
Universidade da Beira Interior
Departamento de Informática

Nº 121 - 2021: Análise de Tráfego Automóvel a partir
de Dispositivos Aéreos Não-Tripulados (UAVs)

Elaborado por:

Henrique Leitão de Jesus

Orientador:

Professor Doutor Hugo Pedro Proença

July 8, 2022

Acknowledgements

I want to leave a thank you note to everyone who supported me at this stage.
Firstly, I would like to thank my supervisor Hugo Proença for the knowledge
shared and whose help was essential to the realization of this project.
I want to thank my parents, Adélia and Víctor, and my sister Luana for sup-
porting and motivating me on this journey.
To my friends and to everyone who helped me in some way, thank you.

i

Contents

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation and Objectives . 2
1.3 Project Organization . 2

2 State-of-Art 3
2.1 Object detection . 3

2.1.1 R-CNN . 4
2.1.2 Fast R-CNN . 5
2.1.3 Faster R-CNN . 5
2.1.4 YOLO . 7
2.1.5 SSD . 9
2.1.6 YOLOv2 . 10
2.1.7 YOLOv3 . 11
2.1.8 YOLOv4 . 12
2.1.9 YOLOv5 . 14
2.1.10 TPH-YOLOv5 . 14

2.2 Object Detection Metrics . 15
2.2.1 Intersection Over Union 15
2.2.2 Precision-Recall Curve . 16
2.2.3 Average Precision . 17
2.2.4 Mean Average Precision 17

2.3 Multi-Object Tracking . 17
2.3.1 SORT . 17

2.3.1.1 Detection . 17
2.3.1.2 Estimation . 18
2.3.1.3 Association . 18

iii

iv CONTENTS

2.3.1.4 Creation and Deletion of Track 18
2.3.2 DeepSort . 18

2.4 Multi-Object Tracking Metrics . 19
2.4.1 HOTA . 19

2.4.1.1 Localization . 20
2.4.1.2 Detection . 20
2.4.1.3 Association . 20
2.4.1.4 HOTA score . 20

3 Proposed Method 23
3.1 Object Detection Model . 24
3.2 Multi-Object Tracking Model . 26
3.3 Speed Estimation . 27
3.4 Traffic Statistics . 32

3.4.1 Vehicle counting . 33
3.4.2 Heatmap . 34
3.4.3 Speed Statistics . 35

3.5 Technologies and Tools . 35
3.5.1 Programming Language and Libraries 35
3.5.2 Packages . 35
3.5.3 Data Annotation . 36
3.5.4 Devices and Logs . 36
3.5.5 Georeferencing Tools . 36

4 Experiments and Results 37
4.1 Dataset . 37

4.1.1 Data Variability Factors 38
4.2 Object Detection . 40

4.2.1 Preprocessing and Training 40
4.2.2 Results . 42

4.3 Multi-Object Tracking . 49
4.4 Speed Estimation . 50
4.5 Discussion . 52

4.5.1 Object Detection . 53
4.5.2 Multi-Object Tracking . 54
4.5.3 Speed Estimation . 54
4.5.4 Traffic Statistics . 55

5 Conclusions and Further Work 57
5.1 Conclusions . 57
5.2 Further Work . 58

CONTENTS v

Bibliography 61

List of Figures

2.1 R-CNN object detection workflow (from [1]). 4
2.2 Fast R-CNN architecture (from [2]). 5
2.3 The RPN module in Faster R-CNN serves as the attention mecha-

nism (from [3] paper). 6
2.4 The You Only Look Once (YOLO) architecture. It has 24 convolu-

tional layers followed by 2 fully connected layers (from [4]). 8
2.5 Comparison between Single Shot MultiBox Detector (SSD) and YOLO

(from [5]). The SSD model outperforms the YOLO model with more
fps and Mean Average Precision (mAP). 10

2.6 Darknet53 architecture (from [6]). 12
2.7 The CBAM module is on the left, and the Transformer Encoder is

on the right (both images from [7]). 15
2.8 Intersection Over Union formula. 16
2.9 This image (from [8]) shows how other Multi-Object Tracking (MOT)

metrics like MOTA and IDF1 overemphasize the detection and as-
sociation. In contrast, Higher Order Tracking Accuracy (HOTA) presents
a balanced evaluation. 19

3.1 Proposed method diagram. 23
3.2 Comparison between YOLOv5 configs (from [9]). 26
3.3 Drone’s footprint illustration (from [10]). 28
3.4 (a) Drone footprint. (b) Video frame. 30
3.5 Schematic about converting a point of a frame to a footprint. . . . 31
3.6 The black circle shows the intersection. Inside this circle, the red

line is the line segment between the first object’s centroid coordi-
nate (black cross) and the last object’s centroid coordinate stored
in memory. The green line is the entered segment line. 33

3.7 Example of the output heatmap. The hotter color (yellow) repre-
sents the high traffic density on the road. 34

4.1 Vehicle clusters images from Visdrone detection dataset. 38
4.2 Traffic jam images from Visdrone detection dataset. 38
4.3 Images with different perspectives and heights from Visdrone de-

tection dataset. 39

vii

viii LIST OF FIGURES

4.4 Images with different illumination from Visdrone detection dataset. 39
4.5 Images with tiny objects from Visdrone detection dataset. 39
4.6 Image with occlusion from Visdrone dataset. 40
4.7 YOLOv5 training results.In the first three top and bottom plots, the

x-axis corresponds to the number of epochs while the y-axis corre-
sponds to the loss. In the last two bottom and top plots, the x-axis
corresponds to the number of epochs while the y-axis corresponds
to the metric value. 42

4.8 Results of each model with resolution at 640. 43
4.9 Results of each model with resolution at 1280. 44
4.10 Results of each model with resolution at 1920. 45
4.11 Vehicle cluster prediction results. 46
4.12 Traffic jam prediction results. 47
4.13 Images with different perspectives. (a) High altitude and vertical

perspective prediction results. 47
4.14 Images with different light scenarios. (a) Low luminosity. (b) High

luminosity. 48
4.15 Tiny objects prediction results. 48
4.16 Parcial occlusion prediction results. 49
4.17 Speed estimation with stationary drone. 51
4.18 Speed estimation with stationary drone while the car remains sta-

tionary and then speeds up. 51
4.19 Speed estimation with both car and drone in motion. 52
4.20 Speed estimation with drone in motion and stationary car. 52
4.21 Example of small objects detection by TPH-YOLOv5 (inside red cir-

les). 53
4.22 Difference between heatmap with and without mask. 56

5.1 Example of notable distortion in map image. (a) The red square is
the footprint on the map, and the black arrow points to the cropped
and rotated footprint. (b) Corresponding drone frame. 59

List of Tables

3.1 Comparison between different object detectors (from [11]). 25
3.2 DJI Phantom 4 Pro v2 camera specs. 29
3.3 GitHub repositories and respective link. 35

4.1 Visdrone dataset data distribution. 37
4.2 YOLOv5 training settings. 41
4.3 YOLOv5 training hyperparameters. 41
4.4 Data augmentation parameters. 41
4.5 Model’s inference times. 46
4.6 Average HOTA scores with frames resolution at 640. 49
4.7 Average HOTA scores with frames resolution at 1280. 50
4.8 Average HOTA scores with frames resolution at 1920. 50

ix

Acrónimos

YOLO You Only Look Once

SSD Single Shot MultiBox Detector

CNN Convolutional Neural Network

SVM Support Vector Machine

RoI Region of Interest

RPN Region Proposal Network

IOU Intersection Over Union

NMS Non-Maximum Suppression

mAP Mean Average Precision

AP Average Precision

MOT Multi-Object Tracking

SORT Simple Online and Realtime Tracking

MTA Measurement-Track Association

HOTA Higher Order Tracking Accuracy

SGD Stochastic Gradient Descent

xi

Chapter

1
Introduction

1.1 Problem Statement

Technological advances have allowed the emergence of revolutionary fields
such as Machine Learning and Computer Vision. These fields aim to simu-
late human intelligence capacity. Humans are great at extracting patterns and
interpreting them, making us intelligent and capable of performing compli-
cated tasks. For this reason, we must manage to teach machines to develop
this capacity so that they can help us solve problems and execute challeng-
ing tasks that exceed human capacity. In fact, this help is increasingly evident
in areas such as medicine, science, and the automation of tasks such as au-
tonomous driving. One way of interpreting the world is through vision, and
for this reason, the importance of Computer Vision. This field aims to teach
the machine to extract useful information from videos and images and then
process it.

With the emergence of convolutional networks, analyzing and processing
imagery data became more and more accessible. These mechanisms allow the
creation of models capable of recognizing and locating objects and people in
images. In this way, it is possible to improve surveillance or video analysis sys-
tems and make them autonomous without the need for a human to interpret
these data.

Unmanned aerial vehicles with access to a camera have become a benefi-
cial aid for several entities. Since they can fly at a certain height, they allow the
capture of a vast area. For this reason, they can be used to gather information
from an area and patrol a place in order to be analyzed. There are more and
more vehicles circulating in urban areas, which makes it a complicated task
for those who supervise traffic.

1

2 Introduction

This project aims to use machine learning and computer vision mecha-
nisms to process videos captured through unmanned aerial vehicles in order
to analyze urban traffic.

1.2 Motivation and Objectives

The number of vehicles in urban environments has increased over time. In
order to collect traffic information, several surveillance cameras are placed
on the highways. This implies a high number of equipment needed to extract
information in extensive areas. With the emergence of ML and CV fields, it is
possible to create mechanisms capable of analyzing and extracting informa-
tion about traffic through videos captured by drones. Thus, a single device
can patrol an urban area and automatically interpret it.

Our main objective is to develop a framework capable of extracting traffic
information to produce statistics through UAV videos. These statistics allow
us to characterize the traffic by creating traffic density maps, counting vehi-
cles on the road, and estimating the vehicle’s speed. Several models and tech-
niques responsible for vehicle detection, tracking, and speed estimation will
be analyzed to accomplish this objective.

1.3 Project Organization

The report of this project is organized as follows:

1. Chapter 2: This chapter presents the models’ state-of-art parts of the
related works. It is divided into object detection models and multiple
object tracking models. In addition, it also contains two chapters re-
lated to the metrics used in detection and tracking, respectively.

2. Chapter 3: Here is where we propose the method to develop this work.
Here we can find a detailed explanation of each implemented module
and its rationale. Also, this is where we list the materials used in this
project.

3. Chapter 4: In this chapter, we highlight the results obtained in each im-
plemented module and present its weaknesses.

4. Chapter 5: Finally, in this chapter, we conclude the project and outline
the future work.

Chapter

2
State-of-Art

In this chapter, we review the state-of-art models that are part of the works re-
lated to this project. It contains two sections dedicated to object detection and
tracking of multiple objects and two other sections dedicated to the metrics
used respectively by these two types of models. Each section briefly explains
the technologies and techniques addressed.

2.1 Object detection

Object detection is seen as one of the most fundamental problems of com-
puter vision. This task aims to build computational models capable of locat-
ing objects in digital images as well as their classification (dog, human, car).
The rapid development of deep learning technologies allowed the emergence
of several models referring to this task. These models are grouped into two
types: the multiple-stage and the single-stage models.

Multi-stage models prioritizes detection accuracy. In these, a first stage
is responsible for extracting regions from objects, and a second stage is used
to classify and improve the object’s location in the image. This method works
well, but on the other hand, it becomes slower as it requires performing the
detection and classification process on various occasions. The most popular
models are R-CNN, Fast R-CNN, and Faster R-CNN.

Single-stage models prioritizes inference speed. Typically, these meth-
ods propose several bounding boxes of different scales in the image to reach
a trade-off between speed and accuracy. This technique relies on a convo-
lutional network to recognize and locate the object in forward propagation.
Thus, these types of models are usually faster than the two-stage models, but
on the other hand, they have less accuracy. The most popular models are the

3

4 State-of-Art

YOLO and the SSD.

2.1.1 R-CNN

R-CNN [1] was proposed by Ross Girshick in 2014. It combines region pro-
posals with Convolutional Neural Networks and aims to improve the quality
of candidate bounding boxes and take a deep architecture to extract high-level
features. In the R-CNN model 2.1, an image is received as input(1), then the
process is divided into three stages: A Region proposal generation (2), where
it is used a selective search algorithm to generate about 2000 region proposals
for each image. Feature extraction (3), the region proposals are cropped and
resized so that a large convolutional neural network can extract a 4096 dimen-
sional feature vector. Classification and localization (4), the feature vector is
run through a collection of linear support vector machines (Support Vector
Machine (SVM)), where each SVM is responsible for classifying a single ob-
ject class and indicating the likelihood that the region proposal contains that
class. Finally, these regions are filtered with non-maximum suppression and
adjusted with bounding box regression.

Figure 2.1: R-CNN object detection workflow (from [1]).

R-CNN drawbacks:.

• It takes much time to generate the region proposals since the model de-
pends on the selective search algorithm.

• These regions are fed independently to the Convolutional Neural Net-
work (CNN) for feature extraction, making it slow and impossible to run
in real-time.

• Each stage is an independent component, so the model cannot be trained
end-to-end.

• Processing a small training set with deep networks can be time-consuming.

2.1 Object detection 5

2.1.2 Fast R-CNN

Fast R-CNN model [2] was later created, introducing several improvements
and innovations in the training and testing speed while also increasing the
accuracy rate. This model processes the whole image with convolutional and
max-pooling layers to produce a convolutional feature map. Then, a Region of
Interest (RoI) pooling layer extracts a fixed-length feature vector from the fea-
ture map for each object proposal region. Each feature vector is fed into a se-
quence of fully connected layers and finally branched into two sibling output
layers: one that applies softmax to estimate the probabilities of the K object
classes plus a "background" class and another layer that outputs four real-
valued numbers for each of the K object classes, these correspond to each
object bounding boxes. This RoI pooling layer allows Fast R-CNN to share
computation rather than doing calculations for each proposal independently,
making it faster than R-CNN. Figure 2.2 illustrates the Fast R-CNN architec-
ture.

Figure 2.2: Fast R-CNN architecture (from [2]).

Fast R-CNN drawback: just like R-CNN, it also depends on the time-consuming
Selective Search algorithm to generate region proposals.

2.1.3 Faster R-CNN

Faster R-CNN [3], proposed by Ren et al. in 2015, is an improved version of
R-CNN and Fast R-CNN. The difference between these is that Faster R-CNN
uses a Region Proposal Network (RPN) instead of using the exhaustive selec-
tive search algorithm to generate the region proposals. The RPN is a fully con-
volutional network that generates proposals with various scales and aspect
ratios. It also implements the neural network terminology with attention this

6 State-of-Art

module tells the Fast R-CNN module where to look. In this way, it is possi-
ble to calculate the features of the entire image at once and therefore does
not involve repeated calculations, which significantly improves the detection
speed of Faster R-CNN. This paper introduced the concept of anchor boxes
rather than using pyramids of images or pyramids of filters. An anchor box is a
bounding box with a specific scale and aspect ratio that will be used to regress
the final predicted bounding box for each object. With multiple reference an-
chor boxes, a single region has multiple scales and aspect ratios, which allows
using the computed convolutional features on a single-scale image. This de-
sign permits sharing features without extra cost for addressing scales. Sum-
ming up, Faster R-CNN’s architecture consists of two modules: the RPN for
generating region proposals faster than selective search and the Fast R-CNN
for detecting objects in the proposed regions. Figure 2.3 illustrates the RPN
module in Faster R-CNN.

Figure 2.3: The RPN module in Faster R-CNN serves as the attention mecha-
nism (from [3] paper).

Faster R-CNN drawbacks:

• RPN is not good at dealing with objects with huge shapes or scales.

• The multiple samples from a single image may be correlated, so it may
take much time to reach the convergence.

2.1 Object detection 7

2.1.4 YOLO

You Only Look Once (YOLO) [4], proposed by Joseph Redmon in 2016. It is
a single regression-based method neural network able to classify and predict
bounding boxes for detected objects in one evaluation with high performance
and accuracy rate, being able to run in real-time. YOLO means You Only Look
Once since it looks at the entire image simultaneously, which makes it differ-
ent from R-CNNs, which look at different parts of the image separately. The
main idea of YOLO is shown in Figure X. According to the paper [4], this model
divides the input image into an S x S grid, and if the center of an object is in-
side a grid cell, that grid cell will be responsible for detecting the object. Each
cell predicts B bounding boxes, with their confidence level between 0 and
1. This confidence scores are defined as Pr (Ob j ect)∗ IOU truth

pred : Pr (Ob j ect)

indicates the probability of existing objects. IOU truth
pred it is a confidence that

represents the Intersection Over Union (IOU) between the predicted and the
ground truth box. IOU is calculated through the division between the in-
tersection area of the predicted and ground truth box by the union of the
same boxes. Each grid cell also predicts C conditional class probabilities,
Pr (C l assi |ob j ect). These are conditioned on the grid cell containing an ob-
ject. The class-specific confidence scores for each box are achieved by mul-
tiplying the individual box confidence predictions with the conditional class
probabilities as follows:

Pr (Ob j ect)∗ IOU truth
pred ∗Pr (C l assi |ob j ect) = Pr (C l assi)∗ IOU truth

pred (2.1)

Each bounding box consists of 5 predictions [4]: x, y, w, h, and the confidence:
(x,y) are coordinates that represent the center of the box relative to the bounds
of the grid cell. (w, h) are the width and height predicted relative to the whole
image. Thus, the predictions are encoded as an S x S x (B*5 + C) tensor.

The YOLO architecture in 2.4 is divided into three components: the head,
the neck and backbone. The backbone is made of 24 convolutional layers re-
sponsible to extract the features from the image. The neck consists of 2 fully
connected layers responsible to predict the output probabilities and coordi-
nates. Some convolutional layers alternate 1 × 1 reduction layers to reduce the
features space from preceding layers. The head is the final output layer of the
network, which outputs an S x S x (B*5 + C) tensor, as previously mentioned.

8 State-of-Art

Figure 2.4: The YOLO architecture. It has 24 convolutional layers followed by
2 fully connected layers (from [4]).

The loss function optimized in the training is the following:

λcoor d

S2∑
i=0

B∑
j=0

1
ob j
i j [(xi − x̂i)2 + (yi − ŷi)2]

+λcoor d

S2∑
i=0

B∑
j=0

1
ob j
i j [(

p
wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2]

+
S2∑

i=0

B∑
j=0

1
ob j
i j (Ci − Ĉi)2 +λnoob j

S2∑
i=0

B∑
j=0

1
noob j
i j (Ci − Ĉi)2

+
S2∑

i=0
1

ob j
i

∑
c∈cl asses

(pi (c)− p̂i (c))2 (2.2)

where:

• (xi , yi) denotes the location of the centroid of the anchor box in grid cell
i .

• (wi ,hi) is the width and height of the anchor box.

• Ci represents the confidence score of whether there is an object or not.

• 1
ob j
i indicates the existence of objects. It is 1 if the object exists, other-

wise is 0.

• 1
ob j
i j denotes that the prediction is conducted by the j th bounding box

predictor and 1
noob j
i j is its complement.

2.1 Object detection 9

• λcoor d increases the weight for the loss in the boundary box coordinates
and λnoob j weights down the loss when detecting background.

• pi (c) is the classification loss.

• hat (ˆ) variables represent the respective predicted values.

This loss function only penalizes classification error if an object is present in
that grid cell (hence the conditional class probability in 2.1). It also penalizes
bounding box coordinate error if that predictor is responsible for the ground
truth box, i.e., has the highest IOU.

In Inference, Non-Maximum Suppression (NMS) is used to fix the prob-
lem of multiple detections from the same object. NMS selects the box with the
highest objectiveness score, then compares this box’s IOU with other boxes,
and finally removes the bounding boxes with overlap above some given thresh-
old.

YOLO drawbacks: it imposes strong spatial constraints on bounding box
predictions since each grid cell only predicts two boxes and can only have
one class, this causes struggles when there are too many objects close to each
other. YOLO has difficulty generalizing objects in new or unusual aspect ratios
or configurations since the model learns to predict bounding boxes from data.

2.1.5 SSD

Single Shot MultiBox Detector (SSD), proposed by Liu et al. [5], aimed to solve
the YOLO limitations. The model was inspired by anchors adopted in Multi-
Box [12], RPN, and multiscale representation, and like YOLO, it is a single neu-
ral network. As mentioned before, the most salient limitation of YOLO is the
problem is the strong spatial constraints. SSD uses default anchor boxes with
different aspect ratios and scaled instead of fixed grids to solve this problem.
The network mixes predictions from multiple feature maps with different res-
olutions to handle objects of various sizes.

SSD architecture adopts an algorithm for detecting various classes of ob-
jects in an image, providing scores associated with the presence of any cate-
gory of objects. This model is also suitable for running in real-time applica-
tions as it, like YOLO, re-evaluates the bounding boxes only once. The SSD
architecture in 2.5 uses a VGG-16 network [13] as the backbone and replaces
the last two fully connected layers with convolutional layers. Then, four more
convolutional layers are responsible for predicting the offsets to default boxes
with different scales and aspect ratios and their associated confidences. The
network is trained with a weighted sum of localization loss and confidence
loss. It uses NMS on multiscale refined bounding boxes. [14]

10 State-of-Art

Figure 2.5: Comparison between SSD and YOLO (from [5]). The SSD model
outperforms the YOLO model with more fps and Mean Average Precision
(mAP).

2.1.6 YOLOv2

YOLOv2 [15] was a joint endeavor by Joseph Redmon and Ali Farhadi, and it is
the second version of the YOLO, bringing improvements to the accuracy and
performance. The accuracy improvements referred to in the paper are:

• Batch normalization - Doing this on all convolutional layers allows for
regularizing the model and increasing the mAP. This technique removes
the need for dropouts without overfitting.

• High-Resolution Classifier - The original YOLO trains the classifier net-
work at 224 x 224 and increases the resolution to 448 for detection. This
means the network has to switch to learning object detection and ad-
just to the new input resolution. In YOLOv2, the classification network
is tuned at full 448 x 448 resolution for 10 epochs. This gives the network
time to adjust its filters to work better on higher resolution input.

• Convolutional With Anchor Boxes - YOLO predicts the coordinates of
bounding boxes directly using fully connected layers on top of the con-
volutional feature extractor. The fully connected layers were removed
from YOLO, and anchor boxes were used to predict bounding boxes.
One pooling layer was eliminated to make the output of the network’s
convolutional layers higher resolution. Also, the network was shrunk to

2.1 Object detection 11

operate on 416 input images instead of 448 x 448. Anchor boxes de-
creased mAP slightly from 69.5 to 69.2, but the recall improved from
81% to 88%. Even if the accuracy is slightly decreased, it increases the
chances of detecting all the ground-truth objects.

• Dimension Clusters - Instead of choosing priors by hand, we run k-
means clustering on the training set bounding boxes to automatically
find reasonable priors.

• Direct location prediction - YOLOv2 makes predictions on the offsets
of the anchor boxes.

• Fine-Grained Features - It turns the 26 x 26 x 512 feature map into a 13
x 13 x 2048 feature map, which can be concatenated with the original
features.

• Multi-Scale Training - Once the fully connected layers are removed,
YOLOv2 can take images of different sizes. The network is changed ev-
ery few iterations instead of fixing the input image size. Since the model
downsamples by a factor of 32, it pulls from the following multiples of
32: {320, 352,...,608}. Thus, the smallest option is 320 x 320, and the
largest is 608 x 608.

2.1.7 YOLOv3

YOLOv3 [6] released in 2018 by Joseph Redmon and Ali Farhadi to improve
YOLOv2. The main improvements referred to in the paper are:

• Bounding Box Prediction - YOLOv3 predicts an objectness score for
each bounding box using logistic regression. Suppose the anchor over-
laps a ground truth object more than the other. In that case, the corre-
sponding objectness score should be 1, for the others with overlap more
significant than a predefined threshold of 0.5 are ignored. If an anchor
is not assigned, it incurs no classification and localization loss, just con-
fidence loss on objectness.

• Class Prediction - YOLOv3 uses independent logistic classifiers instead
of softmax. During training, it is used binary cross-entropy loss for the
class predictions.

• Predictions Across Scales - YOLOv3 predicts boxes at 3 different scales.
So the output tensor is N x N x [3*(4+1+80)] for the 4 bounding box off-
sets, 1 objectness prediction, and 80 class predictions.

12 State-of-Art

• Feature Extractor - YOLOv3 uses the Darknet-53 2.6, which is a 53 layer
feature extractor. This CNN is a hybrid approach between the YOLOv2
network (Darknet-19) and the residual network. It shows to have more
211 BFLOP/s (billion floating-point operations per second) than Darknet-
19 and a slight increase in accuracy.

Figure 2.6: Darknet53 architecture (from [6]).

2.1.8 YOLOv4

YOLOv4 [16] was released by Alexey Bochoknovskiy, Chien-Yao Wang, and
Hong-Yuan Mark Liao in 2020 and presents several improvements to the pre-
decessor YOLOv3 model. It increased the average precision and frames per
second by 10% and 12%, respectively, compared with YOLOv3. The backbone
was improved. In YOLOv4, the CSPDarknet-53 is used, which adds CSP (Cross
Stage Partial) connections [17] to the previous Darknet-53. In the paper, the
authors refer to two terms when talking about the improvements are the bag
of freebies which are methods that can make the object detector receive bet-
ter accuracy without increasing the inference cost, and bag of specials which
are plugin modules and post-processing methods that only increase the in-

2.1 Object detection 13

ference cost by a small amount but can significantly improve the accuracy of
object detection. The bag of freebies methods are:

• Data augmentation: this can be categorized as photometric distortions
(brightness, contrast, hue) and geometric distortions (random scaling,
cropping, rotation). Doing this can lead to decent accuracy improve-
ments. Ways of object occlusion are also referred to, such as Hide-and-
Seek and Grid Mask, which select some regions on the image and re-
place them with zeros. Finally, the authors also proposed using MixUP
and CutMix.

• Semantic Distribution Bias: Other methods are solving the problem
that semantic distribution in the dataset may have bias. In order to
solve the problem, the focal loss was proposed. This method can be
applied in one-stage detectors instead of other solutions like hard neg-
ative example mining or online hard example mining that belong just to
a two-stage object detector.

• Objective Function of BBox Regression: Instead of Mean Square Error
(MSE) to directly perform regression on the bounding box, the authors
refer to some functions to regress these bounding boxes. Are they: IOU
loss (showed before), GIoU loss, which includes the shape and orien-
tation of the object in addition to the coverage area, DIoU loss, which
considers the distance of the center of an object and CIoU loss, which
considers the overlapping area, the distance between center points, and
the aspect ration.

The bag of specials methods are:

• Spatial Attention Module(SAM): It is an attention module that only needs
to play 0.1% extra calculation, and it can improve ResNet50-SE 0.5%
top-1 accuracy on the ImageNet image classification task. Furthermore,
it does not affect the speed inference on the GPU.

• Mish/Swish Activation function: According to the authors, a good ac-
tivation function can make the gradient more efficiently propagated.
At the same time, it will not cause too much extra computational cost.
ReLU is one of the most famous activation functions since it is zero cost.
Although, when differentiating this function for negative values, it turns
0. This is called dying ReLU. Both Mish and Swish functions can cause
this problem. Even though they are high cost compared with ReLU, they
can significantly increase the accuracy.

14 State-of-Art

• DIoU NMS: As previously mentioned, NMS filters the multi-sample boxes
in the same object, but this can be a problem if two close distinct boxes
are suppressed into one. The paper suggests DIoU solve this problem.
This method adds the information of the center point distance to the
bounding box screening process based on NMS.

The bag of specials has also 2 techniques, the first is in the backbone
which uses the mish activation and cross-stage partial connections, the sec-
ond is in detection, which uses the SPP-block, the Spatial Attention Module
(SAM) block, and others.

2.1.9 YOLOv5

YOLOv5 [9] was released shortly after the YOLOv4 in 2020 by Glenn Jocher us-
ing the PyTorch framework. The main difference is that YOLOv5 uses Focus
Structure with CSPdarknet-53 as a backbone. The Focus layer was first intro-
duced in YOLOv5, replacing the first three layers in the YOLOv3 algorithm.
According to the official implementation on GitHub [18], the purpose of this
layer is to reduce layers, reduce parameters, reduce FLOPS, reduce CUDA
memory, and increase forward and backward speed while minimally impact-
ing mAP.

2.1.10 TPH-YOLOv5

TPH-YOLOv5 [7] aims to improve object detection performance on drone-
captures images. The model uses a self-attention mechanism by replacing the
original prediction heads with Transformer Prediction Heads (TPH) to detect
different-scale objects. This transformer encoder blocks increase the ability
to extract different local information. According to the paper, this technique
shows better performance on occluded objects on the VisDrone2021 dataset
[19]. To find the attention region in images, the model uses a convolutional
block attention model (CBAM [20]). CBAM takes a feature map, sequentially
infers the attention map, and then multiplies it with the input feature map
to perform adaptive feature refinement. This module will help YOLOv5 to fo-
cus on useful target objects. Figure 2.7 illustrates the CBAM and Transformer
Encoder modules.

2.2 Object Detection Metrics 15

Figure 2.7: The CBAM module is on the left, and the Transformer Encoder is
on the right (both images from [7]).

2.2 Object Detection Metrics

We need specific metrics to measure the accuracy of the object detectors men-
tioned above. These metrics allow measuring the relationship between the
prediction and the ground truth of the data. The algorithms described in this
section are the Intersection Over Union, Recall-Precision Curve, and Mean
Average Precision.

2.2.1 Intersection Over Union

Intersection Over Union measures the ratio between the intersection of the
ground truth and predicted bounding boxes area with the union of the same
as seen in 2.8.

16 State-of-Art

Figure 2.8: Intersection Over Union formula.

The predicted bounding box is discarded if this result does not reach a
certain threshold.

2.2.2 Precision-Recall Curve

According to [21], the precision-recall curve shows the tradeoff between pre-
cision and recall for different thresholds. The precision and recall are used to
measure the performance of a model to classify objects. Precision and recall
are determined as follows:

Pr eci si on = T P

T P +F P
(2.3)

Recal l = T P

T P +F N
(2.4)

where:

• TP (True Positives) - When the model correctly indicates the presence
of the class in the data.

• FP (False Positives) - When the model incorrectly indicates the presence
of the class in the data.

• FN (False Negatives) - When the model incorrectly indicates the lack of
the class in the data

High precision indicates a low rate of false positives, while a high recall means
a low rate of false negatives. The greater the area under the precision-recall
curve, the higher the accuracy and recall of the model. It indicates that the
classifier is accurate and that most results are positive.

2.3 Multi-Object Tracking 17

2.2.3 Average Precision

We can compute the Average Precision (AP) from the precision-recall curve.
It summarizes the weighted mean of precisions achieved at each threshold,
with the increase in recall from the previous threshold used as the weight [21],
as follows:

AP =∑
n

(Rn −Rn−1)Pn (2.5)

where Pn and Rn are the precision and recall at the nth threshold. The AP is
just calculated for each class.

2.2.4 Mean Average Precision

The Mean Average Precision is the mean of the AP calculated for each class
in the model. This metric is state-of-art to compare the performance of ob-
ject detection models. This metric is the most used to compare the perfor-
mance of object detection models and can be presented as m AP50, m AP75

and m AP95. The numbers 50, 75, and 95 indicate that the value of the IOU
threshold was 0.50, 0.75, and 0.95, with mAP by default being the average of
these three metrics.

2.3 Multi-Object Tracking

Multi-Object Tracking (MOT) is a data association problem aiming to asso-
ciate detections across a sequence of images. A MOT model is responsible
for localizing and identifying multi objects. It depends on an object detector
model and some algorithms to predict the localization of the object through
the sequence of frames. This section will discuss Simple Online and Realtime
Tracking (SORT) [22] and then DeepSort [23] since this last one is an improved
version of SORT and the state-of-art MOT model.

2.3.1 SORT

Simple Online and Realtime Tracking [22] is a simple MOT model with effec-
tive algorithms consisting of four core components: detection, estimation, as-
sociation, and creation and deletion of track identities.

2.3.1.1 Detection

SORT tracks bounding boxes across the sequence of images, so it needs a de-
tector to extract these boxes like the ones referred to in 2.1

18 State-of-Art

2.3.1.2 Estimation

A constant velocity linear model propagates the bounding boxes through the
frames, independent of other objects and camera motion. The state of each
target is represented as follows:

x = [u, v, s,r, u̇, v̇ , ṡ]T (2.6)

where u and v represent the horizontal and vertical pixel location of the center
of the target, s represent the scale (area), and r the aspect ratio of the target’s
bounding box [22]. When the detection is associated with a target, the detec-
tion bounding box is used to update the target state. On the other hand, if the
detection cannot be associated with the target, for example, occlusion, then
the state is predicted using the linear velocity model. These velocity compo-
nents are optimally solved with the Kalman Filter [24].

2.3.1.3 Association

The bounding boxes’ locations are estimated using the estimation techniques
described above. Then the predicted bounding boxes are matched with the
detections ones. The module computes the cost matrix as the IOU distance
between each detected bounding box and all predicted bounding boxes. The
assignment is solved optimally using the Hungarian algorithm. This tech-
nique is used to associate the bounding boxes in the cost matrix.

2.3.1.4 Creation and Deletion of Track

SORT [22] uses a mechanism to manage object ids as they enter and leave
images. A tracker is created if the detection overlap is smaller than a given
IOUmi n threshold. The detection bounding boxes are used to initialize the
Kalman Filter state. Their velocity is set to zero, and the covariance is set to
high to signify uncertainty in the state. If a tracker stops receiving updates,
they are deleted after TLost frames [22].

2.3.2 DeepSort

DeepSort [23] aims to improve SORT by adding a deep association metric.
SORT has critical drawbacks since it often switches identities and has difficul-
ties dealing with occlusions. DeepSort implements some techniques to solve
this problem. It uses a convolutional neural network already pre-trained for
a classification problem, such as people recognition. The CNN classification
layers are removed, so it outputs just the feature vector called the appearance

2.4 Multi-Object Tracking Metrics 19

descriptor by authors. Then nearest neighbor queries are used in the appear-
ance descriptor to establish the Measurement-Track Association (MTA). MTA
is the process of establishing a relationship between a measurement and an
existing track. Instead of using the Euclidean distance in the MTA, it is used
the Mahalanobis distance. According to the authors, these improvements re-
duce the number of identity switches by 45%, achieving overall competitive
performance at a high frame rate [22].

2.4 Multi-Object Tracking Metrics

Just as we need metrics to evaluate object detectors, we also need these to
evaluate the performance of MOT models. These models are more complex
to evaluate. For this reason, there are several different evaluation algorithms
in order to make this evaluation fairer. The most used models for this purpose
are the Multiple Object Tracking Accuracy (MOTA) [25] and the Higher Order
Tracking Accuracy (HOTA) [8]. This chapter will cover HOTA as it is a MOT
metrics state-of-art.

2.4.1 HOTA

Higher Order Tracking Accuracy [8, 26] is the state-of-art of the MOT met-
rics. While other metrics like MOTA overemphasize detection and association
as seen in 2.9, HOTA measures both and combines them in a balanced way.
It also measures the localization accuracy of tracking, unlike MOTA. HOTA
comprises three sub-metrics: Detection, Association, and Localization. Then
these three IOU scores are combined into a single score (HOTA score).

Figure 2.9: This image (from [8]) shows how other MOT metrics like MOTA
and IDF1 overemphasize the detection and association. In contrast, HOTA
presents a balanced evaluation.

20 State-of-Art

2.4.1.1 Localization

The localization component measures the spatial alignment between one pre-
dicted detection and one ground-truth detection [26]. The metric that mea-
sures localization is Localization IOU (Loc-IOU). Since it is an IOU, it is cal-
culated in the same way as ??, i.e., the ratio of the intersection between the
predicted and ground truth detection with its union. The Loc-IOU is then av-
eraged over all pairs of matching predicted and ground-truth detections to
determine the Localization Accuracy (LocA) [26].

2.4.1.2 Detection

The detection component measures the alignment between the set of all pre-
dicted detections and the set of all ground-truth detections [26]. The metric
that measures the detection is the Detection IOU (Det-IOU). Both Det-IOU
and Detection Accuracy (DetA) are calculated in the same way, i.e., using the
count of True Positives (TP), False Negatives (FN), and False Positives (FP) over
the whole dataset [26], as follows:

DetA = Det-IOU = |TP|
|TP|+ |FN|+ |FP| (2.7)

2.4.1.3 Association

The association component measures how well a tracker associates detec-
tions through a sequence of frames into the same identities (IDs). The metric
that measures the association is the Association-IOU (Ass-IOU). It uses the
Hungarian algorithm to match the predicted detection with the ground-truth
detection. The Ass-IOU is calculated similarly as 2.7 but uses the TP, FP, and
FN of class associations (respective TPA(c), FPA(c) and FNA(c)). The Associa-
tion Accuracy is determined by calculating the Ass-IOU of all pairs of match-
ing predicted, and ground-truth detections [26], as follows:

AssA = 1

|TP|
∑

c∈TP
Ass-IOU(c) = 1

|TP|
∑

c∈TP

|TPA(c)|
|TPA(c)|+ |FNA(c)|+ |FPA(c)| (2.8)

2.4.1.4 HOTA score

The HOTA score is the single metric that measures the overall performance
of a MOT model. To calculate this score, we need to integrate the geometric
mean of the detection and the association score for each threshold value α.
Then the localization accuracy is included in the final score [26], as follows:

2.4 Multi-Object Tracking Metrics 21

HOTAα =
√

DetAα ·AssAα

HOTA =
∫

0<αÉ1
HOTAα ≈ 1

19

∑
α=0.05

HOTAα (2.9)

where DetAα and AssAα are the Detection and Association accuracy for
different α thresholds, since they both depend on the Loc-IOU threshold α

values. The HOTAα represents the HOTA score for the respective α threshold.

Chapter

3
Proposed Method

This chapter describes the proposed method to create a framework capable
of automatically analyzing car traffic from Unmanned Aerial Vehicles (UAVs)
videos. The proposed solution consists of three core modules. Two of these
are responsible for extracting data from the video: the object detector and
the MOT model. The remaining module aims to estimate the speed of ve-
hicles. We also present a fourth module responsible for processing the data
collected by the three previous modules to produce statistics and present a
detailed traffic analysis. Figure 3.1 illustrates the workflow of the presented
proposal.

Figure 3.1: Proposed method diagram.

We also present the technologies and tools we use to implement the pro-

23

24 Proposed Method

posed method. Thus, we divide this chapter into five sections: Object Detec-
tion module, Multi-Object Tracking module, Speed Estimation module, Traf-
fic Statistics, and Technologies and Tools. In each one, we describe the imple-
mentation as well as the rationale for it.

3.1 Object Detection Model

In order to be able to detect objects in the several frames of the drone video
we use an object detector. We implemented three different detectors to com-
pare their performance towards the problem. The detectors chosen were the
YOLOv5 [9], the TPH-YOLOv5 [7], and the Faster R-CNN [3]. The rationale for
this choice involved comparative research of other works related to this prob-
lem. The paper [11] collects several detector results used in related works and
sets them up in a table to provide a comparative analysis. This analysis was
essential for choosing the detectors used in this work. Table 3.1 was taken
from [11] paper and shows the comparison between different models:

3.1 Object Detection Model 25

Reference Dataset Model Analysis

Li et al., 2021 [27] Remote sensing
images collected
from GF-1 and
GF-2 sattelites.

Faster R-CNN
YOLOv3
SSD

YOLOv3 has
higher accuracy
and perfor-
mance than
SSD and Faster
R-CNN models.

Zhao et al., 2019
[28]

Google Earth
and DOTA

SSD
Faster R-CNN
YOLOv3

YOLOv3 has
higher accuracy
and perfor-
mance than
Faster R-CNN
and SSD.

Bochkovski et al.,
[29]

MS COCO
dataset

YOLOv3
YOLOv4

YOLOv4 has
higher accuracy
and perfor-
mance than
YOLOv3

Ge et al., [30] MS COCO
dataset

YOLOv3
YOLOv4
YOLOv5

YOLOv5 has
higher accuracy
than YOLOv3
and YOLOv3
has higher per-
formance than
YOLOv4

Table 3.1: Comparison between different object detectors (from [11]).

This table shows that YOLOv3 has better accuracy and performance than
SSD and Faster R-CNN. On the other hand, YOLOv5 has a higher mAP com-
pared to YOLOv3. YOLOv5 features several settings that allow for a tradeoff
between accuracy and performance. These settings are minor changes in the
model’s backbone and head and the tuning of hyperparameters. Figure 3.2
was taken from [9] and compares each configuration’s inference time and ac-
curacy.

26 Proposed Method

Figure 3.2: Comparison between YOLOv5 configs (from [9]).

The TPH-YOLOv5 was mentioned in the state-of-art 2 as a model with spe-
cific mechanisms for detecting objects in drone videos. Therefore, we decided
to use two single-stage and one multi-stage detector models in this work. For
the single-stage models, we used YOLOv5 with l configuration since this of-
fers a good tradeoff between accuracy and performance and TPH-YOLOv5
because it is a specific detector for this problem. Thus we can make a com-
parison between these two models. We decided to use Faster R-CNN for the
multi-stage model as it is state-of-art for models of this type.

3.2 Multi-Object Tracking Model

In order to locate the objects while preserving their identity through the differ-
ent frames, we used a MOT Model. As mentioned, we chose three different ob-
ject detectors to compare their performance. However, in the case of the MOT
model, we decided to choose just one. Therefore, we decided to choose Deep-
Sort [23] because it is a state-of-art MOT model and a tracking-by-detection
model. The latter means that the objects do not need to be entered manually
to be tracked. Instead, they are chosen automatically through a detector. An-
other reason for this choice is that DeepSort is an online tracking model, i.e.,
we can use it on a sequence of frames directly without having to use a batch
of images. This also means that we can visualize the predicted output in real-
time, which is one of the decided requirements for this work. According to
the article [31], which analyzes the performance of several MOT models, we

3.3 Speed Estimation 27

conclude that DeepSort presents a good tradeoff between accuracy and per-
formance.

The metric used to evaluate the DeepSort’s predicted results was HOTA. As
mentioned in 2, MOT model metrics are a complicated task. For that reason,
we decided to choose HOTA because it does not over-emphasize the detec-
tion and association measurements and is divided into sub-metrics that help
us to understand in a more detailed way the performance of the MOT model.
In this way, we use the MOT standard format to represent the prediction re-
sults of our model. This representation is given by: frame’s id, object’s id, x,
y, w, h, object confidence, and object class where x and y are the top centers
bounding box coordinates, and w and h are respectively the width and height
of the bounding box.

3.3 Speed Estimation

As mentioned before, tracking allows us to know the position of vehicles through
the sequence of video frames. In this way, it is possible to estimate the speed
of vehicles. The speed formula is given by:

speed = d

t

where d is the distance traveled and t is the time elapsed. The time elapsed
can be determined directly since we know how many frames per second (fps)
the video has. The fps can be obtained with get(cv2.CAP_PROP_FPS), a Python’s
OpenCV library method. So, to calculate the time interval between frames, we
determine:

seconds per frame = 1

fps

To calculate the vehicle’s displacement, we have to register the successive po-
sitions of the vehicle through the video frames. In order to facilitate this, we
have summarized the object into a single point. This point is determined by
calculating the centroid of the bounding boxes as follows:

centr oi d = (
(x1 +x2)

2
,

(y1 + y2)

2
)

where x1 and y1 are the top-left coordinates of the bounding box and x2 and
y2 are the right bottom coordinates of the bounding box.

Since we want to determine the speed in the International System units
(m/s), we have to convert the pixel coordinates into geographic coordinates
(latitude and longitude) to measure the distance in meters. It is impossible

28 Proposed Method

to perform this conversion with just the video data since it does not contain
information about the camera’s position. However, obtaining the drone co-
ordinates through the flight logs is possible. The proposed method to solve
this problem involves georeferencing the video frames. The georeferencing
of an image is a technique that allows mapping the coordinates in pixels to
geographic coordinates. This technique has to be done manually and is simi-
lar to the Image Registration technique widely used in computer vision when
it is intended to transform different images into a single coordinate system.
For this reason, it is practically impossible to perform this technique manu-
ally since doing it in each video frame would become a very labor-intensive
process. However, this would be the ideal solution.

The proposed solution to automate this process was to use only one geo-
referenced image, this being the map of the place where the drone recorded
the video. Through the logs, we could determine the drone’s coordinates on
this map in each frame. It is possible to extract the heading and the height
too. This data makes it possible to reproduce the drone’s footprint on the map
accurately. The drone’s footprint is the area the drone’s camera covers on the
ground. Figure 3.3 illustrates the footprint calculation.

Figure 3.3: Drone’s footprint illustration (from [10]).

The sensor width and focal length were obtained a priori through camera
specifications. These specifications were taken from this source: https://
docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/

https://docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/edit#gid=0
https://docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/edit#gid=0
https://docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/edit#gid=0

3.3 Speed Estimation 29

edit#gid=0 Therefore, for the drone used in this work, DJI Phantom 4 Pro v2,
the camera specs are shown in 3.2.

Sensor width (mm) 13.2
Focal length (mm) 8.8

Image width 5477
Image Height 3612

Table 3.2: DJI Phantom 4 Pro v2 camera specs.

In order to calculate the footprint width and height, the Ground Sample
Distance (GSD) ratio must be determined. This ratio relates to distance (cm)
and pixels, so a GSD of value 1 means that 1 centimeter in the ground corre-
sponds to 1 pixel in the image. The GSD formula is given by:

GSD = sensor width∗altitude∗100

focal length∗ image width
(3.1)

The drone videos had to be recorded with the camera facing downwards, with
a pitch of−90◦. In this way, we can assume that the ground is two-dimensional,
and there is no need to account for ground elevation. Once we know the drone
heading, we can rotate the footprint rectangle to match the video frame cor-
rectly. Figure 3.4 is an example of the drone’s footprint on the map, as well as
the corresponding frame.

https://docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/edit#gid=0
https://docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/edit#gid=0
https://docs.google.com/spreadsheets/d/1w5PXRstTtZ0xMOewYdNrtzpvyVXHISPNwa65XuqcXEI/edit#gid=0

30 Proposed Method

(a)

(b)

Figure 3.4: (a) Drone footprint. (b) Video frame.

In this way, it is possible to map the coordinates of the objects to the geo-
referenced map. For this, we used the map cropped footprint as an interme-
diate to convert the pixel coordinates to latitude and longitude. Figure 3.5
illustrates the schematic of the proposed approach:

3.3 Speed Estimation 31

Figure 3.5: Schematic about converting a point of a frame to a footprint.

The proposed algorithm to convert the coordinate system consists of four
steps:

• Scale the frame points to cropped footprint (1) - The scale values that
convert a framing point to the footprint are determined as follows:

scalex = frame width

footprint width

scaley = frame height

footprint height

Then, the conversion is given by:

point′ = (
pointx

scalex
,

pointy

scaley
)

where pointx and pointy are the point coordinates.

32 Proposed Method

• Scale the cropped footprint points to map coordinates (2) - To perform
this conversion, we need to add a value to each coordinate of each point
coordinate. This process will place the points in the right location on the
map. These increment values are given by:

incx = drone x coordinate pixel on the map

footprint’s width in pixels

incy = drone y coordinate pixel on the map

footprint’s height in pixels

So for each point, we do:

point′′ = (point′x + incx ,point′y + incy)

• Rotate the points (3) - To match the points with the drone heading, we
have to rotate them. For this, we apply the rotation matrix to each point
according to the heading angle value of the drone:

point′′′ =
[

cos(heading) −sin(heading)
sin(heading) cos(heading)

]
·
[

point′′x
point′′y

]

• Convert pixels into coordinates - Finally, we take advantage of the fact
that the map image is georeferenced to convert pixels into latitude and
longitude coordinates.

With this, we can estimate the distance in meters a given vehicle performed
between frames. For this, we used the Haversine formula as follows:

Di st ance(m) = 3963000×arccos[sin(LatA)× sin(LatB)+
cos(LatA)×cos(LatB)×cos(LonB −LonA)]

where LatA and LonA are the latitude and longitude values of point A and
LatB and LonB of the point B. Finally, we calculate the speed by applying the
formula described above 3.1.

3.4 Traffic Statistics

In fact, the object detection, tracking, and speed estimation modules allow
us to extract information about the urban environment in which the drone
flew. It is possible to extract statistics that help us understand how many ve-
hicles circulate on a given road and the type of this. Once we can estimate the
speed, it is possible to deduce the average speed of a given road. Finally, we

3.4 Traffic Statistics 33

can analyze the traffic density and create a heatmap that illustrates this anal-
ysis. Therefore, in this section, we discuss each approach implemented for
extracting traffic statistics. These are Heatmap, Vehicle counting, and Speed
Statistics.

3.4.1 Vehicle counting

In order to know how many cars enter a lane or leave it, we implement a ve-
hicle counting technique. To do this, we start by creating one or more pairs
of points in the map image. These pairs are needed to create line segments.
This process is made with the help of Python’s OpenCV [32, 33] library. As we
did in 3.3, we decided to summarize the vehicles to the centroid of their re-
spective bounding box. During program execution, these centroids are stored
with the respective vehicle id in memory. In order to count whether an object
has passed through any entered line segment, we check if this line intersects
with the line segment created, respectively, with the first and last points of
the object’s centroid stored in memory. Figure 3.6 shows an example of the
described algorithm.

Figure 3.6: The black circle shows the intersection. Inside this circle, the red
line is the line segment between the first object’s centroid coordinate (black
cross) and the last object’s centroid coordinate stored in memory. The green
line is the entered segment line.

Whenever an object intersects the introduced line, the counter increments,
keeping information about the quantity and category of the objects that passed

34 Proposed Method

through the line.

3.4.2 Heatmap

A heatmap represents the distribution and density of data through a map with
color variations. We decided to implement this mechanism to obtain a visu-
alization of the traffic density, that is, the concentration of objects detected by
our model on the ground. For this, we use a hash table as a structure to store
this information. In this table, the key corresponds to the object’s centroid
point, while the table value corresponds to the number of times this point is
repeated through the frames. In this way, if one or several vehicles remain sta-
tionary in a sequence of frames, we can emphasize their concentration on the
road. In order to represent this concentration in a heatmap, we make a Ker-
nel Density Estimation (KDE). This method applies a kernel function to each
point in our data and finally sums up all these functions, in order to highlight
the regions with the highest density.

The kernel function we used is the Gaussian available in Python’s scipy [32,
34] library. After applying this algorithm to our data, we represent the result
in a density map. We apply warmer colors in densest areas and cooler colors
in less-dense areas. This technique results in a heatmap that illustrates the
concentration of vehicles on the road. Figure 3.7 shows an output heatmap
example.

Figure 3.7: Example of the output heatmap. The hotter color (yellow) repre-
sents the high traffic density on the road.

3.5 Technologies and Tools 35

3.4.3 Speed Statistics

With the Speed Estimation module, we can calculate some statistics by con-
sidering the speed of vehicles. We present three types of possible statistics:
average speed by vehicle class, average speed by given id, and the average
speed for a specified region.

These first two can be calculated directly by introducing the vehicle cate-
gory or id as program input.The output will be the speeds these objects per-
formed throughout the video. For the last mentioned statistic, it is necessary
to specify the desired region with two points. From there, we create a rectan-
gle. Then, we store the instantaneous velocity of the objects inside this rect-
angle into a list. For each frame, if possible, we calculate the average of this list
and store this value in another list. Finally, we average this last one to obtain
the region’s average speed.

3.5 Technologies and Tools

3.5.1 Programming Language and Libraries

We decided to build this project using the Python [32] programming language.
This choice is because it is a top language for machine learning and computer
vision since it has complete libraries and frameworks that help us develop
this project. The main libraries used in this work were Pytorch [35] (machine
learning framework), OpenCV [33] (Computer Vision and Machine Learning
library), Numpy [36] and Scipy [34] (libraries for linear algebra), and Mat-
plotlib [37] (library with tools to build plots).

3.5.2 Packages

The models mentioned above were implemented from their official GitHub
repository. Table 3.3 shows the implemented models and their respective link
to the GitHub repository:

Model GitHub repository link
YOLOv5 [9] https://github.com/ultralytics/yolov5

TPH-YOLOv5 [7] https://github.com/cv516Buaa/tph-yolov5
Faster R-CNN [3] visdrone https://github.com/oulutan/Drone_FasterRCNN

DeepSort [23] https://github.com/nwojke/deep_sort

Table 3.3: GitHub repositories and respective link.

https://github.com/ultralytics/yolov5
https://github.com/cv516Buaa/tph-yolov5
https://github.com/oulutan/Drone_FasterRCNN
https://github.com/nwojke/deep_sort

36 Proposed Method

3.5.3 Data Annotation

In order to annotate the video frames captured by the drone, we use the CVAT
[38]. This tool allows to select a bounding box on objects and assign them a la-
bel and an ID. It uses an optional interpolation algorithm that allows skipping
a few frames and keeping track of objects. Thus it facilitates the annotation
of big data such as video frames. Finally, CVAT allows returning the results in
MOT format.

3.5.4 Devices and Logs

The drone used for this project was the DJI Phantom 4 Pro V2.0. Informa-
tion and specifications for this can be viewed at https://www.dji.com/en/
phantom-4-pro-v2/specs. The drone’s flight logs cannot be viewed directly
as the file format is binary. For that, it was necessary a tool to parse these logs.
This tool is online and can be found at https://airdata.com/.

3.5.5 Georeferencing Tools

The map images were taken from Google Earth Pro. It provides access to a
vast database with satellite images. However, this platform does not provide
information about the georeferencing of images, i.e., a GeoTIFF file. In fact,
it is possible to draw a path on the image and export it in a format (KML file)
that stores the coordinates of this path. Then it is possible to manually georef-
erence the images using QGIS [39], a platform that offers tools for geographic
purposes. In this way, the images of the maps used in this project are georef-
erenced and stored in GeoTIFF format.

https://www.dji.com/en/phantom-4-pro-v2/specs
https://www.dji.com/en/phantom-4-pro-v2/specs
https://airdata.com/

Chapter

4
Experiments and Results

In this chapter, we present the results obtained for each of the three modules
used. Then for each of these, we discuss the results, pointing out the advan-
tages, disadvantages, and a qualitative analysis. Finally, we make a general
assessment of the framework’s performance in extracting statistics.

4.1 Dataset

The dataset used for this project is the VisDrone [19] dataset. VisDrone is part
of a challenge that aims to make competition between different object detec-
tors capable of identifying objects through drone videos. The dataset contains
10208 images captured by a drone at different locations and heights. All the
images are annotated with the bounding boxes and the object classes (pedes-
trian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and tricy-
cle). Table 4.1 shows the distribution of the data present in the object detec-
tion dataset:

Training 6471
Testing 3190

Validation 548
Total 10209

Table 4.1: Visdrone dataset data distribution.

The dataset used for training only falls into the object detection category,
although there is also a dataset for Multi-Object Tracking. As mentioned in
this chapter 3.2, DeepSort [23] is part of tracking-by-detection models, i.e., it

37

38 Experiments and Results

depends only on the detector to identify objects. However, we use the MOT
dataset for testing the model.

4.1.1 Data Variability Factors

There are factors in dataset images that can influence the detection system.
These factors consider the number of vehicles in an image, size, occlusion,
and luminosity. We present sample images from Visdrone’s object detection
dataset for each of these.

Figures 4.1 show examples of images with the presence of vehicle clusters.

Figure 4.1: Vehicle clusters images from Visdrone detection dataset.

Images where vehicles are too concentrated, can be challenging to detect
and classify. Figure 4.2 shows examples of dataset images with traffic jams
where these factors are visible.

Figure 4.2: Traffic jam images from Visdrone detection dataset.

This dataset contains images taken from different perspectives and heights.
There are images in which the camera was higher and vertical, as seen in fig-
ure 4.3 in the image on the left. However, there are also images where the
camera was lower and horizontal, as shown in figure 4.3 on the right.

4.1 Dataset 39

Figure 4.3: Images with different perspectives and heights from Visdrone de-
tection dataset.

Images with low or high luminosity can be challenging to detect. These ex-
amples can be seen in figure 4.4, wherein the left image, the traffic is exposed
to high illumination, and in the right, it is exposed to low illumination.

Figure 4.4: Images with different illumination from Visdrone detection
dataset.

There are images in the dataset in which the vehicles have tiny dimen-
sions, which can be a challenge for detection, as seen in Figure 4.5.

Figure 4.5: Images with tiny objects from Visdrone detection dataset.

Finally, the partial occlusion of an object is a factor that makes its de-
tection difficult. This dataset presents images of vehicles partially hidden in

40 Experiments and Results

other objects such as trees, walls, or other vehicles. Figure 4.6 shows an exam-
ple where the occlusion factor in vehicles is notable.

Figure 4.6: Image with occlusion from Visdrone dataset.

4.2 Object Detection

4.2.1 Preprocessing and Training

In the three models used, the images are preprocessed before forwarding. The
techniques used by the three are the resizing and normalization of the im-
ages. In the case of YOLOs, only multiple resolutions of the max stride are
supported, which by default is 32. Finally, all images are normalized so that
values lie between 0 and 1, i.e., are divided by 255, which is the maximum
value of the channels RGB.

VisDrone training and test datasets were used to train and test the three
models. However, only YOLOv5 [9] was trained by us using the recommended
settings and hyperparameters for the mentioned dataset. The weights pro-
vided in the official GitHub repository were used for the other two models.
In the YOLOv5 training, we used a model already pre-trained in the COCO
Dataset available in the official repository of GitHub [40]. The training set-
tings used for YOLOv5 can be seen in table 4.2.

4.2 Object Detection 41

Epochs 150
Batch Size 15
Image Size Stochastic Gradient Descent (SGD)

Number of classes 10

Table 4.2: YOLOv5 training settings.

The hyperparameters used in training are presented in table 4.3.

learning rate 0.01
SGD momentum 0.937

Optimizer weight decay 0.0005
Warmup epochs 3.0

Warmup momentum 0.8
Warmup learning rate 0.1

Box loss gain 0.05
Class loss gain 0.5

Class BCELoss positive weight 1.0
IOU training threshold 0.20

Objectness loss gain 1.0
Objectness BCELoss positive weight 1.0

Table 4.3: YOLOv5 training hyperparameters.

In addition, data augmentation is performed on the data before training.
Table 4.4 presents these parameters respectively.

Image HSV-Hue augmentation 0.015
Image HSV-Saturation augmentation 0.7

Image HSV-Value augmentation 0.4
Image translation 0.1

Image scale 0.5
Image flip left-right 0.5 (probability)

Image mosaic 1.0 (probability)

Table 4.4: Data augmentation parameters.

The machine’s specifications used for training are Nvidia RTX 2080 Ti (GPU),
i5-8600K (CPU), and 8 Gb RAM. The results were generated automatically us-
ing the Wandb [41] software, shown in figure 4.7.

42 Experiments and Results

Figure 4.7: YOLOv5 training results.In the first three top and bottom plots, the
x-axis corresponds to the number of epochs while the y-axis corresponds to
the loss. In the last two bottom and top plots, the x-axis corresponds to the
number of epochs while the y-axis corresponds to the metric value.

4.2.2 Results

We used the Visdrone detection test dataset for each of the three models to
evaluate the object detection results. We made three evaluations for each
model, changing only the image resolution. Then we can compare the re-
sults obtained and conclude the best tradeoff between accuracy and infer-
ence time. For both YOLO models, we used a batch size of 4, a confidence
threshold of 0.001, and an IOU threshold of 0.60. These thresholds are cho-
sen because they are the values used as standard in this type of evaluation.
For Faster R-CNN, we use a batch size of 1, a confidence threshold of 0.70,
and an IOU threshold of 0.5. These are the threshold values recommended by
the official implementation of this model. The resolutions chosen to compare
the performance of the models are 640, 1280, and 1920. The figures 4.8, 4.9
and 4.10 presents the Precision-Recall curve of each model’s results for each
resolution.

4.2 Object Detection 43

(a) Faster R-CNN

(b) YOLOv5

(c) TPH-YOLOv5

Figure 4.8: Results of each model with resolution at 640.

44 Experiments and Results

(a) Faster R-CNN

(b) YOLOv5

(c) TPH-YOLOv5

Figure 4.9: Results of each model with resolution at 1280.

4.2 Object Detection 45

(a) Faster R-CNN

(b) YOLOv5

(c) TPH-YOLOv5

Figure 4.10: Results of each model with resolution at 1920.

Table 4.5 presents the average inference time of the images of each model
for each resolution.

46 Experiments and Results

Faster R-CNN YOLOv5 TPH-YOLOv5
640 145.01 (ms) 47.2 (ms) 93.0 (ms)

1280 269.61 (ms) 91.1 (ms) 264.3 (ms)
1920 280.90 (ms) 155.8 (ms) 583.4 (ms)

Table 4.5: Model’s inference times.

We did some tests in order to evaluate the detector’s performance accord-
ing to the factors mentioned in 4.1.1. For this, the TPH-YOLOv5 was used with
IOU and confidence threshold at 0.5 and resolution at 1920.

Figure 4.11 presents the result of a scenario with vehicle clusters having
obtained 0.61 mAP. As can be seen, most vehicles are successfully detected
even in some occlusion zones (red circles).

Figure 4.11: Vehicle cluster prediction results.

Figure 4.12 illustrates the results obtained in a traffic jam scenario with
0.65 mAP. We can see that most of the closest vehicles are detected. However,
objects further away from the camera are not well detected.

4.2 Object Detection 47

Figure 4.12: Traffic jam prediction results.

Figure 4.13 (a) illustrates an example of an image captured in a vertical
perspective and at a high altitude, having obtained 0.51 mAP. From this per-
spective, we can see that most vehicles were detected with some class switch-
ing. However, most people were not appropriately detected, perhaps because
they are not so well visible at this altitude. On the other hand, when the cam-
era is very close to the vehicles, they are not detected, as seen in the figure 4.13
(b), having obtained 0 mAP.

(a)

(b)

Figure 4.13: Images with different perspectives. (a) High altitude and vertical
perspective prediction results.

In low luminosity scenarios, the detector performs well, having obtained
0.80 mAP in image (a) of figure 4.14. Most vehicles on the road were detected

48 Experiments and Results

correctly, perhaps because of the lights. On the left of this image, we can see
that a car was not correctly detected as it is in a darker area. When the sce-
nario’s luminosity is very high, the detector presents some difficulty, having
been unable to detect three vehicles exposed to much light, as seen in figure
4.14 (b).

(a) (b)

Figure 4.14: Images with different light scenarios. (a) Low luminosity. (b) High
luminosity.

As mentioned in some of the results above, the detector presents difficul-
ties when the vehicles have tiny dimensions, as shown in figure 4.15, having
obtained only 0.33 mAP.

Figure 4.15: Tiny objects prediction results.

Finally, in partial occlusion of the vehicles, the detector performs well,

4.3 Multi-Object Tracking 49

having managed to detect most of the possible objects in figure 4.16, having
obtained 0.78 mAP.

Figure 4.16: Parcial occlusion prediction results.

4.3 Multi-Object Tracking

To test the DeepSort together with the object detectors, we used the Visdrone
multi-object tracking dataset. This dataset contains 33 sequences in a total of
12968 frames annotated in MOT format. As we did in 4.2, we decided to test
this model in 3 different resolutions: 640, 1280, and 1920. The thresholds used
in the three detectors were 0.5 for both the IOU and the confidence. Tables
4.6, 4.7, and 4.8 show the results obtained for each mentioned resolution. The
results represent the average scores obtained in all classes and are in HOTA
metrics.

HOTA DetA AssA LocA
Faster R-CNN 24.42 23.18 27.70 87.93

YOLOv5 27.17 26.77 31.81 88.07
TPH-YOLOv5 32.41 30.66 37.15 90.88

Table 4.6: Average HOTA scores with frames resolution at 640.

50 Experiments and Results

HOTA DetA AssA LocA
Faster R-CNN 30.08 29.65 32.89 88.15

YOLOv5 31.50 30.99 35.54 88.13
TPH-YOLOv5 35.99 35.48 40.96 90.20

Table 4.7: Average HOTA scores with frames resolution at 1280.

HOTA DetA AssA LocA
Faster R-CNN 31.12 30.37 34.33 88.58

YOLOv5 32.53 30.93 36.80 89.06
TPH-YOLOv5 37.10 36.06 41.55 90.04

Table 4.8: Average HOTA scores with frames resolution at 1920.

4.4 Speed Estimation

Since there is no dataset with these specifications, we decided to collect our
data with the drone and therefore have more control over this data. For this
testing, we focused only on a specific car, which we had access to the ground
truth speed values. All footage was recorded with the drone camera facing
the ground (pi tch = −90◦) and the ground truth with a smartphone camera
pointing to the vehicle’s odometer. Since this odometer is analog, extracting
these values through the video may contain human precision errors. However,
this error is minimal and is ignored. In this testing, we used four videos from
two scenarios: the drone is stationary, and the drone is in motion. In order
to reduce the data noise, we used the median filter. This filter calculates the
mean of all values under the kernel area k then the central values are replaced
with the median value. Figures 4.17, 4.18, 4.19, and 4.20 present each video’s
raw and smoothed speed estimation results with the ground truth. Speed is
represented on the y-axis in kilometers per hour and time on the x-axis in
seconds.

• The drone is stationary: In Figure 4.17, the car remained at a constant
speed of about 25 km/h between second 12 and 54.

4.4 Speed Estimation 51

Figure 4.17: Speed estimation with stationary drone.

In Figure 4.18, the car remains stationary for 33 seconds and then speeds
up to 30 km/h.

Figure 4.18: Speed estimation with stationary drone while the car remains sta-
tionary and then speeds up.

• The drone is in motion: In figure 4.19, both the car and the drone were
in motion. The car remained at a constant speed of about 30 km/h be-
tween second 20 and 140.

52 Experiments and Results

Figure 4.19: Speed estimation with both car and drone in motion.

In figure 4.20, the drone is in motion and the car remains stationary.

Figure 4.20: Speed estimation with drone in motion and stationary car.

4.5 Discussion

This section discusses the results in sections 4.2, 4.3, and 4.4. We describe the
advantages and drawbacks of each implementation, as well as a qualitative

4.5 Discussion 53

analysis. Finally, we discuss our framework’s performance in extracting traffic
statistics.

4.5.1 Object Detection

According to the results obtained in 4.2.2, we can conclude that the TPH-
YOLOv5 [7] outperforms the other models in all tested resolutions. However,
its inference time is much higher compared to YOLOv5 [9]. Faster R-CNN
[3] always presents lower accuracies in all resolutions, and, in addition, it
presents high inference times compared to YOLOv5. Therefore, it seems evi-
dent that to obtain good accuracy, we must use TPH-YOLOv5 with a resolution
of 1920. However, to obtain a good tradeoff between accuracy and inference
time, we must use YOLOv5 with a resolution of 1280 since this model’s infer-
ence time difference between 1920 and 1280 is quite significant compared to
accuracy.

In images containing small objects, YOLOv5 and Faster R-CNN struggle in
identifying these compared to TPH-YOLOv5. Figure 4.21 illustrates an exam-
ple where the latter can confidently identify smaller objects.

Figure 4.21: Example of small objects detection by TPH-YOLOv5 (inside red
cirles).

We faced two negative details in the three models. Although these are not
observed very regularly we must mention them. One of them is the incon-
sistency in assigning classes to objects. It is more noticeable in the video

54 Experiments and Results

when the models are not consistent in assigning certain classes in consecu-
tive frames, i.e., in one frame, it classifies as a car and in the next as a truck.
The other detail is an inconsistency in detection. Sometimes, the object is
correctly detected in the current frame, but in the next frame, it is not. It is
interesting to note this because the content between frames does not differ
too much in a video.

4.5.2 Multi-Object Tracking

Since DeepSort depends on an object detector, the results verified in 4.3 are
similar to what was mentioned in 4.2. The TPH-YOLOv5 outperforms the
other models in all resolutions. From what we have observed, when the drone
is stationary, or there is no sudden change in the camera’s perspective, this
model can correctly assign the IDs in most cases. Even with the drone in mo-
tion, it performs quite reasonably. However, when there are sudden changes
in perspective, it often swapes the IDs. The model also presents some associ-
ation difficulties in the presence of occlusions that last more than 15 frames.

4.5.3 Speed Estimation

Estimating the object’s speed from the video is challenging, especially with
the drone in motion. However, this module can present values very close to
the ground truth, as seen in the Figures 4.17 and 4.19, whether the drone is
in motion or stationary. This performance is essentially due to the matching
strategy between frame and footprint. This technique allows mapping the ob-
jects to the georeferenced map, facilitating the calculation of speed in the In-
ternational System unit (km/h). However, in all samples, there is noise, which
means that we have to increase the median’s filter k value to see similarities
with the ground truth. This noise is due to several factors. One of them is that
the centroid changes its position even with the car stationary due to the pre-
diction of the bounding box since its position can vary significantly through
frames. These small changes are enough for the module to wrongly assume
that the car is moving and estimate a false speed, as seen in figure 4.20 and the
first 30 seconds of figure 4.18. Another detail is that this module depends a lot
on the tracking model, i.e., if it wrongly swaps the ID of an object, we may not
be able to get its complete or correct speed estimation.

Two crucial factors to make this prediction closer to reality are the rigorous
georeferencing of the map image and the correct footprint calculation. For
this first one, we recommend using an image with high resolution, i.e., 3840 x
2160 or higher, and using many matching points. The footprint is crucial for
this prediction, and the fact that we assume that this and the drone frame cor-

4.5 Discussion 55

respond in totality can contribute to the imprecision of estimation and noise.
We verified that the log of the height recorded from the drone sometimes de-
viates from the ground truth value. In order to obtain this value correctly, we
calculate the difference between the log height above the sea and the value
of the height above the sea referring to the ground. This second value is not
present in the logs and cannot be obtained directly, having to be manually
extracted from tools such as Google Earth.

4.5.4 Traffic Statistics

Overall, these three mentioned modules allow extracting useful traffic statis-
tics. The Speed Estimation module depends on the MOT model, which in turn
depends on the Object Detection Model. That is why we have given so much
importance to choosing a robust detector. Consequently, our framework per-
forms well when extracting traffic information.

We recorded a video with the drone stationary above a roundabout to test
the performance of counting vehicles on the road. Then we selected the de-
sired routes and compared our framework’s results with the ground truth. The
latter’s values were 7 vehicles, of which 6 cars and 1 motorcycle. Our frame-
work counted 6 vehicles, of which 5 cars and 1 van. It could not detect the
motorcycle and confused the car with a van when crossing the line. This test
generalizes the overall performance, i.e., the framework manages to count al-
most the entirety of the vehicles, and sometimes it confuses some classes.

The heatmap generated by the framework makes a good representation of
the traffic density. In scenarios where the drone captures parked cars, it results
in a heatmap with higher density zones in these locations. Since these vehicles
are not on the road, they must be ignored. To solve this, we use a binary mask
to filter what is the road and what is not. The ideal method would be to apply
this mask directly to the video frames, implying that the drone is stationary
and the camera does not rotate. Therefore, we decided to apply it directly
to the map image, although for this, it must be robustly georeferenced. Figure
4.22 illustrates the difference between the result of a heatmap before and after
the filter on the map.

56 Experiments and Results

(a) Heatmap without mask.

(b) Heatmap with mask.

Figure 4.22: Difference between heatmap with and without mask.

Chapter

5
Conclusions and Further Work

5.1 Conclusions

The main objective of this work was the development of a framework capable
of analyzing car traffic through unmanned aerial devices. In order to accom-
plish this objective, it was required to understand: 1) How to detect and track
vehicles in video frames. 2) How to estimate the object’s speed from videos. 3)
Methods to generate statistics using data extracted from traffic.

A detailed study was carried out on state-of-art to implement the models
required for this work. This study explored Object Detection models, Multi-
Object Tracking models, and their respective metrics.

We present a proposed method to automatically analyze car traffic through
a video captured by a drone. The method was based on developing three
modules responsible for extracting information through video frames. The
two main modules are the object detector and multi-object tracking models.
The third module works together with the other to estimate the speed of ob-
jects in km/h. Finally, we made a fourth module responsible for processing
the statistics. We implemented a method of counting vehicles and predicting
their category on a given road, as well as the traffic characterization. Other
statistics included creating a heatmap that illustrates the car traffic density on
the map and the output of the speed estimates of the detected cars.

After implementing each proposed module, we performed the respective
tests and discussed the results. From these, we conclude that TPH-YOLOv5 [7]
outperforms the other object detection models, allowing, together with Deep-
Sort [23], a good performance in object tracking. The speed estimation also
presented results close to the ground truth ones, although with some noise.
This discussion is presented in more detail in section 4.5, as well as a subjec-

57

58 Conclusions and Further Work

tive analysis for each module.

In conclusion, this work allowed the creation of a framework capable of
analyzing automobile traffic automatically through unmanned aerial vehi-
cles. We consider that, in general, all objectives were fully achieved.

5.2 Further Work

In order to improve the present work, some improvements could be made in
future work. It may happen that the map image was slightly distorted after
georeferencing. This anomaly implies that the footprint and the video frame
are poorly matched. Consequently, it may disturb the accuracy of the speed
calculation and the mapping of vehicles from the frame to the map, implying
in the count and heatmap statistics. Figure 5.1 illustrates an example where
the footprint distortion is perceptible and consequently a poor correspon-
dence with the video frame.

5.2 Further Work 59

(a)

(b)

Figure 5.1: Example of notable distortion in map image. (a) The red square
is the footprint on the map, and the black arrow points to the cropped and
rotated footprint. (b) Corresponding drone frame.

In fact, some technologies such as [42] allow doing Image Registration au-
tomatically to match two images. This technique could be used to match each
frame of the video to the respective footprint of the drone in order to cor-
rect this map image deformations. Implementing a Google Earth API could
replace the need to do manual georeferencing. In order to expand the frame-
work’s dynamics, the footprint calculation could be improved to support videos

60 Conclusions and Further Work

with a pitch different from -90º.

Bibliography

[1] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmenta-
tion, 2013.

[2] Ross Girshick. Fast r-cnn, 2015.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks, 2016.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection, 2015.

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot MultiBox
detector. In Computer Vision – ECCV 2016, pages 21–37. Springer Inter-
national Publishing, 2016.

[6] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement,
2018.

[7] Xingkui Zhu, Shuchang Lyu, Xu Wang, and Qi Zhao. Tph-yolov5: Im-
proved yolov5 based on transformer prediction head for object detection
on drone-captured scenarios, 2021.

[8] Jonathon Luiten, Aljos
a Os
ep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura Leal-Taixé, and
Bastian Leibe. HOTA: A higher order metric for evaluating multi-object
tracking. International Journal of Computer Vision, 129(2):548–578, oct
2020.

[9] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, Christopher-
STAN, Liu Changyu, Laughing, tkianai, Adam Hogan, lorenzomammana,
yxNONG, AlexWang1900, Laurentiu Diaconu, Marc, wanghaoyang0106,
ml5ah, Doug, Francisco Ingham, Frederik, Guilhen, Hatovix, Jake Poz-
nanski, Jiacong Fang, Lijun Yu , changyu98, Mingyu Wang, Naman

61

62 BIBLIOGRAPHY

Gupta, Osama Akhtar, PetrDvoracek, and Prashant Rai. ultralytics/y-
olov5: v3.1 - Bug Fixes and Performance Improvements, October 2020.

[10] Lesson 1: Measuring distance using a drone photo.

[11] Upesh Nepal and Hossein Eslamiat. Comparing yolov3, yolov4 and
yolov5 for autonomous landing spot detection in faulty uavs. Sensors,
22(2), 2022.

[12] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir
Anguelov. Scalable object detection using deep neural networks, 2013.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition, 2014.

[14] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object
detection with deep learning: A review, 2018.

[15] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger, 2016.

[16] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection, 2020.

[17] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-
Yang Chen, and Jun-Wei Hsieh. Cspnet: A new backbone that can en-
hance learning capability of cnn, 2019.

[18] Ultralytics. Yolov5 focus() layer · discussion 3181 · ultralytics/yolov5.

[19] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu,
and Haibin Ling. Detection and tracking meet drones challenge. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,
2021.

[20] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam:
Convolutional block attention module, 2018.

[21] Precision-recall.

[22] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
Simple online and realtime tracking. In 2016 IEEE International Confer-
ence on Image Processing (ICIP). IEEE, sep 2016.

[23] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and real-
time tracking with a deep association metric, 2017.

BIBLIOGRAPHY 63

[24] Rudolph Emil Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[25] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object
tracking performance: The clear mot metrics. EURASIP Journal on Image
and Video Processing, 2008, 01 2008.

[26] Jonathon Luiten. How to evaluate tracking with the hota metrics, Mar
2021.

[27] Min Li, Zhijie Zhang, Liping Lei, Xiaofan Wang, and Xudong Guo. Agri-
cultural greenhouses detection in high-resolution satellite images based
on convolutional neural networks: Comparison of faster r-cnn, yolo v3
and ssd. Sensors (Basel, Switzerland), 20, 2020.

[28] Kun Zhao and Xiaoxi Ren. Small aircraft detection in remote sensing im-
ages based on yolov3. IOP Conference Series: Materials Science and Engi-
neering, 533:012056, 05 2019.

[29] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection, 2020.

[30] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Ex-
ceeding yolo series in 2021, 2021.

[31] Yesul Park, L. Minh Dang, Sujin Lee, Dongil Han, and Hyeonjoon Moon.
Multiple object tracking in deep learning approaches: A survey. Electron-
ics, 10(19), 2021.

[32] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[33] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

[34] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

64 BIBLIOGRAPHY

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Comput-
ing in Python. Nature Methods, 17:261–272, 2020.

[35] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[36] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[37] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Sci-
ence & Engineering, 9(3):90–95, 2007.

[38] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zhavoronkov,
Dmitry Kalinin, Ben Hoff, TOsmanov, Dmitry Kruchinin, Artyom Zanke-
vich, DmitriySidnev, Maksim Markelov, Johannes222, Mathis Chenuet,
a andre, telenachos, Aleksandr Melnikov, Jijoong Kim, Liron Ilouz, Nikita
Glazov, Priya4607, Rush Tehrani, Seungwon Jeong, Vladimir Skubriev,
Sebastian Yonekura, vugia truong, zliang7, lizhming, and Tritin Truong.
opencv/cvat: v1.1.0, August 2020.

[39] QGIS Development Team. QGIS Geographic Information System. QGIS
Association, 2022.

[40] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick,
and Piotr Dollár. Microsoft coco: Common objects in context, 2014.

[41] Lukas Biewald. Experiment tracking with weights and biases, 2020. Soft-
ware available from wandb.com.

[42] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. Superglue: Learning feature matching with graph neural
networks, 2019.

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Motivation and Objectives
	Project Organization

	State-of-Art
	Object detection
	R-CNN
	Fast R-CNN
	Faster R-CNN
	YOLO
	SSD
	YOLOv2
	YOLOv3
	YOLOv4
	YOLOv5
	TPH-YOLOv5

	Object Detection Metrics
	Intersection Over Union
	Precision-Recall Curve
	Average Precision
	Mean Average Precision

	Multi-Object Tracking
	SORT
	Detection
	Estimation
	Association
	Creation and Deletion of Track

	DeepSort

	Multi-Object Tracking Metrics
	HOTA
	Localization
	Detection
	Association
	HOTA score

	Proposed Method
	Object Detection Model
	Multi-Object Tracking Model
	Speed Estimation
	Traffic Statistics
	Vehicle counting
	Heatmap
	Speed Statistics

	Technologies and Tools
	Programming Language and Libraries
	Packages
	Data Annotation
	Devices and Logs
	Georeferencing Tools

	Experiments and Results
	Dataset
	Data Variability Factors

	Object Detection
	Preprocessing and Training
	Results

	Multi-Object Tracking
	Speed Estimation
	Discussion
	Object Detection
	Multi-Object Tracking
	Speed Estimation
	Traffic Statistics

	Conclusions and Further Work
	Conclusions
	Further Work

	Bibliography

