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Abstract

Using the periocular region for biometric recognition is
an interesting possibility: this area of the human body is
highly discriminative among subjects and relatively stable
in appearance. In this paper, the main idea is that improved
solutions for defining the periocular region-of-interest and
better pose / gaze estimates can be obtained by segment-
ing (labelling) all the components in the periocular vicin-
ity. Accordingly, we describe an integrated algorithm for
labelling the periocular region, that uses a unique model
to discriminate between seven components in a single-shot:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution fuses texture / shape descriptors and geometrical
constraints to feed a two-layered graphical model (Markov
Random Field), which energy minimization provides a ro-
bust solution against uncontrolled lighting conditions and
variations in subjects pose and gaze.

1. Introduction

Motivated by the pioneering work of Park et al. [14],
the concept of periocular recognition has been gaining rel-
evance in the biometrics literature, particularly for uncon-
trolled data acquisition setups. For such cases, the idea is
that - apart the iris - additional discriminating information
can be obtained from the skin and sclera textures, and the
shape of eyelids, eyelashes and eyebrows.

Most of the relevant periocular recognition algorithms
work in a holistic way, i.e., they define a region-of-interest
(ROI) around the eye and apply a feature encoding strat-
egy independently of the biological component at each po-
sition. The exceptions (e.g., [17] and [6]) regard the iris
and the sclera components, for which specific feature en-
coding / matching algorithms are used. This observation
leads that some components (e.g., hair or glasses) might be
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erroneously taken into account and bias the recognition pro-
cess.

The automatic labelling (segmentation) of the compo-
nents in the periocular region has - at least - two obvious
advantages: it enables to define better ROIs and conducts to
more accurate estimates of subjects’ pose and gaze. Hence,
this paper describes an image labelling algorithm for the
periocular region that discriminates between seven com-
ponents (iris, sclera, eyelashes, eyebrows, hair, skin and
glasses), according to a model composed of two phases:

1. seven non-linear classifiers running at the pixel level
are inferred from a training set, and provide the poste-
rior probabilities for each image position and class of
interest. Each classifier (neural network) is specialized
in detecting one component and receives local statis-
tics (texture and shape descriptors) from the input data;

2. the posteriors based on data local appearance are com-
bined with geometric constraints and components’ ad-
jacency priors, to feed a hierarchical Markov Ran-
dom Field (MRF), composed of a pixel and a com-
ponent layer. MRFs are a classical tool for vari-
ous computer vision problems, from image segmenta-
tion (e.g., [10]), image registration (e.g., [8]) to object
recognition (e.g., [5]). Among other advantages, they
provide non-causal models with isotropic behavior and
faithfully model a broad range of local dependencies.
The model proposed in this paper inherits some in-
sights from previous works that used shape priors to
constraint the final model (e.g., [3]) and multiple lay-
ered MRFs (e.g., [19]).

To illustrate the usefulness of the proposed algorithm,
we compare the effectiveness of the Park et al.’s [14] recog-
nition method, when using the ROI as originally described
and according to an improved version, that considers
the center of mass of the cornea as reference point (less
sensitive to gaze) and avoids that hair and glasses inside
the ROI are considered in feature encoding / matching. The



observed improvements in performance anticipate other
benefits that can be attained by labelling the periocular
region before recognition: pose / gaze estimates based in
the labelled data and development of component-specific
feature encoding / matching strategies.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the most relevant periocular recognition
algorithms. Section 3 provides a description of the proposed
model. Section 4 regards the empirical evaluation and the
corresponding results. Finally, the conclusions are given in
Section 5.

2. Periocular Recognition: Literature Review

The first work in this field was published in 2009, due
to Park et al. [14]. They characterised the periocular re-
gion by local binary patterns (LBP), histograms of ori-
ented gradients (HOG) and scale-invariant feature trans-
forms (SIFT), fused at the score level. Subsequently, the
same authors [13] described additional factors that affect
performance, including segmentation inaccuracies, partial
occlusions and pose. Woodard et al. [20] observed that fus-
ing the responses from periocular and iris recognition mod-
ules improves performance with respect to each system con-
sidered individually. Bharadwaj et al. [4] fused a global
descriptor based on five perceptual dimensions (image nat-
uralness, openness, roughness, expansion and ruggedness)
to circular LBPs. The Chi-square distances from both types
of features were finally fused at the score level. Ross et
al. [16] handled challenging deformed samples, using prob-
abilistic deformation models and maximum-a-posteriori es-
timation filters. Also concerned about robustness, Woodard
et al. [21] represented the skin texture and color using sep-
arate features, that were fused in the final stage of the pro-
cessing chain. Tan et al. [18] proposed a method that got the
best performance in the NICE: Noisy Iris Challenge Evalu-
ation1. contest. This method is actually a periocular recog-
nition algorithm: texton histograms and semantic rules en-
code information from the surroundings of the eye, while
ordinal measures and color histograms encode the iris data.
Oh et al. [9] combined sclera and periocular features: direc-
tional periocular features were extracted by structured ran-
dom projections, complemented by a binary representation
of the sclera. Tan and Kumar [17] fused iris information
(encoded by Log-Gabor filters) to an over-complete repre-
sentation of the periocular region (LBP, GIST, HOG and
Leung-Malik Filters). Both representations were matched
independently and fused at the score level.
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Figure 1. Structure of the MRF that segments the periocular re-
gion.

3. Proposed Method
As Fig. 1 illustrates, the proposed MRF is composed of

two layers: one works at the pixel level, with a bijection
between each image pixel and a vertex in the MRF. The
second layer regards the major components in the perioc-
ular vicinity, with six vertices representing the eyebrows,
irises and corneas from both sides of the face. The insight
behind this structure is that the pixels layer mainly regards
the data appearance, while the components layer represents
the geometrical constraints in the problem and assures that
the generated solutions are biologically plausible.

Let G = (V, E) be a graph representing a MRF, com-
posed of a set of t

v

vertices V , linked by t

e

edges E . Let
t

p

be the number of vertices in the pixels layer and let t

c

be
the number of vertices in the components layer, such that
t

v

= t

p

+ t

c

. Let C(x, y) denote the biological component
at position (x, y) of an image and T

j

be the component’s
type of the jth component node: either ’iris’, ’cornea’ or
’eyebrow’.

The MRF is a representation of a discrete latent ran-
dom variable L = {L

i

}, ’i œ V , where each element
L

i

takes one value l

i

from a set of labels. Let l =

{l

1

, . . . , l

tp , l

tp+1

, . . . , l

tp+tc} be one configuration of the
MRF. In our model, every component node is directly con-
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nected to each pixel node and the pixel nodes are connected
to their horizontal / vertical neighbors (4-connections).
Also, the edges between component nodes correspond to
geometrical / biological constraints in the periocular region:
the nodes representing both irises, corneas and eyebrows are
connected, as do the iris, cornea and eyebrow nodes of the
same side of the face. Note that the proposed model does
not use high-order potentials. Even though there is a point
in Fig. 1 that joins multiple edges, it actually represents
overlapped pairwise connections between one component
and one pixel vertex.

The energy of a configuration l of the MRF is the sum of
the unary ◊

i

(l

i

) and pairwise ◊

i,j

(l

i

, l

j

) potentials:
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iœV
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i

) +
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i,j
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i

, l
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According to this formulation, labelling an image is
equivalent to infer the random variables in the MRF by min-
imizing its energy:

l̂ = arg min

l
E(l), (2)

where {ˆ

l

1

, . . . ,

ˆ

l

tp} are the labels of the pixels and
{ˆ

l

tp+1

, . . . ,

ˆ

l

tp+tc} specify the components’ parameteriza-
tions. In this paper, the MRF was optimized according to
the Loopy Belief Propagation [7] algorithm. Even though
it is not guaranteed to converge to global minimums on
loopy non-submodular graphs (such as our MRF), we con-
cluded that the algorithm provides visually pleasant solu-
tions most of the times. As future work, we plan to evaluate
the effectiveness of our model according to more sophisti-
cated energy minimization algorithms (e.g., sequential tree-
reweighed message passing [11]).

3.1. Feature Extraction

Previous works reported that the hue and saturation
channels of the HSV color space are particularly power-
ful to detect the sclera [15], whereas the red / blue chroma
values provide good separability between the skin and non-
skin pixels [1]. Also, the iris color triplets are typically dis-
tant from the remaining periocular components and there is
a higher amount of information in patches of the eyebrows
and hair regions than in the remaining components. Ac-
cordingly, a feature set at the pixel level is extracted, com-
posed of 34 elements (Fig. 2): {red, green and blue channels
(RGB); hue, saturation and value channels (HSV); red and
blue chroma (yCbCr); LBP and entropy in the value chan-
nel}, all averaged in square patches of side {3, 5, 7} around
the central pixel. Also, the convolution between the value
channel and a set of Gabor kernels G complements the fea-
ture set:

G[x, y, Ê, Ï, ‡] = exp

Ë≠x

2 ≠ y

2

‡

2

È
exp[2fiÊi�] (3)

being � = x cos(Ï) + y sin(Ï), Ê the spatial frequency, Ï

the orientation and ‡ the standard deviation of an isotropic
Gaussian kernel (Ê œ { 3

2

,

5

2

}, Ï œ {0,

fi

2

}, ‡ = 0.65Ê).

a) Saturation b) Red chroma

c) Entropy (Value ch. 3 ◊ 3) d) LBP (Value ch. 3 ◊ 3)

e) Gabor (Ê =

3
2 , Ï =

fi
2 ) f) Gabor (Ê =

5
2 , Ï = 0)

Figure 2. Illustration of the discriminating power of the features
extracted, for the seven classes considered in this paper.

3.2. Unary Potentials

Let “ : N2 æ R34 be the feature extraction func-
tion, that for each image pixel (x, y) returns a feature vec-
tor “(x, y) œ R34. Let � = [“(x
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, y

1
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)]

T

be a n ◊ 34 matrix extracted from a training set, that is
used to learn seven non-linear binary classification models,
each one specialized in detecting a component (class) Ê

i

œ
{Iris, Sclera, Eyebrows, Eyelashes, Hair, Skin, Glasses}.
Let ÷

i
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linear model, used to obtain the likelihood of class Ê
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The unary potentials of each vertex in the pixels layer are
defined as ◊
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.

Each label in the components layer represents a param-
eterisation of an ellipse (found by the Random Elliptical
Hough Transform (REHT)) [2] that roughly models the eye-
brows, corneal or iris regions. Starting from images la-
belled by the index of the maximum posterior probability
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(upper image in

Fig. 3), a binary version per component can be obtained
(bottom images in Fig. 3):

I

mi(x, y) =

;
1 , if I
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0 , otherwise (5)

The output of the REHT algorithm in I

mi(x, y) gives
the unary potential of the component vertices: ◊
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turned by the REHT for the ith ellipse parameterisation.
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Figure 3. (Upper row) Example of an image labelled by the
maximum of the posteriors given by the classification models
÷i

!
“(x, y)

"
. The red ellipses in the bottom images represent the

parameterisations returned by the REHT algorithm for the left iris,
cornea and eyebrow.

3.3. Pairwise Potentials

There are three types of pairwise potentials in our model:
1) between two pixel nodes; 2) between two component
nodes; and 3) between a pixel and a component. The
pairwise potential between pixel nodes spatially adjacent
◊

(p)

i,j

(l

i

, l

j

) is defined as the prior probability of observing
labels l

i

, l

j

in adjacent positions of a training set (e.g., it is
much more probable that an ”eyebrow” pixel is adjacent to
a ”skin” pixel than to an ”iris” one):
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where P (., .) is the joint probability, (x
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Õ
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4adjacent positions and –

0

œ R+ avoids infinite costs (like-
wise, all –

i

terms below are regularization terms).
The pairwise potentials between component nodes con-

sider the geometrical constraints in the periocular area, i.e.,
enforce that the irises are inside the cornea, and below

the eyebrows. Also, both irises, corneas and eyebrows
should have similar vertical coordinate and similar size. Let
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) be the ith parameterisation of an ellipse,
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) the ellipse centre, (a

i
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) its major / minor
axes and Ï

i

the rotation. For pairs of nodes of the same type
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), similar vertical coordinates and similar sizes are
privileged:
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For edges connecting the cornea (ith node) and the eye-
brow (jth node) we privilege similar horizontal coordinates
and locations having the eyebrow above the cornea:
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Regarding the iris / cornea pairwise potentials, we pe-
nalize parameterizations with portions of the iris outside the
cornea:
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being (x
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) a pixel labelled as iris and
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) an indicator function that
verifies if that position is inside the ellipse defined by the
jth parameterisation (7). Overall, the pairwise potentials in
the components layer are defined as:

◊

(c)

i,j

(l

i

, l

j

) =

3ÿ

k=1

◊

(ck)

i,j

(l

i

, l

j

). (11)

Lastly, the pairwise potentials between pixels and com-
ponents enforce that pixels inside a component parameter-
isation are predominantly labelled by the value that cor-
responds to that type of node, whereas pixels outside that
parameterisation should have label different of the compo-
nent’s type. Let (x

jk

, y

jk

) be the coordinates of the ellipse
defined by the jth parameterization. The pairwise cost be-
tween the ith pixel node and the jth component node is
given by:
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where ||.|| is the Euclidean distance.
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4. Experiments
Our experiments were carried out in a data set com-

posed of 5,551 visible-light images (with resolution 800 ◊
300) containing the periocular regions from both sides of
the face. These images were the source for the UBIRIS.v2
dataset: they were collected in indoor unconstrained light-
ing environments and feature significant variations in scale,
subjects’ pose and gaze. For learning / evaluation purposes,
200 images were manually labelled, covering the seven
classes we aim to deal with. This set was divided into two
disjoint parts: 1) one used to learn the classification models
and to estimate the prior unary / pairwise costs of the MRF;
and 2) the complementary part served for quantitative per-
formance evaluation.

To obtain the seven classification models, we used feed-
forward neural networks with three layers and {34 : 17 : 1}
topology, with tan-sigmoid transfer functions in the input
and hidden layers and linear transfer functions in the out-
put layer. The learning sets were always balanced (ran-
dom sampling) and the Resilient Back-propagation algo-
rithm used to learn the classifiers. Regarding the MRF opti-
mization, every image was resized to 200 ◊ 75 pixels, i.e.,
t

p

= 15, 000 in our MRFs. Also, – = {0.01, 1, 2, 10, 10}.

4.1. Segmentation Performance

Fig. 4 illustrates the results typically attained by the pro-
posed model. Their visual coherence is evident, where
regions labelled as hair appear in pink, eyebrows in yel-
low, irises in green, eyelashes in black, sclera in blue and
glasses in blueberry color. Also, solutions were biologi-
cally plausible in the large majority of the cases, for vari-
ous hairstyles, and different subjects poses / gazes. A par-
ticularly interesting performance was observed for glasses,
where the algorithm attained remarkable results for various
types of frames. This was probably due to the fact that
glasses were the unique non-biological component among
the classes considered, which might had increased their dis-
similarity with respect to the remaining components.

In opposition, the most concerning cases happened when
the eyebrows and the hair were overlapped (bottom-right
image in Fig. 4) . Also, for heavily deviated gazes, the
sclera was sometimes under-segmented (typically, by non-
detecting the less visible side). In opposition, eyelashes
tended to be over-segmented, with isolated eyelashes be-
ing grouped in large eyelash regions, which might be due
to excessive pairwise cost for observing different labels in

Labeling Error NN (%) MRF (%)

Component FP FN FP FN

Iris 1.12 ± 0.29 9.06 ± 1.80 0.17 ± 0.03 2.61 ± 0.51

Sclera 1.61 ± 0.49 5.17 ± 0.83 0.19 ± 0.03 3.60 ± 0.82

Eyebrows 2.20 ± 0.40 6.93 ± 0.95 0.79 ± 0.28 2.25 ± 0.46

Eyelashes 1.47 ± 0.38 5.12 ± 1.13 0.93 ± 0.23 0.62 ± 0.53

Hair 3.16 ± 0.56 6.74 ± 1.27 1.26 ± 0.30 3.09 ± 0.88

Skin 4.10 ± 1.03 4.09 ± 0.69 2.63 ± 0.43 3.86 ± 1.01

Glasses 1.08 ± 0.22 5.03 ± 1.45 0.06 ± 0.01 0.60 ± 0.09

Table 1. Average pixel labelling errors per component, when con-
sidering exclusively the arg maxj p

1
Êj |÷j

!
“(x, y)

"2
value (NN

column) and with the proposed MRF model (MRF column).

adjacent positions of the pixels layer.
It should be noted that –

i

were found in an empirical
and independent way, i.e., no exhaustive evaluation of com-
bined configurations was carried out, nor any parameter op-
timization algorithm was used, which also points for the ro-
bustness of the proposed model against sub-optimal param-
eterizations. Table 1 gives the error rates per class, when
considering exclusively the first phase of our model (maxi-
mum of the posterior probabilities, column ”NN”) and the
full processing chain (MRF optimization, column ”MRF”).
In this table, FP stands for the false positives rate, whereas
FN refers to the false negatives rate. In all cases, it is evi-
dent that the MRF substantially lowered the labeling error
rates, essentially by imposing smoother responses and con-
straining the range of biologically acceptable solutions.

As the machine learning algorithm described in this pa-
per is supervised, it is important to perceive its variations
in performance with respect to the amount of learning data
used to create the classification models and the prior unary
/ pairwise potentials. To this end, performance was com-
pared while varying the number of images used in learn-
ing, and keeping constant the number of images used in
performance evaluation (to assure comparable bias / vari-
ance scores). Figure 5 expresses the results: the horizontal
axis gives the number of learning images used and the verti-
cal axis is the corresponding pixel classification error, with
the corresponding 95% confidence intervals. We observed
that when more than 35 images were used in learning, the
pixel classification errors tend to converge. This is evident
in terms of the absolute error values and of the narrowness
of the confidence intervals.



Figure 4. Examples of the segmented periocular regions. ”Hair” class is represented by the pink color, ”Eyebrows” appear in yellow, ”Iris”
in green, ”Sclera” in blue, ”Glasses” in blueberry and ”Eyelashes” in gray. Pixels classified as ”Skin” are transparent.
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Figure 5. Variations in labelling errors with respect to the number
of images used in the learning phase of the algorithm.

4.2. Periocular Biometrics Performance

To exemplify the usefulness of periocular segmentation
algorithms, one all-against-all matching experiment was
designed, using the method of Park et al. [13] and two dif-
ferent strategies to define the ROI: as baseline, the iris center
was the unique reference for the ROI (upper-left image in
Fig. 6). Next, according to the labels provided by the MRF,
the center of mass of the cornea was used to define the ROI,
which is obviously less sensitive to changes in gaze. Also,
regions labelled as hair and glasses were disregarded from
the recognition phase, considering that they likely suffer of
significant variations among samples of a subject (upper-
right image in Fig. 6). The Receiver Operating Character-
istic curves for both variants are compared in the bottom

plot of Fig. 6 and turn evident the benefits attained due to
data segmentation (Equal error rate of 0.128 for the clas-
sical ROIs and 0.095 for the improved ROIs configuration).
The improvements were substantial in all regions of the per-
formance space, having at some operating points increased
the system sensitivity over 10%. It should be stressed that
no particular concerns were taken in optimizing the recog-
nition method for the used data set, meaning that the focus
was putted much more in the performance gap between both
recognition schemes than in the recognition errors in abso-
lute values, which are out of the scope of this paper.

5. Conclusions and Further Work

In this paper we have proposed an algorithm for one-
shot labelling of all the components in the periocular region:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution is composed of two major phases: 1) a group of
local classification models gives the posterior probabilities
for each pixel and class considered; 2) this appearance-
based information is fused to geometrical constraints and
shape priors to feed a two-layered MRF. One layer repre-
sents pixels, and analyzes the local data appearance while
enforcing smoothness of the solutions. The second layer
represents components, and assures that solutions are bio-
logically plausible. By minimizing the MRF energy, the
label of each pixel is found, yielding solutions that are ro-
bust against changes in scale, subjects’ pose and gaze and
dynamic lighting conditions.

As further directions for this work, our efforts are fo-
cused in estimate gaze / pose from the labelled data, in order
to compensate for deviations before the recognition process.
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Figure 6. Improvements in periocular recognition performance due
to the semantic categorization (labeling) of each pixel in the peri-
ocular region.
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