images from 80 subjects of the UBIRIS database.
In order to evaluate the recognition accuracy both in highly and less noisy environ-
ments, an equal number of images from the CASIA (third version) and ICE databases
were selected. Further, we divided each data set into two halves. The first data sets -
UBIRIStr, CASIAtr andICEtr - were used as training sets and the later -UBIRIStt,
CASIAtt andICEtt - to evaluate the recognition accuracy.

Each data set enables respectively 1800 and 78000 intra- and inter-class compar-
isons. Images of the UBIRIS data sets contain iris obstructions by eyelids and eyelashes,
poor focused and motion blurred irises and irises with specular and lighting reflections,
while those of the ICE data sets contain iris obstructions by eyelids and eyelashes, off-
angle iris images and eyes with contact lenses. Images of the CASIA data sets have
minor portions of noise, almost exclusively related with iris obstructions by eyelids and
eyelashes.

4.2 Recognition Methods Used as Comparison

As above stated, we compared the results obtained by the proposed recognition method
and three of the most cited iris recognition algorithms (Daugman [9], Wildes [5] and
Tan et al [6]), which we believe to represent the majority of the published proposals.
Also, the algorithm proposed by Daugman is the basis of all the commercially deployed
recognition systems.

4.3 Results and Discussion

For all images of the above described data sets we extracted the biometric signatures,
according to each above mentioned approach. Further, we performed the feature com-
parison with all the remaining signatures of the same data set. In order to avoid that
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(a) Poor focused iris image. (b) Iris with eyelid obstruc-

tions.

(c) Iris with eyelid and eye-

lash obstructions.

(d) Off-angle iris image. (e) Eye with contact lenses. (f) Iris with extreme eyelid

and eyelash obstructions.

(g) Motion blurred iris im-

age.

(h) Iris with large reflection

areas.

(i) Iris with large reflection

areas and eyelids and eyelash

iris obstructions.

Fig. 5. Examples of the images used in our experiments. The first row contains images of the
third version of theCASIA database, which commonly have iris obstructions due to eyelids
or eyelashes and poor focused images. The second row contains images of theICE database.
It incorporates off-angle images, iris obstructions and several eyes with contact lenses. Finally,
the third row exemplifies some of the highly noisy images contained by theUBIRIS database.
This database contains, apart from the above referred types of noise, images with large reflection
regions, either specular or lighting.

inaccuracies in the iris segmentation and normalization stages corrupt the obtained re-
sults, we manually verified the accuracy of the iris segmentation algorithms.

Figure 6 compares the obtained receiver operating curves (ROCs) by our proposal
(continuous lines with circular data points), Daugman’s (dashed lines with triangular
data points), Wildes’ (dotted lines with cross data points) and Tanet al.’s (large dashed
lines with square data points) in theUBIRIStt (figure 6a),ICEtt (figure 6b) and
CASIAtt (figure 6c) data sets. It can be observed that the error rates obtained in the less
noisy data sets were similar to those obtained by the Wildes and Tanet al.algorithms. In
both these data sets, Daugman’s recognition algorithm achieved better results. However,
in the highly noisy images of theUBIRIStt data set, which incorporates images with
very large reflection regions, our proposal outperformed the results obtained by any of
the other recognition algorithms, which confirms its higher robustness to noise.



A Robust Iris Coding Strategy 9

(a) ROCs obtained in the UBIRIStt data set (b) ROCs obtained in the ICEtt data set (c) ROCs obtained in the CASIAtt data set

Fig. 6.Comparison between the ROCs obtained in theUBIRIStt (figure 6a) ,ICEtt (figure 6b)
andCASIAtt (figure 6c) data sets. The continuous lines with circular data points represent our
proposal. Daugman’s is represented by the dashed lines with triangular data points and Wildes’
by the dotted lines with cross data points. Finally, the large dashed lines with square data points
represents the recognition method proposed by Tanet al.. Although our proposal obtained higher
error rates than the other methods used as comparison in the recognition of images of theCASIA
andICE data sets, it outperforms these methods in the recognition of highly noisy images (fig-
ure 6a).

Table 1.Comparison between the error rates obtained by the tested algorithms in the images from
theUBIRIStt, ICEtt andCASIAtt data sets.

Recognition
method

FRR, FAR=0 (%) EER (%) FR

UBIRIStt data set
Proposed 29.17± 0.04 08.91± 0.02 86.17
Daugman 40.02± 0.06 11.47± 0.03 75.83
Wildes 49.73± 0.07 18.73± 0.03 54.19
Tanet al. 42.77± 0.06 13.70± 0.03 70.41
ICEtt data set
Proposed 20.05± 0.03 06.70± 0.02109.14
Daugman 11.30± 0.03 04.82± 0.02143.19
Wildes 27.11± 0.04 10.58± 0.03105.12
Tanet al. 16.06± 0.03 08.86± 0.02127.95
CASIAtt data set
Proposed 14.03± 0.03 05.03± 0.02119.72
Daugman 03.97± 0.01 01.90± 0.01147.16
Wildes 12.09± 0.03 05.25± 0.02105.91
Tanet al. 09.27± 0.02 04.94± 0.02127.93

Table 1 summarizes the error rates obtained by the above described algorithms in
theUBIRIStt, ICEtt andCASIAtt data sets. The first column identifies the classi-
fication method, the second contains the false rejection rates when preventing the false
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accept errors(FRR,FAR = 0). EER corresponds to the approximated equal error
rate and, finally, the last column contains the value of a Fisher-ratio test (FR) given by:

FR =
(µE − µI)2

σI2

NI + σE2

NE

(6)

whereµI andµE respectively indicate the mean of the intra- and inter-class dis-
similarities.σI andσE indicate the respective standard deviations andN I andNE are,
respectively, the number of intra- and inter-class comparisons. All the error rates are
expressed for a confidence interval of 95%.

Once again, it can be observed that Daugman’s recognition method achieved higher
separability between the intra- and inter-class comparisons in the less noisy data sets
(CASIAtt andICEtt). In both cases, the values of the FR test are higher and the error
rates (either theEER or theFRR, FAR = 0) smaller. However, when images incor-
porate large reflection regions, all the algorithms used in the comparison with our pro-
posal significantly decreased their accuracy, showing their small robustness to noise. In
theUBIRIStt data set the proposed recognition method achieved significantly lower
error rates.

The high robustness of our proposal can be highlighted by the proportion values be-
tween the results obtained in the noisiest and less noisy iris image data sets: (UBIRIStt

CASIAtt
)

and (UBIRIStt

ICEtt
). For the EER we obtained the proportion values of respectively 1.77

and 1.32, which are significantly lower than those obtained for the Daugman’s (6.03 and
2.37), Wildes’ (3.56 and 1.77) and Tanet al.’s (2.77 and 1.54) recognition algorithms.
Similar values were obtained for the other error (FRR, FAR=0) and separability (FR)
measures.

(a) Obtained EER in the three data sets. (b) Obtained FRR, FAR=0 in the three data sets.

Fig. 7.Degradation in the accuracy of the tested algorithms, regarding the amount of noise of the
data sets. TheUBIRIS is the noisiest andCASIA the less noisy. Our proposal, Daugman’s,
Wildes’ and Tanet al.’s are respectively represented by the darkest to the brightest bar series.
Although our proposal obtained higher error rates in the less noisy data sets (CASIA and ICE), a
smaller degradation in the results is evident.

Figure 7 illustrates the increase of the error rates (EER in figure 7a and FRR, FAR=0
in figure 7b) obtained by the experimented algorithms, regarding the amount of noise
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in the iris images. The vertical axes contains the error rates (%) and the horizontal
contain the data sets where these errors were obtained, ordered from the less noisy to
the noisiest data sets. Our proposal, Daugman’s, Wildes’ and Tanet al.’s are respectively
represented by the darkest to the brightest bar series.

Computation Time
The algorithms were implemented in C++, following an object-oriented paradigm

and running in an image-processing framework developed by the authors. This frame-
work is not optimized for execution speed, as the algorithm’s implementation was made
without these concerns, but instead with a user-friendly objective. However, the propor-
tion between the average execution time of the implemented algorithms can be eval-
uated and assumptions about their optimized execution time can be made. The fastest
recognition algorithm was the one of Wildes, with average execution time of about 1.6
seconds. The computation time observed for the Daugman’s and Maet al. algorithms
was about 17 and 21% higher. Finally, our recognition proposal has higher compu-
tational requirements, essentially due to the feature comparison stage. The observed
average execution time was more than 90% higher than the one of Wildes.

We are focused on the development and evaluation of alternate feature comparison
strategies that present similar robustness to noisy signals and have smaller computa-
tional requirements.

5 Conclusions and Further Work

Having observed the significant impact of noise in the accuracy of the most relevant
iris recognition algorithms, we described a new iris recognition strategy more robust to
noise. The proposed method encodes the iris information into an unidimensional signal,
that measures the entropy of overlapped iris angular patches. For the purpose of signa-
ture matching, we compared segments of the signals with varying dimension, hoping
that noise-free components allow reliable biometric recognition. Here, the dissimilar-
ity threshold that distinguishes between match and non-match comparisons has direct
correspondence with the length of the compared signal segments.

Although our proposal did not outperform the compared ones in the less noisy data
sets (CASIA and ICE), we observed a significantly minor degradation in the recognition
of the highly noisy images of theUBIRIS database. This makes our proposal more
suitable for the application within less constrained imaging environments.

However, the computational requirements of the proposed method are a concern.
Our efforts are presently concentrated in decrease the computational complexity, as well
in the search of alternate feature comparison methods more accurate in the recognition
of noise-free images.
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