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Abstract: Interpretability has made significant strides in recent years, enabling the formerly black-box
models to reach new levels of transparency. These kinds of models can be particularly useful to
broaden the applicability of machine learning-based systems to domains where—apart from the
predictions—appropriate justifications are also required (e.g., forensics and medical image analysis).
In this context, techniques that focus on visual explanations are of particular interest here, due to their
ability to directly portray the reasons that support a given prediction. Therefore, in this document,
we focus on presenting the core principles of interpretability and describing the main methods that
deliver visual cues (including one that we designed for periocular recognition in particular). Based
on these intuitions, the experiments performed show explanations that attempt to highlight the
most important periocular components towards a non-match decision. Then, some particularly
challenging scenarios are presented to naturally sustain our conclusions and thoughts regarding
future directions.

Keywords: periocular recognition; biometrics; explainability; interpretability; machine learning

1. Introduction

As our societies become more data-driven, the systems responsible for processing that
data have, inevitably, become more complex. Amongst these systems, Machine Learning
(ML) models have constituted themselves as innovators in crucial areas, such as medical
diagnosis and forensics (law) scenarios. Despite their undeniable prowess, these systems
still remain largely latent to the general public and even the developers. In fact, the opaque
nature of ML models is one of the reasons that propelled them to the front seat of automatic
task solving (i.e., image classification, text generation, and data synthesis) [1]. According
to this, a common belief is that interpretability/explainability and performance have an
inverse relation: if we want a more transparent system, its performance will likely decrease
due to limitations such as the reduction of expressive power for the sake of transparency [2].

The aforementioned argument can be further expanded by analysing the better known
ML models and how increases in effectiveness typically lead to more obscure logic. To start,
we can look at the most basic family of models, i.e., linear models. In this kind of system,
the input features are multiplied by individual weights and the resulting values are added
together. It is obvious that features with higher weights are the ones that the model needs
the most to reach its prediction. However, because this model can only define hyperlines in
the feature space, its applicability is often limited to basic phenomena, yielding significant
biases in the generated predictions. To make more useful systems, one could add activation
functions, use higher exponents, apply compositions of functions, and so on. Ultimately,
we arrive at much more complex (and effective) models, but where their inner rationale
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has rapidly lost any intuitive meaning for human understanding. We no longer see a clear
path between the input and output, which trades readability for performance.

Consequently, the field of ML interpretability has been emerging to address the
concerns above. This paper provides a brief summary of the main techniques used for such
purposes, along with a description of some interesting paths for the future.

It is generally accepted that Biometrics constitutes a particularly successful application
of ML, with systems deployed worldwide reaching (and even surpassing) human-level
performance [3–5]. There is a myriad of traits that can be used to identify individuals,
from the classical fingerprint, iris, and face to more recent proposals such as gait or
signature dynamics. In this work, we use the periocular region as the main practical case
to report/compare the ML explainability features. Using the information in the vicinity
(and within) the human eye has been reported as particularly interesting, for performing
reliable recognition in low-quality data, acquired under less controlled protocols and
environments [6].

The remainder of this paper is organised as follows: To understand the core principles
and applicability of interpretability, Section 2 presents the field and its most popular
algorithms in more detail, while Section 3 showcases and assesses a method, proposed
by this document’s authors, which performs the periocular recognition task supported by
interpretable explanations. Section 4 discusses the most relevant aspects derived from this
work, and Section 5 closes this article, providing some final remarks.

2. Machine Learning Interpretability

Fundamentally, the field of ML interpretability comprises techniques and methods
that seek to bridge the gap between a system’s predictions (i.e., the what) and the reasoning
that led to such predictions (i.e., the why). As an introductory example, we could consider
the task of training a classifier to optimally discriminate between wolves and huskies [7].
By applying interpretability techniques, we could perhaps notice how the model erro-
neously uses snow to classify an image as containing a wolf. Without the support of
such techniques, it would be decidedly harder to reach the same conclusion. With effect,
interpretability brings not only a higher level of trust between the users and a given system,
but also a better way of debugging prevailing issues.

Building on the introduction above, it is important to establish some key concepts.
In the literature, interpretability techniques are commonly categorised according to the
following criteria:

• Depth: the degree of complexity that a model is allowed to have. Intrinsic techniques
often limit a model’s complexity (thus making it more transparent), as opposed to
post hoc techniques, which allow complexity and only attempt to explain what the
model outputs.

• Scope: the range of an interpretability technique. When a technique explains individual
predictions, it is operating on a local scale. On the contrary, if a technique allows us to
understand a model at once, it is performing a global explanation.

• Model applicability: the families of models/architectures that a technique can explain.
Model-specific techniques are exclusive to a particular kind of model due to their re-
liance on specific characteristics of said models. Conversely, model-agnostic methods
are generic enough so that they can be paired with virtually any kind of model.

Furthermore, these techniques can be discriminated using different, yet equally legiti-
mate criteria. It is important to evaluate an interpretability method based on its expressive
power and complexity. The former is tied to the domain inside which the explanations
exist (e.g., natural language, images), while the latter focuses on the computational cost of
generating explanations, possibly rendering certain techniques unfeasible. Additionally,
the techniques could also be discriminated regarding the properties of the actual explana-
tions they are able to generate. Here, properties such as accuracy (i.e., if the explanations
are correct for unseen data), comprehensibility (i.e., the difficulty level of trying to interpret
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an explanation), and stability (i.e., the differences between explanations of slightly different
samples) stand out.

There are many other properties by which we can assess the usefulness of a given
technique [1], but above all else, a technique must be able to make a black-box less opaque
and much more user-friendly. The following subsection describes a plethora of visual
techniques (i.e., based on images) that can, with varying degrees of success and appeal,
achieve such a goal.

2.1. Visual Interpretability

In the literature, there are many (and equally valid) forms of interpretability. Tech-
niques such as PDP [8] or ALE [9] present correlations between independent variables and
a dependent one via plots, while LIME [10] or SHAP [11] generate images with highlights
in certain super-pixels (i.e., groups of neighbouring pixels). For the purposes of this article,
the visual explanations convey the highest level of interest. Therefore, the next subsections
will cover the better known techniques in the visual domain.

2.1.1. Local Interpretable Model-Agnostic Explanations

From a high-level perspective, LIME focuses on turning on or off certain super-pixels
and assessing how a CNN’s predictions change based on those perturbations. To do so,
we start by taking the sample we wish to explain and create many versions of that image
with on or off perturbations. Given this artificial dataset, the black-box model is fed with
each of these samples and the respective scores are registered. Then, to understand how
the perturbations affect the predictions, the authors proposed the training of an auxiliary
(or surrogate) linear model:

explanation(x) = arg min
g∈G

L( f , g, πx) + Ω(g). (1)

Equation (1) shows how an explanation for an instance x is the summation of a
loss component L (e.g., MSE) and a complexity component Ω. L measures how the
predictions from the surrogate model g and the original model f compare, considering the
neighbourhood given by πx. Ω controls the degree of complexity of the auxiliary model
(in practice, LIME only optimises the former term).

LIME’s disadvantages include the inherent limitations of linear models, which can
be incapable of modelling a complex decision boundary, even if it is local and at a smaller
scale. Despite the drawbacks, this technique is certainly capable of providing a hint of
transparency to otherwise opaque models.

2.1.2. SHapley Additive exPlanations

SHAP has its foundation in Shapley values, which in turn originated from cooperative
game theory. Here, features are seen as players inside a potentially collaborative envi-
ronment, where they can choose to form coalitions (i.e., cooperative parties) to maximise
future gains. Due to its flexibility, this technique has served as the basis for many branches.
KernelSHAP (referred to as SHAP, for simplicity) is one such branch, and its details will be
described further.

Just as LIME, SHAP uses a linear model to approximate the original one. The first step
to understanding SHAP is to analyse its loss function:

L( f , g, πx) = ∑
z′∈Z

[ f (hx(z′))− g(z′)]2πx(z′). (2)

In the equation above, f is the original black-box model and g is the surrogate model,
while πx represents the SHAP kernel. Focusing on g, the next equation provides the
regression form that it naturally possesses:

g(z′) = φ0 +
m

∑
i=1

φiz
′
i. (3)
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In addition to what has been stated about g, this equation introduces z′, which is a
simplified vector of ones and zeros that enable or disable certain features (also known as
the coalition vector). Furthermore, m is the maximum coalition size, and φi is the coefficient
(i.e., Shapley value) for feature i.

Finally, the SHAP kernel demands introduction, given that it is essential in attributing
more weight to small or large coalitions, as opposed to coalitions that only aggregate half
the features (or close to it). These behaviours are motivated by the notion that we learn
more about individual features if we can analyse them in isolation (small coalitions) or if
we have almost every feature but one (large coalitions):

πx(z′) =
(m− 1)

( m
|z′ |)|z′|(m− |z′|)

. (4)

In order to actually train the model g, one must start by sampling k coalitions and
obtain the original model’s predictions when fed these perturbed samples. Then, using
Equation (4), each coalition’s weights can be obtained, enabling us to use Equation (2) to
train the linear model. Once trained, the optimal weights can be seen as the approximate
Shapley values for each coalition (note that we can have only one active feature in a
coalition or several).

SHAP is a solid technique with comparable results to LIME’s, exceeding it in some
cases. Additionally, it relies on grounded and proven concepts, such as game theory,
Shapley values and LIME’s intuitive reasoning. However, SHAP suffers much the same
problems as other permutation-based methods: by replacing omitted features with random
ones, unlikely data points may be generated, which can lead to unrealistic explanations [7].

2.1.3. Anchors

Proposed in [12] by the same authors that developed LIME, anchors serve similar
purposes with different core principles. To start, anchors involve a set of IF-THEN rules so
that a prediction is sufficiently anchored by some features (i.e., changes in other features’
values do not change the prediction). Amongst the concepts that are introduced with this
technique, the notion of coverage is used to specify the amount of instances to which a rule
applies (i.e., they are expected to be reusable).

As stated above, the form of an anchor is usually as follows: IF (feature1 == value1
AND/OR feature2 == value2 AND/OR ...) THEN PREDICT target = value3 WITH PRE-
CISION p AND COVERAGE c. The readability and user-friendliness are clearly a major
concern, given how intuitive the rules are. In practice, for images, the features are the
same super-pixels used by the first two techniques, which are then left active or inactive
according to their influence on the final prediction.

To determine how precise an anchor is, the authors proposed the following equation:

precision(A) = ED(z|A)[1 f (x)= f (z)]. (5)

Analysing Equation (5), z stands for the perturbed neighbours of x to which A is
applicable, D is the distribution of perturbed instances, and 1 f (x)= f (z) denotes the black-
box model’s predictions with respect to x and z (expectedly, the same). In practice, it is
intractable to determine adequate anchors using Equation (5). To solve such an issue, the
authors proposed the introduction of a new parameter (referred to as δ) such that 0 6 δ 6 1,
effectively creating a probabilistic definition:

P(precision(A) > τ) > 1− δ. (6)

Furthermore, the notion of coverage, intuitively explained as the need for rules that
are applicable to a large portion of D, can also be described with an equation:

coverage(A) = ED(z)
[A(z)]. (7)
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Maximising coverage is desirable, given that the generated anchors should be reusable
on a decently sized portion of the perturbation space:

max
A s.t. P(precision(A)>τ)>1−δ

coverage(A). (8)

From all the equations shown, it becomes clear that this process tries to find anchors
with the highest coverage, assuming they satisfy the precision constraint (6). One interesting
aspect is that rules with more predicates (i.e., conditions in the IF branch) have a tendency
for higher precision. However, such a characteristic is not to be pushed to extreme cases.
A rule that has too many predicates may be overly tuned to predict the instance given (x)
and none other (or a really small amount of similar instances). There is, then, a trade-off
between precision and coverage.

Generally speaking, anchors are intuitive, relatively easy to understand, and deliver a
performance level close to LIME’s, despite not being so popular as the predecessor.

2.1.4. Saliency Maps

Described in [13], this technique diverges from the first three counterparts by attempt-
ing to highlight certain parts of the input image with brighter or darker shades of white,
based on their importance to a model’s score (instead of keeping or occluding super-pixels).
The authors proposed an introductory example, similar to the following:

Sc(I) = wT
c I + bc. (9)

Equation (9) comes from a linear score model for class c, and as is standard, there is
a weight vector wc, which is later transposed, and a bias bc. In this setup, each pixel of
image I is weighted according to its importance. Translating such a formulation to a CNN,
however, becomes more complicated. In spite of this, one can approximate that value by
computing the first-order Taylor expansion:

Sc(I) ≈ wTI + b. (10)

In this case, w is the derivative of Sc with respect to a specific image I0:

w =
∂Sc

∂I

∣∣∣∣
I0

. (11)

As per Equation (11), we obtain an image-specific class Saliency Map where the
magnitude of the derivative indicates the pixels that need to be changed the least to change
the final score the most.

Furthermore, and remembering that any image (i.e., I0) has m rows and n columns,
a class Saliency Map belongs to Rm∗n. The first step is to find w, as per Equation (11),
through back-propagation. Then, if I0 is a greyscale image, w has exactly one element for
each pixel, meaning the Saliency Map could be calculated as Mij = |wh(i,j)|, where h(i, j) is
the index of the element in w directly corresponding to I0’s pixel in row i and column j.
As for RGB images, with multiple depth channels, an index takes the form h(i, j, c), and
only the maximum magnitude across all channels is kept: Mij = maxc |wh(i,j,c)|.

One advantage of Saliency Maps is that they are not expensive to compute, only
requiring a single back-propagation pass, and do not assume the existence of any additional
annotations (apart from the labels used when training the original model).

2.1.5. Occlusion Maps

Being one of the most straightforward techniques, Occlusion Maps try to make pertur-
bations on certain areas of an input image and register how the model (e.g., a CNN) reacts
to those changes.

In practice, this method involves taking a square, of fixed size and colour, and sliding
it over the image, iteratively. Then, the perturbed images are fed to the classifier, and its
scores are noted. Finally, the scores are translated into a heat map, indicating the portions
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of the image where an occlusion had the most impact (i.e., the areas most used by the
model to predict the correct class).

In general, Occlusion Maps are able to locate areas of an image that contribute the most
to a classifier’s decision (albeit not as accurately as other techniques). Still, as an additional
benefit, the simple nature of this algorithm means that it is also easy to implement and
requires almost no redesign or retraining of the classifier.

3. Proof-of-Concept: Deep Adversarial Networks

Taking into consideration the techniques discussed in Section 2.1, we argue that there
is still a large amount of uncharted territory in the field of ML interpretability. Therefore,
this section goes over a method that attempts to bring interpretability to the task of
periocular recognition, specifically, or other similar domains, in general. Considering the
four-tier scale suggested in [14], the approach described next could be considered of Level
3, meaning that we leverage domain knowledge (e.g., iris and eyebrow segmentation
masks) to make a model’s outputs more interpretable. Furthermore, recalling the desirable
properties described in Section 2, the present section should clarify the ways in which our
explanations are accurate, comprehensible, post hoc, local, and model-agnostic.

3.1. Method Overview

The work described in this section was largely based in a previous work of ours [15].
Here, the idea was to produce easily understandable and accurate visual explanations,
based on the components that make up the periocular region. As can be seen in Figure 1,
our results show red tones for areas that are considered to be really useful for the associated
CNN. Conversely, green tones denote areas that are not detrimental.

In order to achieve these results, we started by training a CNN to optimally discrimi-
nate between genuine and impostor pairs (therefore performing a verification task). If the
query pair was deemed impostor, we entered the explanation stage. In this stage, iris and
eyebrow masks were obtained using a trained Mask R-CNN [16] model. Then, given a
relatively large dataset of high-quality synthetic genuine pairs (generated with a trained
StyleGAN2 [17] generator, on a customised combination of the UBIPr [18] and FFHQ [19]
datasets), we found, among these samples, the ones that most closely resembled our query
pair, while also having the irises and eyebrows in roughly the same positions.

The key insight of this solution was based in the notion of genuine pair (i.e., two
samples from the same subject): as all the synthetic pairs were genuine comparisons, they
might look similar to the query pair, but do not generally display the differences that make
the query pair an impostor one (such as different iris colours, skin textures, or eyebrow
densities). In practice, we obtained a score sX for each neighbour (the name given to the
synthetic samples) using the next equation:

sX = ωmasks ∗ ||queryA − neighbourX||2. (12)

Once the k best synthetic pairs were found via Equation (12) (and then sorted using
that same equation but for images B and Y—the second images of the query pair and the
neighbour(s)), we obtained the pixel differences between the query pair and such neighbour(s),
yielding k intermediate differences (i.e., intermediate images with greyscale tones). Then,
these intermediate images were combined into a single one, while giving more weight to the
neighbours that looked the closest to the query pair. Finally, interpretable colours were added
to the resulting representation, so as to make the explanations more appealing.

3.2. State-of-the-Art Comparison

In [15], the framework was evaluated as a traditional recognition method would be
(using EER and AUC metrics), culminating in an EER of 0.108 and an AUC equal to 0.813.
The experimental setup included the UBIRIS.v2 dataset [20] and the more challenging
open-world setting. A fair comparison can be drawn against the results shown in [21]
and [22], leading to our belief that our recognition phase consistently outperformed previ-
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ous methods. It should be noted that, due to the modular design, our recognition stage
could be replaced by another, without compromising the interpretable nature of our results.

As mentioned before, the proposed solution in [15] was not only focused on per-
forming the recognition task well, but, more importantly, on illustrating to the user why
certain decisions were made. Regarding the baseline solutions, the following procedure
was employed:

• LIME / SHAP / Saliency Maps: A DenseNet-121 model was trained to optimally distin-
guish between genuine and impostor pairs. Upon training, the chosen technique was
used in a post hoc setup to explain certain predictions.

• HL: Due to this method’s natural inclusion of interpretability, it was once again trained
to discriminate between the two types of pairs, while at the same time providing heat
maps that served as justifications.

Figure 1 shows some illustrative examples of each method’s performance:

1

2

3

Query Saliency Maps LIME SHAP Huang and Li Ours

4

5

6

Figure 1. Random samples attained by the main methods. Saliency Maps provide greyscale images;
LIME keeps or discards super-pixels; SHAP colours them in red (relevant) or green (irrelevant)
colours; HL generates heat maps; while [15] replicates SHAP’s colour code.

In general, we can make the following comments regarding the results above:

• Saliency Maps: The explanations were high level, in the sense that they provided
modest highlights for the most obvious differences/components (e.g., eyebrows and
eyelids). In our experiments, this approach lacked the ability to emphasise small
components that could clearly explain the impostor decision (e.g., person B’s skin
spots in the first example).

• LIME: Despite being one of the most recognisable techniques in the field, LIME
only managed to deliver passable results. For instance, irises and spots were never
included, despite playing significant roles in Pairs 1 and 4.

• SHAP: The colour code was visually appealing, even though the explanations gener-
ated by SHAP appeared to be somewhat confusing. There were red and green tones
overlapping with each other, and the results could benefit from more consistency
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(notice how in Pairs 2 and 3, the eyebrows are coloured in green, in person A’s sample,
while in person B’s, they appeared mostly in red).

• HL: Out of all the methods tested, HL seemed to do the best job at being both under-
standable and consistent. Skin spots, eyebrows, and irises were highlighted where
applicable, with the main failures deriving from the lack of highlights in eyebrows
(Pairs 2 and 6).

• Ours: Taking into account the baseline results, we argue that we were able to match
the best of the baseline techniques at worst, or objectively surpassed them at best.
Where other techniques failed to highlight spots (Pair 1), eyebrows (Pair 2), or irises
(Pair 6), we clearly portrayed them as being used by the accompanying CNN for the
impostor class. Another benefit can be seen in the form of fine-grained accuracy, often
useful when dealing with smaller components such as skin spots.

4. Discussion and Hard Cases

Interpretability is a truly interesting area due to its ability to connect users and AI
systems. Throughout this article, a grounded argument was made in favour of adopting
existing techniques or developing new ones, to target specific problems with greater
transparency. This decision could be enforced by external authorities, the general public, or
simply to make the user have a more captivating experience. Considering the existence of
the GDPR [23], new software design choices need to be addressed with relative swiftness
to ensure compliance with the aforementioned legislation.

Based on what was stated above, we argue that interpretability will likely become a
requirement rather than an addition. As shown in Section 3 and [15], interpretability can
be incorporated without compromising accuracy or reliability. Even if a newly designed
system is not feasible, techniques such as LIME or SHAP can still make black-box models
less opaque. It seems to be, then, a question of when and not if, in terms of actual adoption
in real-world scenarios.

Furthermore, interpretability could help make safer, fairer, and more efficient algo-
rithms. Debugging a system that is capable of explaining its output is intuitively easier.
Making sure that the internal logic is being properly trained and tuned, so as to avoid racial
or discriminatory behaviour, is much more important currently given the awareness that
people have about such topics.

Based on the benefits above, the next subsection focuses on discussing the improve-
ments that can still be made to elevate the quality of the already useful explanations.

4.1. Hard Cases

Our solution [15], LIME, SHAP, Saliency Maps, and Huang and Li’s (HL) solution [2]
tend to produce less favourable results when faced with certain external factors. Among these
variables, there are three particularly interesting cases: background regions, hair and reflections.

When analysing Figure 2, it is important to recall the ways in which the explanations
convey information: Saliency Maps are greyscale; LIME’s explanations are binary (active
super-pixels are relevant, while inactive ones are pointless); SHAP and [15] use red or
green tones for important and irrelevant pixels, respectively; HL generates heat maps, in
which red areas are of utmost usefulness.

Having established the prelude above, the first pair showed two individuals with
different skin and iris colours. However, despite the best efforts of HL and our method
to highlight the aforementioned components, the background appeared to be wrongly
coloured. Furthermore, in Pair 2, subject A’s hair was coloured by SHAP, HL and [15] as
being relevant to the impostor class. This behaviour could be considered debatable, given
that the hair was in fact different in the sample shown, even if it did not usually belong
to the periocular region. Finally, Pair 3 showed a reflection on person B’s glasses, which
SHAP, HL and our method probably mixed up with some kind of spot or skin mark.

Taking these remarks into consideration, we note how techniques attempting this task
need more semantic information to discriminate between traditionally usable components
(e.g., iris, eyebrow, sclera, skin, eyelid and spots) and other elements. In the case of the hair
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and glasses, for example, the fact that these methods showed them as being important is
not necessarily wrong. It is just a matter of either automatically leaving these components
out of the explanations or relaxing the problem to allow for more components outside the
periocular scope.

1

2

3

Query Saliency Maps LIME SHAP Huang and Li Ours

Figure 2. Samples in which all the tested methods failed to produce high-quality explanations.
Common edge cases include the presence of hair, glasses or background elements.

5. Conclusions and Further Work

In this article, an overview of ML interpretability was provided, along with a descrip-
tion of some of the most frequently cited techniques in this topic. Additionally, a method
that incorporates interpretability by design was discussed in detail. Overall, a twofold
remark can be made: interpretability should be used in as many systems as possible and in
the case of visual explanations, techniques such as LIME, SHAP or the method in [15] (for
biometric recognition) deliver interpretability to otherwise black-box models. Regardless
of how intuitive the results in Section 3.2 may be, some future strides are still needed. In
the near future, we expect to apply either generic or model-specific techniques that can
show more robustness against occlusions and unwanted components, while still succeed-
ing in the same scenarios as the techniques shown in this document. By addressing the
aforementioned limitations, we hope that transparent ML becomes a sustained trend, with
obvious benefits for developers and, most importantly, end users.
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Abbreviations
The following abbreviations are used in this manuscript:

ALE Accumulated Local Effects
AUC Area Under the Curve
AI Artificial Intelligence
CNN Convolutional Neural Network
EER Equal Error Rates
LIME Local Interpretable Model-agnostic Explanations
ML Machine Learning
MSE Mean-Squared Error
PDP Partial Dependence Plot
RGB Red Green Blue
SHAP SHapley Additive exPlanations
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