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Abstract

The effectiveness of current iris recognition systems de-

pends on the accurate segmentation and parameterisation

of the iris boundaries, as failures at this point misalign

the coefficients of the biometric signatures. This paper de-

scribes IRINA, an algorithm for Iris Recognition that is ro-

bust against INAccurately segmented samples, which makes

it a good candidate to work in poor-quality data. The pro-

cess is based in the concept of ”corresponding” patch be-

tween pairs of images, that is used to estimate the posterior

probabilities that patches regard the same biological region,

even in case of segmentation errors and non-linear texture

deformations. Such information enables to infer a free-form

deformation field (2D registration vectors) between images,

whose first and second-order statistics provide effective bio-

metric discriminating power. Extensive experiments were

carried out in four datasets (CASIA-IrisV3-Lamp, CASIA-

IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU) and show

that IRINA not only achieves state-of-the-art performance

in good quality data, but also handles effectively severe seg-

mentation errors and large differences in pupillary dilation

/ constriction.

1. Introduction

Iris recognition is a mature technology, with systems

successfully deployed in domains such as border controls,

computers login and national ID cards. Since the pioneer al-

gorithm [5] proposed in 1993, a long road has been travelled

in iris biometrics research [2], with two major weaknesses

subsisting:

• accurate segmentation and parameterization of the iris

boundaries is required to image normalisation. As

most of the iris encoding / matching strategies are

phase-based, failures in segmentation lead to bit shift-

ing in the biometric signatures, with a corresponding

increase of false rejections;

• false rejections also increase in case of severely dilated

/ constricted pupils, which cause non-linear deforma-

tions in the iris texture that are only partially compen-

sated by the normalisation phase. Pupil movements

laterally pressure the iris, with some of the fibers fold-

ing underneath others and changing texture appear-

ance.

Note that 1) varying lighting conditions change the lev-

els of pupillary dilation; and 2) less constrained acquisi-

tion protocols reduce data quality and make hard to accu-

rately parameterise the iris boundaries. Hence, the robust-

ness of recognition can be seen as the major concern be-

hind the method proposed in this paper (IRINA), keeping as

main goal to achieve state-of-the-art performance in good-

quality data while also handling segmentation inaccuracies

and non-linear texture deformations.

A cohesive perspective of IRINA is given in Fig. 1, with

a processing chain divided into three phases:

1. we estimate the posterior probabilities that patches

from two iris samples correspond, even in case of non-

linear texture deformations. Starting from a learning

set of manually annotated point correspondences that

define convex polygons, we densely sample these re-

gions and obtain a large number of patches considered

to regard the same biological region. This information

feeds a convolution neural network (CNN), that: a) ex-

plicitly discriminates between the corresponding and

non-corresponding patches; and b) implicitly learns

the typical iris texture deformations;

2. we infer a free-form deformation field (set of 2D vec-

tors) that registrates pairs of samples represented in

normalised coordinates. This step is formulated us-

ing a discrete Markov random field (MRF), with unary

costs provided by the responses of the CNN, and pair-

wise costs imposing smooth solutions that penalize lo-

cal gradients of the deformation field. The loopy belief

propagation (LBP) algorithm [8] is used to solve the

image registration problem;
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Figure 1. Overview of IRINA’s processing chain. The first and second order statistics of the free-form deformation vector fields are the

basis for biometric recognition. Deformation fields are exaggerated for illustration purposes.

3. for biometric recognition, the key observation is that

genuine deformation fields (between samples of the

same subject) are composed of 2D vectors with phase

and magnitude gradients substantially smaller than

those of impostors. First and second-order statistics

of these vectors provide the discriminating information

for biometric recognition.

Belonging to the discriminative family of pattern recog-

nition methods, IRINA’s rationale is evidently original

with respect to the state-of-the-art, in which the generative

paradigm rules: apart from assuming that data is accurately

segmented, previous methods consider that no parts of the

iris texture appear / vanish due to pupillary dilation. As

an example, Thornton et al. [28] assume that the iris re-

gions unaffected by pupil dilation still provide enough in-

formation for matching (providing the insight for subse-

quent works [14] and [24]) , while other authors provided

(inevitably rough) parameterizations of iris deformations

(e.g., [33], [4] and [29]). In a discriminative approach, Ross

et al. [21] propose an information fusion framework where

three distinct feature extraction and matching schemes are

fused to handle the significant variability in the input ocular

images. Finally, note that our idea of corresponding patch

is different from the used in keypoint-matching iris recogni-

tion algorithms, which analyzed the geometric distribution

of perfectly matching pairs of keypoints between two im-

ages (e.g., using SIFT descriptors [1]), but fail in case of

varying levels of focus, lighting or non-linear iris deforma-

tions.

1.1. Iris Recognition

Given the maturity of iris biometrics technology, strides

have been concentrated in improving particular features of

the recognition process: i) extending the data acquisition

volume; ii) improving performance in less constrained con-

ditions; iii) augment the human interpretability of results;

iv) develop cancellable signatures; and v) provide inter-

sensor operability.

In terms of the data acquisition volume, a good exam-

ple is the iris-on-the-move system [17], that acquires data

from subjects walking through a portal. For similar pur-

poses, Hsieh et al. [13] used wavefront coding and super-

resolution techniques. In terms of the recognition robust-

ness, Dong et al. [7] proposed an adaptive personalized

matching scheme that highlights the most discriminating

features. Pillai et al. [19] used the sparse representa-

tion for classification algorithm in randomly projected iris

patches, claiming to increase the robustness against acquisi-

tion artefacts. Yang et al. [32] relied in high-order informa-

tion to perform iris matching, while Alonzo-Fernandez et

al. [9] focused in the image enhancement phase, propos-

ing a super-resolution method based on PCA and eigen-

transformations of local iris patches. Bit consistency is

also a concern, with several approaches selecting only parts

of the biometric signatures for matching (e.g. [12], [27]

and [16]).

Under complementary perspectives, the lack of inter-

pretability hinders the use of iris recognition in foren-

sics [3]. Also, inter-sensor recognition provided the moti-

vation for Pillai et al. [20], which learned transformations

between data acquired by different sensors. Cancellable

biometrics is a privacy-preserving solution that requires to

find hardly invertible transfer functions of the biometric

data into different domains: Zhao et al. [34] proposed the

concept of negative recognition, using only complementary

information (p-hidden algorithm) of the biometric data for

matching. Finally, according to the growing popularity of

CNNs, various approaches based on this paradigm appeared

recently in the literature, either for specific phases of the

recognition chain (e.g., segmentation [15] or spoofing de-
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tection [18]) or for the whole process [10].

1.2. Image Registration

Image registration involves three components: i) a trans-

formation model that maps regions of one image into re-

gions of another; ii) a similarity criterion, that quantifies the

nearness between image patches; and iii) an optimization

strategy, that finds a global mapping between both images.

Transformation models can be global / local. The first

family includes linear transformations such as rotation,

scaling, translation and affine. Local transformations

allow to warp regions of one image into another, using

radial basis functions, physical continuum and large

deformation models. The similarity criterion quantifies

how much one image patch resembles another one in the

reference data, using cross-correlation, mutual information

or other distance functions. Similarity can be intensity or

feature-based, with the latter family matching the most

complex structures as lines and curves, based in spatial

and frequency information. Finally, during optimization

the set of parameters that optimally match both images are

found. Exhaustive search techniques were firstly used here,

but later abandoned due to their reduced computational

feasibility. Modern approaches use optimization algorithms

and gradient-free / gradient based techniques to derive

reasonable solutions, which might be sub-optimal in case

of non-convex cost functions. For additional information,

Sotiras et al. [25] provide an overview of the state-of-the-art

in image registration.

The remainder of this paper is organized as follows:

Section 2 provides a detailed description of the proposed

method. In Section 3 we discuss the obtained results and

the conclusions are given in Section 4.

2. Proposed Method

2.1. Corresponding Iris Patches

The concept of corresponding patches between pairs of

iris images is the key to learn the typical non-linear de-

formations in normalized representations of the iris due to

pupillary dilation / constriction and segmentation errors.

Iris recognition systems comprise a normalisation

phase [6] that compensates for differences in scale, per-

spective and pupillary dilation, assuming that iris deforma-

tions are linear and limited to the radial direction. This does

not compensate for the actual deformations, which are non-

linear, radial and angular, with fibers vanishing / appearing

for different levels of pupillary dilation [30]. Several au-

thors proposed non-linear iris normalization schemes to at-

tenuate the problem: Wyatt [31] developed a mathematical

model to explain how the collagen fibers in the iris deform

and Yuan and Shi [33] proposed a scheme based on that

model. Also, Clark et al. [4] described a theoretical model

for the iris dynamics, used subsequently by Tomeo-Reyes

et al. [29].

To infer the corresponding patches, we use pairs of nor-

malized samples from the same subject and manually anno-

tate sets of control points that (by visual inspection) seem to

regard the same biological region. These control points de-

fine two convex polygons Γ and Γ
0 and are represented by

the coloured dots (xi and x0
i) in the upper part of Fig. 2. Let

xi = (xi, yi) and x0
i = (x0

i, y
0
i), i = {1, . . . n} be the loca-

tions of pointwise correspondences. We learn two functions

fr, fc that establish a dense set of correspondences between

positions (rows, columns) in Γ and Γ
0, fr, fc : N 2 → N ,

such that ∀ x0
i ∈ Γ

0, x0
i =

(

fc(x), fr(x)
)

:

fc(x) = λT
c [φ, p(x)], (1)

fr(x) = λT
r [φ, p(x)], (2)

with φ =
⇥

φ
(

|x − x1|2
)

, . . . , φ
(

|x − xn|2
)⇤

, |.|2 repre-

senting the `2 norm, φ(r) = e(−r/κ)2 being a radial basis

function and p(x) = [1, x, y] being a polynomial basis of

first degree for a 2-dimensional vector space ( = 0.1 was

used in all our experiments).

In order to obtain the λ coefficients, we define a n × n

matrix A, Ai,j = φ
(

|xi−xj |2
)

and P as the n×3 polyno-

mial basis matrix, such that P = [p(x1); . . . ; p(xn)]. Then,

λc and λr are given by:

λc =



A P

P T
0

]−1 
x0
c

0

]

(3)

λr =



A P

P T
0

]−1 
x0
r

0

]

(4)

with x0
c=[x0

1, . . . , x
0
n]

T and x0
r=[y01, . . . , y

0
n]

T concatenat-

ing the horizontal (column) and vertical (row) positions of

the control points in Γ
0.

According to this procedure, we deem that positions x ∈
Γ correspond biologically to x0 =

(

fc(x), fr(x)
)

∈ Γ
0.

As Γ and Γ
0 have different size and shape, this set of corre-

spondences implicitly encodes the non-linear deformations

that affect the iris texture. Finally, we consider patches P

(from Γ) and P 0 (from Γ
0) of 21× 21 pixels, cropped from

the learning data and centered at each point correspondence.

Using 320 images (from 75 subjects) of the CASIA-

IrisV3-Lamp set, 510,000 corresponding Ci,j patches

(Ci,j = [Pi,P
0
j ;P

0
j ,Pi]) were cropped. Also, using im-

age pairs from different subjects, another 510,000 non-

corresponding C̄i,j patches were created. Both were used

to train a CNN that extracts high-level texture informa-

tion and distinguishes between the corresponding / non-

corresponding patches. Note that the iris boundaries in this
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Figure 2. Concept of corresponding iris patches. The top part of

the figure gives a schema of the way correspondences are found:

based on a set of manually marked corresponding control points

between two iris samples (x. and x
0

.), two polygons (Γ and Γ
0) are

defined. Next, for every point inside Γ, the corresponding position

in Γ
0 is found (middle row). The bottom part of the figure shows

five pairs of corresponding iris patches, where non-linear defor-

mations (red arrows), and vanishing / emerging regions (green ar-

rows) inside each patch are evident.

learning set (obtained as described in Sec. 3.1) were not

manually confirmed, i.e., there are accurately and inaccu-

rately samples in this set, which is important to infer the

deformations in the iris texture yielding from segmentation

failures.

The CNN input is 42×42 image patches and its architec-

ture (Fig. 3) is composed of six layers (three convolutional

plus three fully connected layers): the first convolutional

layer uses 32 kernels (3×3), and the next ones are composed

of 64 kernels of size 3× 3× 32. The responses from these

layers feed max-pooling layers (stride equals to 1, given the

relatively small size of the input data). Next, there are two

fully connected layers, each one with 256 cells. The output

is a soft max loss corresponding to the probability of two iris

patches to correspond. Learning was done according to the

stochastic gradient descend algorithm, with an initial learn-

ing rate of 1e−2, momentum set to 0.9 and weight decay

equals to 1e−3 .

The responses of the CNN enable to obtain the posterior

probabilities that two iris patches regard the same biologi-

42

4
2

32

38 ⇥ 38 36 ⇥ 36 17 ⇥ 17

64

5 ⇥ 5
3 ⇥ 3 ⇥ 32

max(), 3 ⇥ 3 ⇥ 64 max()
256 256

64

Figure 3. Structure of the convolutional neural network (CNN)

used to discriminate between the corresponding and non-

corresponding iris pairwise patches.

cal region. Such information enters a Markov random field

(MRF), which energy minimization provides the solution to

the image registration problem, used as information source

for biometric recognition.

2.2. Deformation Field Inference

We consider a free-form transformation model [22] to

represent a deformation field, expressed as a set of 2D vec-

tors d ∈ Z2 at control points x̊ ∈ N 2. We superimpose a r

× c regular grid at positions G = {x̊1, . . . , x̊|G|}, |G|=r.c,

over the left half of the normalized images representation

(corresponding to the lower part of the iris that is less prune

to occlusions and shadows). Also, we assume that deforma-

tions at any position d(x) can be obtained by interpolating

the closest control points deformations [11]:

d(x) =

|G|
X

i=1

⌫(x) d(x̊i), (5)

with d(x̊i) representing the deformation at the ith control

point and ⌫() being the interpolation function.

Let G = (V, E) be a graph representing a MRF, com-

posed of a set of tv vertices V , linked by te edges E . In

our model, every control point of G is a vertex of G, i.e.,

tv = |G| and te = 2.r.c − r − c, using a typical grid con-

figuration (4-neighborhood). The MRF is a representation

of a discrete latent random variable L = {Li}, ∀i ∈ V ,

where each element Li takes one value li from a set of labels

(each corresponding to a deformation vector d). In practi-

cal terms, having the ith image patch centered at position x,

we find its corresponding patch in the second sample at po-

sitions x+m, m= (m1,m2), mi ∈ {−mmax, . . .mmax}.

We use mmax = 7 in our experiments (Fig. 4).

Let l = {l1, . . . , ltv} be one configuration of the MRF.

The energy of l is the sum of the unary υi(li) and pairwise

υ(li, lj) potentials:

E(l) =
X

i2V
υi(li) +

X

(i,j)2E
υ(li, lj). (6)
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According to this formulation, obtaining the deformation

model between a pair of images is equivalent to infer the

random variables in the MRF that minimize its energy:

l̂ = argmin
l

E(l), (7)

where l̂ = {l̂1, . . . , l̂tv} (l̂i ≡ di) are the labels inferred. In

all cases, MRFs were optimized according to the Loopy Be-

lief Propagation [8] algorithm. Even though it is not guar-

anteed to converge to global minimums on loopy non-sub

modular graphs (such as ours), we concluded that the algo-

rithm provides acceptable solutions most of the times.

2.2.1 Unary Costs

Let ⌘(i, j) : N2 → [0, 1] be the CNN response for one pair

of patches, expressing the likelihood p
(

⌘(i, j) | Ci,j

)

that

the ith patch of one sample corresponds to the jth patch of

its counterpart. According to the Bayes rule, and assuming

equal priors, the posterior probability functions are given

by:

p
(

Ci,j | ⌘(i, j)
)

=
p
(

⌘(i, j) | Ci,j

)

P|M |
k=1 p

(

⌘(i, k) | Ci,k

)

, (8)

with |M | expressing the number of positions in the second

image where we search for the position corresponding to

the ith patch. This way, the unary costs of the labels in each

vertex are defined as:

υi(li) = ↵
⇣

1− p
(

Ci,j | ⌘(i, j)
)

⌘

, (9)

with ↵ ∈ [0, 1] determining the trade-off between the

strength of the unary to the pairwise costs in MRF opti-

mization.

2.2.2 Pairwise Costs

In our model, the pairwise costs serve to control the deriva-

tives in the deformation field, i.e., penalise adjacent posi-

tions with dramatically different deformation vectors that

are not biologically plausible.

Let l represent a deformation vector d ∈ Z2 for one

control point. For computational purposes, it is important

to discretise the solution space, not only limiting the max-

imum displacement mmax allowed for d, but also defining

an appropriate sampling strategy (dense sampling produces

(2.mmax + 1)2 labels). Based in [11], we use a circular

sparse grid with
p
2
4 .⇡. r nodes, r = {1, . . . ,mmax} at

positions x = ir. cos(✓), y = ir. sin(✓), ✓ ∈ [0, 2⇡], be-

ing i the sampling rate at the r-radius circumference. This

sparse sampling strategy reduces over 50% the number of

labels without significant decreases in the method perfor-

mance (leftmost part of Fig. 4).

d1

d2

||d1 − d2||1
υ(l1, l2) =

d3
||d3 − d2||1

υ(l3, l2) =

υ(l3, l2) ⌧ υ(l1, l2)

Figure 4. At left: comparison between the number of labels (max-

imum displacement mmax = ±7) when using a sparse sampling

strategy, with respect to the dense sampling variant (solid black

points denote the displacements di using the sparse sampling strat-

egy, while the white points would have been also considered by

the dense sampling strategy). At right: schema of the pairwise

cost υ(li, lj) for observing two displacement vectors (d1,d2) and

(d3,d2) in adjacent positions of the deformation field: d1 being

farther than d3 from d2 implies that υ(l3, l2) ⌧ υ(l1, l2).

Finally, the pairwise cost for labelling two adjacent

nodes is defined by:

υ(li, lj) = (1− ↵) |di − dj |1, (10)

being |.|1 the `1 norm.

2.3. Classification

The biometric recognition task is regarded as a binary

classification problem. We use a machine-learned classifier

to discriminate between the set of features extracted from

positive (genuine) and negative (impostor) pairwise defor-

mation fields. Let l̂ = {l̂1, . . . , l̂tv} represent the set of

labels returned by the MRF. Each label li corresponds bi-

jectively to a free form deformation vector di ∈ Z2 at a

position x of the normalised coordinates space. We extract

the histogram of magnitudes and phase angles of di and

their second-order statistics (local energy and homogeneity)

from the magnitude and phase maps (with 6 × 12 vectors,

taken in 3 × 3 and 5 × 5 regions, using stride 3 and 5),

yielding 34 features that feed the binary discriminant (SVM

in our case). A disjoint set from the CASIA-IrisV3-Lamp

set (with 3,000 genuine / 3,000 impostor pairwise compar-

isons) was used as learning data at this point.

3. Results and Discussion

3.1. Datasets and Experimental Setting

IRINA was empirically validated in four iris datasets:

CASIA-IrisV3-Lamp, CASIA-IrisV4-Lamp, CASIA-
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IrisV4-Thousand 1 and WVU. 2. Examples are given

in Fig. 5, showing the degradation factors of each set:

off-angle and occluded irises, glasses, dilated / constricted

pupils (all sets) and shadows (WVU). 500 classes (eyes)

per data set were used: for all the CASIA-Iris sets, 10

images per class were considered, while for the WVU

the number of images per class varied between 2 and 10.

All images were successfully segmented according to a

coarse-to-fine strategy [23], composed by a form fitting

step and a geodesic active contours algorithm. This way,

we accurately parameterize the iris boundaries, having the

pupillary contour described by shapes of 20 degrees-of-

freedom (dof) and the scleric boundary described by 3

dof. At this point, images were normalised into the pseudo

polar domain [6] and their right halves were discarded

(corresponding to the upper half of the irises in the original

representation).

Figure 5. Datasets used in IRINA’s empirical validation. From

top to bottom rows, images of the CASIA-IrisV3-Lamp, CASIA-

IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU sets are shown.

As baselines, the methods due to Yang et al. [32] (using

the O2PT iris-only variant, with block size w = 2, h = 14,

translation vector [6, 3]T and neighbourhood 8×8) and Sun

and Tan [26] (with dilobe and trilobe filters, Gaussians 5×5,

σ = 1.7, inter-lobe distances {5,9} and sequential feature

selection) were firstly considered, as both concern about the

robustness of recognition to pupillary dilation and to non-

linear iris deformations. Also, the method due to Belcher

and Du [1] (with 64 bins = 4 (horizontal) × 4 (vertical)

× 4 (orientation), SIFT descriptors extracted using VLFeat

package 3 ) was chosen due to the fact of being keypoints-

based, even though its results cannot be considered state-of-

the-art anymore. Three performance measures are reported:

the decidability index (d0), the area under curve (AUC) and

the receiver operating characteristic curve (ROC). In all ex-

periments, the pairwise comparisons per dataset were di-

1CASIA iris image database, http://biometrics.

idealtest.org
2West Virginia University iris dataset, http://www.clarkson.

edu/citer/research/collections/
3http://www.vlfeat.org/

vided into random samples (drew with repetition), each one

with 90% of the available pairs. Then, independent per-

formance tests were conducted in each subset, with the

obtained results approximating the confidence intervals at

each point, according to a bootstrapping-like strategy.

3.2. Learning and Parameter Tuning

It is important to note that the learning data used in the

CNN was exclusively composed of CASIA-IrisV3-Lamp

images. Using randomly sampled learning / validation and

test sets (with 60% / 20% / 20% of the available pair-

wise comparisons), performance was tuned and all pa-

rameters strictly kept for the remaining datasets, meaning

that the CASIA-Iris-V4-Lamp, CASIA-IrisV4-Thousand

and WVU were used exclusively as test sets. The left

plot in Fig. 6 shows the decision environment resulting

from the responses ⌘(i, j) of the CNN, to distinguish be-

tween the corresponding Ci,j and non-corresponding C̄i,j

iris patches. The likelihood functions p
(

⌘(i, j) | Ci,j

)

and

p
(

⌘(i, j) | C̄i,j

)

in the CASIA-IrisV3-Lamp test set are

shown.

In terms of IRINA’s parameterisation, the value set to

↵ (9) is the most sensitive, as it expresses the relative weight

in the MRF between the unary and the pairwise costs. Here,

↵ = 1 corresponds to deformation vectors that are inde-

pendent of their neighbours (no MRF would be required).

In opposition, small ↵ values reduce the local variations in

the deformation field, with values below 0.9 imposing con-

stant deformation fields with poor biometric discriminabil-

ity. The AUC values obtained with respect to the value of ↵

are shown in the right plot of Fig. 6. Note the significantly

best performance (and smallest variance) for the CASIA-

IrisV3-Lamp among all sets, due to the learning data that

fed the CNN (same set, yet with disjoint instances). Based

on these results, ↵ = 96.35 was used in all our subsequent

experiments.
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Figure 6. Left plot: decision environment of the responses given

by the CNN to distinguish between corresponding Ci,j and non-

corresponding C̄i,j iris patches (CASIA-IrisV3-Lamp set). Right

plot: variations in recognition performance with respect to the α

parameter.
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3.3. Accurately Segmented Data

Performance was evaluated in two different settings:

at first we used the accurate parameterisations of the iris

boundaries, to perceive IRINA’s performance in relatively

good quality data. Results are given in Fig. 7, comparing

the ROC curves (in linear and log scales) for the four meth-

ods and four data sets considered. It can be seen that IRINA

outperformed its competitors in all cases and regions of the

performance space, with exception to a narrow band around

FAR ≈ 10−3 in the CASIA-V4-Thousand. In the remain-

ing cases, IRINA was considerably better than the other

methods, at some operating points with reductions in FAR

levels over 40% with respect to the second best approach

(usually Yang et al.). At the other extreme, the method

due to Belcher and Du got consistently the worst results in

our experiments, due to the difficulties in finding exact key-

point correspondences between images with different levels

of focus or pupillary dilation. Overall, IRINA’s best per-

formance among all methods is particularly evident in the

CASIA-IrisV3-Lamp, where the decreases in the error rates

(over the second-best strategy) almost reached one order of

magnitude.

The most relevant performance indicators are sum-

marised in Table 1. It should be noted that results re-

ported here should not be directly compared to the last

generation of iris recognition evaluation initiatives (Inter-

national Biometric Group evaluation FRR 2-5%@ FAR ≈
1e−6 and Iris Challenge Evaluation FRR 1-3% @ FAR

≈ 1e−3), as the average quality of data here is substan-

tially lower than in those contests. Even though, in or-

der to provide easy baselines, IRINA obtained FRR lev-

els at FAR ≈ [1e−1, 1e−2, 1e−3, 1e−4] of [0.001, 0.006,

0.021, 0.121] (CASIA-IrisV3-Lamp), [0.012, 0.039, 0.076,

0.084] (CASIA-IrisV4-Lamp), [0.011, 0.054, 0.140, 0.156]

(CASIA-Iris-V4-Thousand) and [0.023, 0.080, 0.116,

0.121] (WVU).

3.4. Inaccurately Segmented Data

At a second stage, we added two type of errors (transla-

tion and scale) to the iris boundaries parameterisations, to

perceive the decreases in performance when the iris is in-

accurately segmented. Segmentation errors of magnitude

up to 21% were randomly generated, with ”magnitude” ex-

pressing the difference between the maximum Euclidean

distance between boundary points in the original and in the

inaccurate segmentation parameterisation (e.g., for a circu-

lar boundary with diameter of 100 pixels, a scale error of

magnitude 10% will either change the diameter to 90 or 110

pixels, whereas a translation error will move the boundary

10 pixels in a random direction).

According to our observations, the inaccurate segmenta-

tion setting is exactly when the advantages of IRINA with

respect to the state-of-the-art are the most evident. The key

Method AUC d’ EER

CASIA-IrisV3-Lamp

IRINA 0.999 ± 1e−4 12.623 ± 0.716 0.006 ± 0.001

Yang et al. 0.995 ± 4e−4 4.085 ± 0.590 0.021 ± 0.004

Sun and Tan 0.989 ± 5e−4 3.239 ± 0.501 0.044 ± 0.004

Belcher and Du 0.930 ± 0.005 2.701 ± 0.799 0.083 ± 0.009

CASIA-IrisV4-Lamp

IRINA 0.995 ± 0.002 6.623 ± 0.454 0.026 ± 0.005

Yang et al. 0.993 ± 5e−4 3.629 ± 0.385 0.028 ± 0.004

Sun and Tan 0.992 ± 4e−4 3.448 ± 0.404 0.029 ± 0.005

Belcher and Du 0.948 ± 0.007 2.933 ± 0.696 0.077 ± 0.011

CASIA-IrisV4-Thousand

IRINA 0.996 ± 0.001 6.179 ± 0.380 0.030 ± 0.005

Yang et al. 0.988 ± 6e−4 2.995 ± 0.366 0.045 ± 0.004

Sun and Tan 0.984 ± 6e−4 3.097 ± 0.583 0.052 ± 0.006

Belcher and Du 0.901 ± 0.009 2.104 ± 0.597 0.097 ± 0.012

WVU

IRINA 0.991 ± 0.002 5.179 ± 0.361 0.042 ± 0.008

Yang et al. 0.980 ± 0.001 2.552 ± 0.185 0.065 ± 0.008

Sun and Tan 0.967 ± 0.001 2.210 ± 0.193 0.098 ± 0.007

Belcher and Du 0.882 ± 0.011 2.008 ± 0.780 0.116 ± 0.015

Table 1. Comparison between the performance obtained by IRINA

with respect to three other strategies.

insight IRINA’ s robustness to segmentation failures is illus-

trated in Fig. 8, showing the deformation fields for genuine

image pairwise comparisons, with accurate (green bound-

aries) and inaccurate (red boundaries) segmentations in the

a)-c) rows, and one impostor comparison (bottom row) from

the CASIA-IrisV4-Thousand set. Note that the impostor

deformation field is almost chaotic, with much larger local

derivatives than any genuine deformation field, where local

correlation is evident.

The average decreases in performance with respect to

segmentation inaccuracies up to 21% are given in Fig. 9

(mean AUC values, with 95% confidence intervals). It can

be seen that IRINA almost kept its performance up to seg-

mentation inaccuracies of 12%, and then slightly decreased

its results, which could even be attenuated if larger mag-

nitudes in the deformation field mmax were tolerated (yet,

this would have increased the number of labels in the MRF

and the computational cost). In opposition, both Yang et

al. and Sun and Tan showed substantial decreases in per-

formance even for relatively small segmentation errors, and

almost loose any efficiency for errors larger than 15%. Fi-

nally, as it is not phase-based, the method due to Belcher

and Du proved to be relatively robust against segmentation

inaccuracies, but at much lower performance levels than

IRINA.

544



CASIA-IrisV3-Lamp

FP

CASIA-IrisV4-Lamp

FP

CASIA-IrisV4-Thousand

FP

WVU

FP

T
P

T
P

T
P

T
P

Figure 7. Comparison between the ROC curves obtained for the three methods and four datasets considered. At each operating point, the

confidence interval is denoted by the shade region.

Gallery (S5009L00 sample)

Probes (Segmentation) Free Form Deformation Fields

a) S5009L01

b) S5009L01

c) S5009L01

d) S5029R00

Figure 8. Examples of deformation fields with respect to failures in

the segmentation of the iris. a) genuine comparison using an accu-

rately segmented image; b) and c) genuine pairwise comparisons

in inaccurately segmented data; d) impostor pairwise comparison.

For illustration purposes, circular boundaries (3 dof) are used, as

they provide the most evident patterns in the deformation fields.

OK (0%) Scale (+10%)Scale (-15%) Trans. (+10%) Tr+Sc (+15%)

Segmentation Inaccuracies (Pupillary Boundary)

0% 3% 6% 9% 12% 15% 18% 21%
0.7

0.8

0.9

1

IRINA
Yang et al.
Sun and Tan
Belcher and Du

A
U

C

Inaccuracies Magnitude

Figure 9. Top row: examples of segmentation inaccuracies and

their corresponding magnitudes. Bottom row: AUC values with

respect to the magnitude of segmentation inaccuracies (CASIA-

IrisV4-Thousand set).

4. Conclusions and Further Work

Iris recognition has limited robustness against failures in

segmentation and dilated / constricted pupils. In this paper

we proposed an algorithm (IRINA) to cope with such co-

variates. The idea is to learn the ”corresponding” patches

between pairs of iris samples non-linearly deformed due to

segmentation failures and to pupillary dilation. A convo-

lutional neural network is used for such purposes, which

provides the information for an image registration step that

matches patches of the query iris sample into the enrolled

data. A Markov random field infers a free form deforma-

tion field (set of 2D vectors), which first and second order

statistics provide the discriminating information for biomet-

ric recognition. Our experiments show that IRINA not only

achieves state-of-the-art performance in good quality data,

but also effectively handles severe segmentation errors and

large differences in pupillary dilation / constriction.

As current work, we are concentrated in finding alternate

strategies to obtain the 2D deformation fields and reduce the

computational cost of matching.
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