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ABSTRACT 
 
There are several scenarios where a full facial picture cannot be obtained nor the iris properly imaged. For 
such cases, a good possibility might be to use the ocular region for recognition, which is a relatively new 
idea and is regarded as a good trade-off between using the whole face or the iris alone. The area in the 
vicinity of the eyes is designated as periocular and is particularly useful on less constrained conditions, 
when image acquisition is unreliable, or to avoid iris pattern spoofing. This chapter provides a 
comprehensive summary of the most relevant research conducted in the scope of ocular (periocular) 
recognition methods. We compare the main features of the publicly available data sets and summarize the 
techniques most frequently used in the recognition algorithms. Also, we present the state-of-the-art results 
in terms of recognition accuracy and discuss the current issues on this topic, together with some directions 
for further work. 
 
1. INTRODUCTION 
 
The face and the iris are among the most popular traits for biometric recognition, and are – together with 
the fingerprint – the most frequently reported in the specialized literature (Bowyer, Hollingsworth, & 
Flynn, 2008);(Zhao et al. 2000)). 
 
The iris has a predominantly randotypic morphogenesis, unique for each individual, and allows very high 
recognition accuracy. Also, it is a protected organ visible from the exterior, justifying the efforts on 
“relaxing” its acquisition setup (Santos & Hoyle, 2012; Shin et al., 2012; Tan, Zhang, Sun, & Zhang, 
2012). 
  
The face has been traditionally regarded as the main trait to perform recognition under less controlled 
conditions. However, several drawbacks significantly decrease the effectiveness of face-based recognition 
systems: 1) due to its 3D structure, substantial differences in appearance are expected with respect to 
subjects’ poses; 2) large regions of the face are often occluded, in case of non-orthogonal data acquisition; 
3) facial expressions notoriously affect the appearance of the face; 4) disguising is particularly easy. 
 
According to the above, growing attention has been paid to other traits potentially useful for biometric 
recognition. Among these, the use of information in the vicinity of the eye (the periocular region) has 
been gaining in popularity. Being particularly useful on less constrained scenarios, when image 
acquisition is unreliable, or to avoid iris pattern spoofing, the periocular region does not require 
constrained close capturing or user cooperation, it’s relatively stable, when compared to the whole face, 
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and rarely occluded. Due to the proximity with the iris, both can be easily acquired with a single camera 
and fused at the score level to compensate for environmental adversities and uncooperative subjects.  
The usage of periocular information has even proven itself to be of importance in scenarios where the 
face has been reshaped (e.g. plastic surgery), with interesting results (Jillela & Ross, 2012; Bhatt, 
Bharadwaj, Singh, & Vatsa, 2013). 
 
The idea of periocular recognition came from the ability of humans to recognize someone by his / her 
eyes, which are known to provide substantial amounts of discriminating information that is relatively 
stable over lifetime. Hence, the term periocular biometrics refers to the development of recognition 
methods that analyze not only the iris structure, but also the shape of eyelids, the distribution of eyelashes, 
the texture of the sclera and of the skin surrounding the eye to perform recognition. 
 
This chapter provides an overview of the most relevant attempts to perform biometric recognition in 
uncontrolled acquisition environments, using information in the periocular area. We summarize the most 
relevant methods in the literature and compare the techniques most frequently reported for each of the 
typical processing phases: segmentation, quality assessment, feature encoding and matching. Next, we 
describe the data sets that are publicly available and used in the evaluation of algorithms, and report the 
state-of-the-art recognition rates that act as reference values for further improvements on this technology.  
 
 
The remainder of this chapter is organized as follows: Section 2 overviews the anatomic and biological 
features of the periocular region. Section 3 compares the main characteristics of the data sets used in 
periocular recognition experiments. A comprehensive review of the most relevant papers published in this 
scope is given in Section 4. Section 5 reports the current state-of-the-art results and Section 6 discusses 
the issues and challenges that are currently associated to the periocular recognition process. Finally, 
Section 7 concludes this chapter. 
 
2. PERIOCULAR ANATOMY AND STRCTURES 
 
Not only the superficial features of the skin determine the facial appearance, but also the concavities and 
convexities conferred by the underlying bones and muscles play a significant role. In particular, the 
periocular region comprises many anatomic features and landmarks that potentially fit for recognition 
purposes (Figure 1). 
 

INSERT ANATOMY.TIFF 
Figure 1. Anatomic features on the periocular region. 

 
Centered on the eye, which is located on the orbital aperture, the periocular region has its creases and 
sulcus decided essentially by four bones: 1) the frontal bone, ending with the supraorbital process where 
the eyebrow is located and which affects its appearance; 2) the nasal bone, defining the upper part of the 
nose; 3) the lacrimal bone, that forms the cavity for the tear gland; and 4) the zygomatic bone, also known 
as cheek bone. 
 
Although bone structure directly impacts facial appearance, most of the studied features rely more on 
muscle and skin specifications, and less on bone level properties, which would be less prone to both 
natural (e.g. aging) and external changes (e.g. plastic surgery). 
 
Eyebrows constitute the foundation for eyelids, and are straighter on men and more arched on women. 
Eyebrow thickness changes among ethnicities and, with the aging process, their orientation and height 
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also change. Concerning the eyelids, their contours depend on gender, ethnic group and age, and 
dimension intervals are defined in previous studies (Tan, Oh, Priel, & Korn, 2011).  
 
Even considering this richness of ocular elements, the features actually being used on periocular 
biometrics algorithms are quite simple and can be divided into two levels, as suggested by Woodard, 
Pundlik, Lyle, & Miller (2010a): 1) the first level comprises eyelids, eye folds, and eye corners, and 2) the 
second level comprises skin texture, wrinkles, color and pores. This simplicity might be due to the 
relative novelty of the field: having passed only a couple of years since the first relevant study on 
periocular recognition, the earliest recognition algorithms firstly employed classical techniques in the 
computer vision domain-of-knowledge, before attempting more sophisticated / specific methods.    
 
 
 
3. DATA SETS 
 
Due to the novelty of the use of the periocular region to perform biometric recognition, only a few data 
are publicly available. Hence, an issue is the lack of datasets specifically designed for the development of 
periocular recognition methods. Due to this, researchers usually resort to face and iris databases, being the 
most relevant given on Table 1 and illustrated on Figure 2. We report the number of images and subjects 
available per dataset, the dimensions of the images and the main variability factors in each one, which 
play an extremely important role in the evaluation of the robustness of recognition algorithms. 
 
 

Name # of Images # of Subj. Image Dimension Variations 
FERET 14051 1199    512 × 768 E, I, P 
FRGC 36818 741 ≈ 1200 × 1400 E, I 
MBGC 149 AVI 114    2048 × 2048 D, E, I, O, P 
UBIRIS.v2 11102 261    800 × 600 D, O, I 
UBIPr 10950 261 Multiple D, O, I, P 
FG-NET 1002 82 ≈ 400 × 500 D, E, I, P 

Table 1. Summary of dataset specifications. Variations abbreviations refer to Distance (D), Expression 
(E), Illumination (I), Occlusion (O) and Pose (P). 

 
INSERT DATASETS.TIFF 

Figure 2. Sample images that illustrate the datasets typically in the evaluation of periocular algorithms. 
 
 
FERET: 
The Facial Recognition Technology (FERET) database (Phillips, Moon, Rizvi, & Rauss, 2000), designed 
as a standard for developing face recognition methods, was acquired at George Mason University over 
eleven sessions and a three years period (1993 to 1996). It was initially released as low resolution (256 × 
384 pixels) grayscale data, and only later a high-resolution color version was also disclosed. Contains a 
total of 14051 images, gathered from 1199 different subjects within a semi-controlled acquisition protocol 
with strict expression, pose and illumination changes. 
 
FRGC:  
Collected at the University of Notre Dame, the Face Recognition Grand Challenge (FRGC) database 
(Phillips et al., 2005) consist of high resolution (≈ 1200 × 1400 pixels) color still images, captured on 
both controlled and uncontrolled environments. The controlled setup was assembled at a studio with 
uniform illumination, where subjects were requested to stand still, look strait at the camera, and essay 
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sequentially both neutral and smiling expressions. As for the uncontrolled acquisition, images were shoot 
in different scenarios, disregarding both background and illumination. 
 
UBIRIS.v2: 
The UBIRIS.v2 is a unconstrained iris database (Proença, Filipe, Santos, Oliveira, & Alexandre, 2010), 
captured on the visible wavelength from moving subjects, at different distances and challenging 
illumination conditions, thus simulating realistic acquisition issues and the related noise factors. Data 
from both eyes is separately available, as well as the surrounding periocular data, thus allowing to stress 
out periocular methods, and even their fusion with iris recognition techniques.  
 
UBIPr:  
As an effort to advance periocular biometric research, the UBI Periocular Recognition (UBIPr) dataset 
(Padole & Proença, 2012) allows to evaluate periocular methods at “higher levels of heterogeneity”, as 
noise factors were actually introduced on the acquisition setup: varying acquisition distance,  irregular 
illumination, pose and occlusion. In addition, manual database annotation includes regions-of-interest and 
essential landmarks. Image dimensions vary accordingly to the acquisition distance, and range from 501 × 
401 pixels (at 8m) to 1001 × 801 pixels (at 4m). 
 
FG-NET: 
The FG-NET is a facial aging database with around one thousand images from 82 subjects, up to 69 years 
old. Captured at different acquisition setups and many years apart, it is clear how subjects were shoot 
under very irregular illumination, pose and expression conditions.  
Images are 400 × 500 pixels in size, captured on the visible wavelength, and for each one a 68 landmark 
points annotation is also provided. 
 
Recently, Cardoso et al. (2013) developed an algorithm for synthesizing degraded ocular images. 
Considering that the collection of data for biometric experiments is particularly hard due to security / 
privacy concerns of volunteers and the substantial amounts of data required, they described a stochastic 
method able to generate a practically infinite number of iris images with a singular characteristic: 
simulating image acquisition under uncontrolled conditions. Hence, the generated images have eight 
varying factors: optical defocus, motion blur, iris occlusions, gaze, pose, distance, levels of iris 
pigmentation and lighting conditions (Figure 3). Particular attention was paid for mimicking the dynamic 
conditions in uncontrolled lighting environments, by using “cube-maps” that replicate different 
environments that (potentially) surround the simulated subjects.  Also, authors  announced the availability 
of an online platform1 where anyone has the possibility to adjust the levels of variability desired for each 
of the above factors, and define the main properties of the artificial data sets.  This tool might constitute a 
valuable resource for the evaluation of the robustness of iris segmentation / recognition algorithms, and is 
available in a completely free and anonymous way.  
 

INSERT NOISYRIS.TIFF 
Figure 3. Examples of artificial images of the ocular region generated by the NOISYRIS platform 

 

 
1 http://iris.di.ubi.pt/ NOISYRIS 
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4. RELEVANT RESEARCH 
 
In this section we summarize the most relevant techniques published in the scope of periocular 
recognition. Also, we overview the algorithms published in adjacent areas, that can potentially be used to 
improve periocular recognition algorithms, such as iris segmentation, image quality assessment, feature 
extraction and matching on ocular data. 
 
4.1 Periocular Recognition 
 
The pioneering approach for periocular biometrics dates back to Park, Ross, & Jain (2009), proposing to 
extract features at two different levels: local and global, as information concerns patches of the periocular 
area, or is extracted from the whole image. For global feature extraction, images are properly aligned, 
using the location of the iris and its dimensions as reference, and defining a 7 × 5 grid of square regions-
of-interest. Although authors acknowledge eye corners to be more fit for such task (Park, Jilela, Ross & 
Jain (2011)), they claim that such points cannot be reliably determined. Then, two well-known 
distribution-based descriptors, namely Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005) 
and Local Binary Patterns (LBP) (Ojala, Pietikäinen, & Harwood, 1996; Ojala, Pietikäinen, & Harwood, 
1994), are computed for each region-of-interest independently, and quantized into 8-bin histograms 
combining shape and texture information. The array comprising such histograms is easily matchable to an 
identical one (from another image), by simply computing the Euclidean distance. As for the local features, 
Scale-Invariant Feature Transform — SIFT (Lowe, 2004) allows the detection of a set of key-points, 
encoded with their surrounding pixels information, and compared against their counterparts from another 
image. This descriptor offers invariance to translation, scaling and rotation. The authors conducted their 
tests over a “small” (899 images, 30 subjects, 2 sessions) database of frontal periocular images acquired 
in the visible wavelength of the electromagnetic spectrum, and reported performances ranging from 
62.5% using only HOG features to 80.8% when fusing them with SIFT results. Curiously, combining the 
three features didn’t improved those results, setting joint performance at 80%. Recognition using the 
whole face, for the same database, achieved 100% Rank-1 accuracy. 
 
On a later work, Park, Jilela, Ross & Jain (2011) went further on stressing periocular recognition by 
analyzing performance impact of several factors: eyebrow inclusion or disguising, automatic 
segmentation, side information, iris and sclera masking and expression variation. Their results showed 
that adding eyebrow information improved SIFT results in almost 19%, although automatic OpenCV 
segmentation exhibited better performance with “eyebrow-less” data. Face side information, by other 
side, is almost irrelevant, with performance variations of about 1%. From the stressed variations, 
expression has a significant impacting over periocular recognition potential, except for SIFT, because of 
its robustness to distortion. On the other side, this descriptor was the most disfavored on iris/sclera 
occlusion. Top accuracy for single classifiers was 79.45%, achieved using SIFT over unmasked data, 
manually segmented and including the eyebrow, when compared to images from the same side and 
expression. Compared to their previous work (Park et al., 2009), score level fusion didn’t present a 
significant improvement. Recognition over non-ideal situations was also a concern, and authors compared 
their results with FaceVACS2 face recognition system marks — 99.77% recognition accuracy on “clear” 
facial images.  Occlusions, for instance, led to significant performance drops (about 60% when occluding 
the lower part of the face), even for small occlusions on the periocular area. Without score fusion, the 
encoding methods singlehanded led to accuracies no greater than 25.97%, 20.51% and 10.12% 
respectively for 10%, 20% and 30% of periocular occlusion. Eyebrow modifications were also subject of 

 
2 FaceVACS SDK available at http://www.cognitec-systems.de  
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testing, using the TAAZ3 tool to simulate makeover, and leading to 7.5% (LBP) to 10% (other 
descriptors) performance decay. 
When facing subjects shoot with 15º to 30º head rotation, a 35% to 45% performance deterioration was 
registered. Finally, authors pointed out another issue associated with the periocular region — its lack of 
stability over time. Images captured three months apart from each other appear to perform 15% worst, and 
30% when captured with half-year gap. As further work, authors suggest several possible improvements: 
better alignment and matching methods; multi-spectral analysis; and the possibility of fusion with iris (or 
face) recognition methods. 
 
Miller, Rawls, Pundlik, & Woodard (2010b) analyzed the skin texture by applying an Uniform-LBP 
(ULBP), with further insights on each region’s impact on the recognition process. This LBP-based 
approach achieves “improved rotation invariance with uniform patterns and finer quantization on the 
angular space” (Ojala, Pietikainen, & Maenpaa, 2002). Similarly to the previous approach, the periocular 
region is cropped proportionally to intra-eye distance, scaled to 100 × 160 pixels, and divided in a 7 × 4 
region-of-interest grid. To avoid iris and sclera information influencing the results, an elliptical neutral 
mask is overlapped to the image. After histogram normalization, ULBP is computed for each region on an 
8-pixel neighborhood, producing 59 possible results that populate a histogram and the periocular 
signature array. Finally, Manhattan distance is used for matching. Experiments were conducted on 
subjects of FRGC and FERET datasets, for both eyes separately and combined, reporting 84% and 71% 
and 90% and 74% recognition rates respectively. 
 
The impact of image quality was addressed by Miller, Lyle, Pundlik, & Woodard, 2010a, over three 
factors: blur, resolution and illumination. Image preprocessing included a similar periocular crop and 
resizing (251 × 251 pixels), grayscale conversion, histogram equalization and eye masking, but instead of 
ULBP a base LBP was used. When blurring the data with a Gaussian filter convolution, the periocular 
performance over face was evidenced for high blur levels. A similar conclusion was reached when down 
sampling to 40% of the original size. As for uncontrolled illumination conditions, performance degrades 
to low levels, as local approaches (e.g. LBP) are not suited for irregular lighting conditions. 
The authors also compared the discriminant capabilities of the different color channels. The green channel 
leads to higher differentiation (23% higher accuracy than the red channel), and has similar texture 
information as the blue channel. Globally, authors concluded that performance achieved on the periocular 
region was better than using the whole face, having suggested the use of different classification methods, 
in particular Support Vector Machines (SVM) (Savvides et al. (2006)). 
 
Adams et al. (2010) extended Miller et al. (2010b) work, having used a Genetic & Evolutionary 
Computing (GEC) method to optimize the original feature set, namely the Steady-State Genetic 
Algorithm (SSGA) as implemented by NASA’s eXploration Toolset for Optimization of Lauch and Space 
Systems4 (X-TOOLSS). Authors reported 86% accuracy for either eye on the FRGC dataset and 80% on 
FERET data, and top results of 85% and 92% for those databases respectively. Using only 49~52% of the 
original features improved on, at least, 10%. Nonetheless, the chosen algorithm was not proven to be the 
optimal for that specific periocular features.  
 
Inspired by Park et al. (2009), Juefei-Xu et al. (2010) expanded their experiments to less ideal imaging 
environments, having analyzed the performance of different feature schemes on the FRGC dataset. 
In addition to LBP and SIFT, both local and global feature extraction schemes were stressed: Walsh 
masks (Beer, 1981); Laws' masks (Laws, 1980); Direct Cosine Transform (DCT) (Ahmed, Natarajan, & 
Rao, 1974); Discrete Wavelet Transform (DWT) (Mallat, 1989); Force Fields (Hurley, Nixon, & Carter, 

 
3 Free virtual makeover tool, available at http://www.taaz.com  
4 http://nxt.ncat.edu/ 
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2000); Speed Up Robust Features (SURF) (Bay, Ess, Tuytelaars, & Van Gool, 2008); Gabor Filters 
(Clausi & Jernigan, 1996) and Laplacian of Gaussian (LoG). The LBP itself was fused with other 
methods, yielding the results given in Table 2.  
 

Fused methods Accuracy (%) 
LBP + LBP 42.5 
Walsh Masks + LBP 52.9 
Laws’ Masks + LBP 51.3 
DCT + LBP 53.1 
DWT + LBP 53.2 
Force Field Transform + LBP 41.7 
Gabor Filters + LBP 12.8 
LoG filters + LBP 30.9 

Table 2. Rank-1 identification accuracy obtained with the fusion of LBP with other methods (Juefei-Xu 
et al., 2010). 

 
Authors show local descriptors to register better results, with the post-application of LBP translated into a 
performance boost. Although top accuracy was attained with DWT + LBP (53.2%), results were very 
similar when using DCT and Walsh or Laws’ masks. SIFT and SURF verification rate was surprisingly 
low (<1%), most likely due to low image resolution. 
 
Juefei-Xu, Luu, Savvides, Bui, & Suen (2011) addressed the aging effect on periocular recognition, 
previously reported as an issue (e.g. Park et al. (2011)). Their approach starts by performing two types of 
corrections: pose, using Active Appearance Models (AAM); and illumination, through anisotropic 
diffusion model. The periocular region was normalized from the provided landmark points, and features 
extracted using Walsh-Hadamard transform encoded LBP (WLBP). On a final stage, the unsupervised 
discriminant projection (UDP) technique (J. Yang, Zhang, Yang, & Niu, 2007) boosted results to very 
high performance levels. This method was tested on the FG-NET database, with images taken years apart 
at different acquisition setups (non-uniform illumination, pose and expression). The reported results 
showed improvements in performance by 20%, and WLBP to perform 15% better than raw pixel intensity 
matching. UDP also delivers better accuracy (up to 40%) than Principal Component Analysis (PCA) or 
Locally Preserving Projections (LPP). All the stages together resulted in 100% identification accuracy.  
 
Bharadwaj, Bhatt, Vatsa, & Singh (2010) research on periocular biometrics was focused on unconstrained 
visible wavelength captured data (UBIRIS.v2 dataset), and tackled the question combining ULBP with a 
global matcher — GIST — consisting on the combination of five perceptual scene descriptors (Oliva & 
Torralba, 2001): naturalness, openness, roughness, expansion and ruggedness.  
ULBP was computed over 64 patches of the original image and, for the GIST, local contrast 
normalization was achieved with Fourier transform and the special envelope computed using a set of 
Gabor filters. For match computation, 	Χ�2� distance and min-max normalized results from both eyes are 
fused by a weighted sum. GIST gave best performance than ULBP, and fusing both results led to 73.65% 
rank-1 accuracy. 
 
To establish the slice of the electromagnetic spectrum that most favor periocular recognition, Woodard, 
Pundlik, Lyle, & Miller (2010a) evaluated second level features on both NIR (MBGC) and visible-
wavelength (FRGC) data. To avoid biased results, an elliptical mask was overlapped to the eye, removing 
the iris and sclera information. On both datasets texture information was encoded using LBP over a ROI 
grid, and on the visible wavelength data this information was fused at score level with color information 
drawn from the red and green channels histograms. At the matching stage Manhatan distance was used 
for LBP histograms, and Bhattacharya distance for color histograms. Results suggest texture information 
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to be more discriminant, and only a slight improvement was registered after the fusion. As for the 
electromagnetic spectrum, visible wavelength data delivered better results (88~90% accuracy) than NIR 
(81~87%). 
 
Subsequently, Woodard, Pundlik, Miller, Jillela, & Ross (2010b) assessed how periocular texture 
information could improve iris data reliability, so that difficulties when dealing with non-ideal imaging 
could be dealt with. Tests were conducted over MBGC data, which although being a NIR dataset, had 
challenging conditions for iris recognition. Iris processing was as of Daugman (1993), except with manual 
segmentation, and after encoding texture information as above described, information from both traits 
was fused with a simple weighted sum after min-max normalization. Their work showed how iris’ low 
performance on such difficult data benefits from periocular fusion, raising rank-1 accuracy in over 80%, 
to 96.5%. 
In (Woodard, Pundlik, Miller, & Lyle, 2011), both studies were unified and extended, providing a closer 
insight to their previous results. Once again, authors conclude periocular region performance to be 
comparable to the one obtained using similar features on the whole face. 
 
Jillela & Ross (2012) take advantage of periocular region features to improve the identification 
performance of two commercial face recognition software over subjects that have submitted to plastic 
surgery. Inspired by Park et al. (2009), authors also use SIFT and LBP, even though this last one is 
computed for all color channels. Fusion is achieved at score-level, where all outputs are combined after a 
single score for LBP is averaged from individual color scores.  
Tests were conducted over a plastic surgery database (Singh et al., 2010) consisting of images 
downloaded from plastic surgery information websites, and thus with considerable changes in resolution, 
scale and expression. Results show periocular methods to have 63.9% rank-1 accuracy, and even though 
face recognition software overcomes that with 85.3%, the best result is obtained when fusing both: 
87.4%. 
 
On stressing noise factors impact on periocular recognition, Padole & Proença (2012) tested on images 
with four inherent variations: subjects’ pose, distance to the camera (4m to 8m), iris pigmentation and 
occlusion. Choosing Park et al. (2009) method, they introduced some slight variations: the ROI was 
defined based on eye-corner position instead of iris center, which led to most significant improvements 
since unconstrained biometrics favor gaze variations; and at fusion stage both linear (logistic regression 
(Hosmer & Lemeshow, 2000)) and non-linear methods (Multi Layer Perceptron — MLP) were tested. 
Both fusing techniques produced similar results, being MLP slightly better though. 
 
Interestingly, closer acquiring distances didn’t seem to lead to better performance. In fact, worst results 
came from comparisons between subjects imaged at 4 meters, being the “optimal” distance 7m. Not so 
surprising was pose variation impact on recognition, with higher tilting angles resulting in lower accuracy 
values. Similar observations were found for the occlusion trials. Iris pigmentation was reported to also 
impact periocular recognition performance, with darker eyes leading to poorer results and medium 
pigmented irises the best ones. Subjects’ gender was also reported to impact recognition rates, being 
female more easily identified through their periocular features. The Human ability to use contextual 
information and “disregard” most of noise factors, adapting itself to surrounding conditions is 
outstanding, marking it a hard task for machines to mimic. In fact, when designed recognition algorithms 
we should rather try to figure out its way of working, seeking alternate strategies to tackle the same 
issues. 
 
Hollingsworth, Bowyer, & Flynn (2010) aimed at identifying which ocular elements humans find more 
useful for the periocular recognition task. On their essay, an iris camera was used to acquire NIR data 
from 120 subjects, being visible the periocular region closer to the eye although some features were 
missing (e.g. incomplete eyebrows). The iris were completely masked, to avoid biased responses, iris was 
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masked with a circular patch, and 80 pairs of images were presented to 25 human observers, who were 
asked to tell apart pairs belonging to the same or different persons, indicating their degree of certainty. 
Further to that, subjects had to individually rate each feature’s helpfulness in a three level scale. 
Results pointed eyelashes to be the most helpful periocular feature, closely followed by the medial 
canthus and the eye shape. Participants based their responses on eyelash clusters, density, direction, 
length and intensity. To the inquired observers, skin was actually the less useful.  
Average human accuracy on such setup was 92%. 
 
To extend that analysis to the visible spectrum, new factors and a wider dataset, another study was 
conducted by Hollingsworth et al. (2012). This time, periocular (Park et al., 2009) and iris (IrisBEE 
biometric system from ICE (Phillips et al., 2010)) recognition algorithms were also used for comparison. 
Imaging 210 subjects on a controlled environment, 140 pairs of images were presented to 56 observers for 
each one of four setups: NIR and visible wavelength, periocular and iris data. Test subjects could then 
rank their certainty on a five level scale, specifying how helpful individual features were (“eye shape”, 
“tear duct”, “outer corner”, “eyelashes”, “skin”, “eyebrow”, “eyelid”, “color”, “blood vessels” and 
“other”). Due to the different pairing system and limited observation time, NIR accuracy dropped to 
78.8%, and it was set on 88.4% for the visible wavelength. Machine performance was similar, within 1% 
difference on overall accuracy. As for the feature discrimination capacity, results were similar to the 
previous ones (Hollingsworth et al., 2010) for NIR data, with some differences on the visible spectrum 
where blood vessels, skin and eye shape were reported to be more helpful than eyelashes. Skin details are 
in fact more perceptible on visible wavelength data, as NIR camera illumination caused frequent skin 
saturation. In general, visible band was found to be preferable for periocular recognition tasks. 
Human perception of iris features is greater on NIR images, with 85.6% accuracy against 79.3 on the 
visible wavelength. However, and unlike periocular, machine performance was 13% better than humans’, 
with 100% and 90.7% accuracy for those same bands. 
 
4.2 Iris Segmentation 
 
Considering that many techniques for segmenting the iris are based on Hough-transform 
parameterization, Junli et al. (2013) developed a robust ellipse fitting technique robust to noisy edge-maps 
that likely result of degraded data. Their algorithm starts by selecting a subset of the edge points that are 
deemed to be more accurate. Then, considering that squaring the fitting residuals magnifies the 
contributions of these extreme data points, their algorithm replaces it with the absolute residuals to reduce 
this influence. The resulting mixed l1-l2 optimization problem is derived as a second-order cone 
programming one and solved by the computationally efficient interior-point methods.   
 
Specifically concerned about the segmentation of iris images acquired at large distances, Tan and Kumar 
(2012) were based in the concept of Grow-cut algorithm that is able to discriminate between foreground 
(iris) and background (non-iris) data. The results from this phase are refined by post-processing 
operations: iris center estimation, boundary refinement, pupil masking and refinement, eyelashes and 
shadow removal and eyelid localization. Experiments were performed in well known datasets 
(UBIRIS.v2, FRGC and CASIA.v4 Distance) and confirmed the effectiveness of this approach. 
Moreover, the computational burden of the method appears to be substantially lower than of similar 
strategies. 
 
Alonso-Fernandez and Bigun (2012) perform the segmentation of the iris based on the Generalized 
Structure Tensor algorithm. The key point of this strategy is that, using complex filters, authors are able to 
obtain both magnitude and orientation information for each edge pixel. This provides an additional 
amount of information that enables to more appropriately discriminate between the edges that are deemed 
to belong to one of the iris boundaries and spurious edges.  
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Xinyu et al. (2012) addressed the problem of less intrusive iris image acquisition, in terms of a 
segmentation algorithm able to work at very different image resolutions (from 50 to 350 pixels in iris 
diameter). Authors start by detecting a set of edges (Canny detector), which non-connected components 
are considered nodes of a graph. Next, based on the normalized cuts criterion, they discriminate between 
the most probable circle-like shapes that correspond to the iris boundaries. 
 
4.3 Noise Detection 
 
In most iris recognition methods, it is particularly important to have an estimate of the regions of the iris 
that are occluded by other types of information (e.g., eyelids, eyelashes or reflections), and hence should 
not be considered in the feature encoding phase. When such type of information is erroneously 
considered, most frequently the false rejection rates augment, but even the number of false acceptances 
can raise, if no adaptive thresholds with respect to the amount of un-occluded irises are not used. 
 
According to the above observations, several authors addressed the problem of discriminating the useful 
parts of the iris images. Having considered that previous approaches are rule-based and have questionable 
effectiveness, Li and Savvides (2012) used Gaussian Mixture Models to model the probabilistic 
distributions of noise-free and noisy regions of the irises. The idea is to adjust the number of Gaussians 
for a distribution, by eliminating Gaussians which are not supported by the observations. Based on their 
experiments, authors propose Gabor filters as basic features, optimized by a simulated annealing process. 
 
4.4 Quality Assessment 
 
Zuo and Schmid (2013) propose three methods to improve the performance of a biometric recognition 
system, according to quality indexes: 1) quality-of-sample; 2) confidence in matching scores; and 3) 
quality sample and template features. The first two methods adaptively filter the probe biometric data and 
matching scores based on predicted values of Quality of Sample index (defined here as d-prime) and 
Confidence in matching Scores, respectively. The last method, considers that image quality measures as 
features for discriminating between genuine and imposter matching scores. The proposed algorithm has 
the advantage of being generic (suitable for other biometric modalities). 
 
4.5 Iris Recognition 
 
Ross et al. (2012), addressed the problem of recognizing degraded iris images, having authors considered 
five factors: 1) non-uniform illumination, 2) motion, 3) defocus blur, 4) off-axis gaze, and 5) nonlinear 
deformations. The key insight the proposed method is that a single-feature encoding schema doesn’t 
appropriately handle all these variations, and propose three feature extraction / matching strategies: 1) 
gradient orientation histograms, 2) scale invariant feature transforms and a 3) probabilistic deformation 
model. The information extracted by each descriptor is matched independently and results are combined 
at the score level, using the classical sum-rule. Experiments on the FOCS and FRGC data sets encourage 
further work on this kind of hybrid techniques. 
 
As with other biometric traits, most difficulties in iris recognition result from less controlled acquisition 
setups, that lead to severely degraded images. In this context, an interesting possibility might be to fuse 
periocular recognition to iris recognition algorithms that work on visible wavelength data. It has been 
claimed that acquire discriminating data from the iris at visible wavelengths might be to hard, due to the 
pigments of the human iris (brown-black Eumelanin (over 90%) and yellow-reddish Pheomelanin 
(Meredith & Sarna (2012)) that have most of their radiative fluorescence under visible light, but this 
significantly varies with respect to the levels of iris pigmentation. Even though previous technology 
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evaluation initiatives ((Proença & Alexandre (2010) and Proença & Alexandre (2012)) confirmed the 
possibility of recognizing human beings in visible wavelength real-world data, the state-of-the-art 
algorithms have only a moderately satisfactory performance (decidability indexes of 2.5 at most). The 
approach that currently outperforms was developed by Tan, Zhang, Sun & Zhang (2012) and makes fuses 
global color-based features and local ordinal measures to extract discriminating data from the iris region. 
Wang, Zhang, Li, Dong, Zhou & Yin (2012) used an adaptive boosting algorithm to build a strong iris 
classifier from a set of bi-dimensional Gabor-based features, each corresponding to a specific orientation 
and scale and operating locally. Given the fact that the pupillary boundary is especially difficult to 
segment in visible wavelength data, the authors trained two distinct classifiers: one for irises deemed to be 
accurately segmented and another for cases in which the pupillary boundary is expected to be particularly 
hard to segment. Li, Liu & Zhao (2012) used a novel weighted co-occurrence phase histogram to 
represent local textural features, which is claimed to model the distribution of both the phase angle of the 
image gradient and the spatial layout and overcomes the major weakness of the traditional histogram. A 
matching strategy based on the Bhattacharyya distance measures the goodness of match between irises. 
Marsico, Nappi & Richio (2012) proposed the use of implicit equations to approximate both the pupillary 
and the limbic iris boundaries and to perform image normalization. They exploited local feature 
extraction techniques such as linear binary patterns and discriminating textons to extract information from 
vertical and horizontal bands of the normalized image. 
 
 
4.6 Oculomotor-based Recognition 
 
One of the most original branches in the ocular biometrics domain, might be the recent attempts in 
performing recognition using as discriminating information the eye movements. In this scope, the work of 
Komogortsev, Karpov, Holland & Proenca (2012) should be highlighted. These authors propose to fuse at 
the score level the oculomotor plant characteristic and the iris texture. From the eye-movement 
perspective, their results point out that the proposed schemes provide discriminating information between 
individuals. From the iris perspective, the main conclusion is that very low error rates can be obtained, 
even  when operating on data with resolution substantially lower that the ISO/IEC 19794-6 
recommendation. An extremely interesting feature of their experiments was that they were performed 
using low-cost COTS webcams. Another interesting work on this scope is due to Rigas, Economou & 
Fotopoulos (2012), that used cues that reflect the individual idiosyncrasies of eye movements for 
augmenting the robustness of the resulting pattern recognition system. Their method is based on 
multivariate Wald-Wolfowitz test, that compares the distributions of saccadic velocity and acceleration 
features. The observed identification rates reveal the efficiency of the method, even though error rates are 
still far of the obtained with the classical biometric traits (e.g., iris and face). To narrow this gap in 
effectiveness with respect to other traits, authors plan to use more dynamic features, as the combination of 
time and spatial information provided by eye movements. 
 
A competition on eye-movements biometric strategies was recently conducted by Kasprowski (2012). 
According to the observed results, the organizers concluded that is particularly important to be very 
careful in terms of the position of eyes during data capturing and also to camera calibration. Even though, 
further work in this scope is encouraged, having authors compared the observed recognition effectiveness 
to the results attained by the earliest face recognition algorithms. 
 
5. RESULTS AND DISCUSSION 
 
Table 3 summarizes the results obtained by the most relevant periocular recognition methods. We give 
the types of features extracted and the classification scheme used by each algorithm. Also, the data sets 
used in the experiments are summarized, together with the observed accuracy. As we can see, recently 
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developed methods focus mainly on texture analysis and key-point extraction, and even simple algorithms 
lead to fair performance levels, with a noteworthy response of LBP based methods. Periocular fitness for 
more relaxed setups is also corroborated by these results, favoring the visible wavelength over NIR. 
 
 

Approach Features Extract Classifier Dataset Reported accuracy 
(Park et al., 2009) Shape, 

Texture, 
Key-Points 

HOG,  
LBP,  
SIFT 

Euclidean 
distance, 
SIFT 
matcher 

899 images,  
30 subjects, 
2 sessions, 
visible wavel. 

HOG: 62.5% 
LBP: 70.0% 
SIFT: 74.2% 
Best: 80.8% 

(Miller et al., 2010b) Texture ULBP Manhattan 
distance 

FRGC,  
FERET 

FRGC: 89.8% 
FERET: 85.1% 

(Adams et al., 2010) Texture LBP+GEFE Manhattan 
Distance 

FRGC, 
FERET 

FRFC: 92.2% 
FERET: 85.1% 

(Woodard, Pundlik, 
Lyle, & Miller, 
2010a) 

Color,  
Texture 

R&G ch.  
color hist.,  
LBP 

Bhattacharya 
distance,  
Manhattan 
distance 

FRGC, 
MBGC 

L FRGC: 90% 
R FRGC: 88% 

L MBGC: 81% 
R MBGC: 87% 

(Woodard, Pundlik, 
Miller, Jillela, & 
Ross, 2010b) 

Texture Daugman’s 
iriscode,  
LBP 

Hamming 
distance, 
Manhattan 
distance 

MBGC L Iris: 13.8% 
R Peri: 92.5% 

L Fusion: 96.5%  
R Iris: 10.1% 

R Peri: 88.7% 
R Fusion: 92.4% 

(Juefei-Xu et al., 
2010) 

Texture,  
Key-Points 

Walsh Masks, 
Laws’ masks, 
DCT, DWT, 
Force Fields, 
Gabor filters, 
LBP, SIFT, 
SURF 

Cosine 
distance,  
Euclidean 
distance,  
Manhattan 
distance 

FRGC DWT+LBP: 53.2% 
DCT+LBP: 53.1% 

Walsh+LBP: 52.9% 
Laws’ + LBP: 

51.3% 
… 

(Juefei-Xu et al., 
2011) 

Texture WLBP+UDP Cosine 
distance 

FG-NET 100% 

(Bharadwaj et al., 
2010) 

Naturalnes, 
Openness,  
Roughness,  
Expansion,  
Ruggedness,  
Texture 

GIST, ULBP 	Χ� 2	

�distance 
UBIRIS.v2 GIST: 70.82% 

ULBP: 63.77% 
Fusion: 73.65% 

(Hollingsworth et al., 
2010) 

Human Human Human NIR images, 
120 subjects 

92% 

(Hollingsworth et al., 
2012) 

Human Human  Human NIR & visible,  
210 subjects 

NIR Peri: 78.8% 
V Peri: 88.4% 

NIR Iris: 85.6% 
V Iris: 79.3% 

Table 3. Overview of periocular recognition methods. 
 
However, and facing the heterogeneity between test data, it’s yet difficult to assess methods’ relative 
performance in-between themselves. To bring some enlightenment on that subject, methods should be 
tested on the same data and results analyzed side by side.  Implementations of each method should 
reproduce papers’ algorithm description as close as possible, and eventually omitted parameter chosen to 
maximize overall performance. As most of the literature reports results against the FRGC, that dataset is a 
good candidate for the evaluation stage. A total of 6225 images were selected, with the right-side 
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periocular region manually cropped to avoid further errors, resulting in over 250 thousand matching trials 
with a 1:2 intra- inter-class ratio. Results from those trials can be seen at Table 4.  
 

Approach Features AUC EER CA RA Dataset 
(Park et al., 2009) LBP 

HOG 
SIFT 
Fusion 

0.84 
0.82 
0.83 
0.86 

0.24 
0.25 
0.23 
0.21 

88.92% 
88.92% 
88.66% 
89.69% 

70.00% 
62.50% 
74.20% 
80.80% 

899 images,  
30 subjects, 
2 sessions, 

visible wav. 
(Miller et al., 2010b) ULBP 0.82 0.24 89.69% 89.80% FRGC 
(Woodard, Pundlik, 
Lyle, & Miller, 2010a) 

ULBP 
Color 
Fusion 

0.83 
0.62 
0.83 

0.22 
0.41 
0.23 

89.69% 
35.57% 
89.69% 

83.40% 
74.20% 
87.10% 

FRGC 

(Woodard, Pundlik, 
Miller, Jillela, & Ross, 
2010b) 

LBP 
Iriscode 
Fusion 

0.82 
0.75 
0.83 

0.24 
0.30 
0.23 

90.21% 
69.07% 
88.66% 

88.70% 
10.10% 
92.40% 

MBGC 

(Bharadwaj et al., 
2010) 

ULBP 
GIST 
Fusion 

0.76 
0.87 
0.88 

0.30 
0.21 
0.19 

88.40% 
89.18% 
87.37% 

54.30% 
63.34% 
73.65% 

UBIRIS.v2 

Table 4: Tested periocular recognition methods performance indicators: Area Under ROC Curve (AUC), 
Equal Error Rate (EER), Computed (CA) and Reported Accuracy (RA) and Original testing dataset. 

 
Some papers reported multiple results from different setups. As so, values from Table 4 may differ from 
the ones on Table 3, since we now chose to display the ones best fitting our test conditions.   
 
Having (Park et al., 2009) pioneering approach as comparison term, we can see how the subsequent 
developed algorithms introduce in fact some improvements, either by using more robust procedures (e.g. 
ULBP vs. LBP), by proposing different image pre-processing and ROI definition (e.g. Woodard, Pundlik, 
Lyle, & Miller's (2010a) LBP vs. Park et al. (2009) LBP), or by bringing in new techniques (e.g. GIST). 
However, method performances are quite similar, with rank-1 accuracy around 89%. 
 
The major discrepancy between reported results and ours occur when color information is used 
(Woodard, Pundlik, Lyle, & Miller, 2010a). Although images from the same database were used for 
testing, we weren’t able to reproduce such scores, and even if obtaining better accuracy on ULBP, fusing 
it with the color descriptors didn’t bring any improvements. That happens because the score level fusion 
optimization technique (logistic regression) didn’t give color information enough weight to make itself 
representative. Nonetheless, if we attend at the correlation coefficients between features, the more 
contrasting one is color, followed by iris and SIFT. 
 
6. ISSUES AND PROBLEMS 
 
Being an emerging and relatively new biometric trait, several issues arise from the use of this type of data 
for recognition purposes. These were grouped into five topics, based on the criteria suggested by Park, 
Jillela, Ross, & Jain (2011). 
 
The first one is related with the imaging stage, and determining the optimal spectrum for periocular 
biometrics. As former research usually prefers near-infrared data, expectations aim towards the visible 
wavelength, where unconstrained recognition is favored. However, wouldn’t the fusion from data 
acquired at different wavelengths, yielding multispectral data, result in relevant advantages?  
The next concern is about the actual boundaries of the periocular region, which are yet to be settled. Even 
though we observe the inclusion of some traces like the eyebrows, iris or sclera, to improve overall 
performance, researchers sometimes disagree on whether those elements should rather be masked or 
cropped to avoid biased results. 
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Moving on to the feature encoding stage, new questions arise: which features are the most representative 
when aiming at discriminating this region? Also, the heterogeneity of the components in the periocular 
region may suggest that more elaborate feature schemes are required to describe such different types of 
information.  
After settling the features, a feature matching scheme should be determined. We must take into account 
the techniques most suitable to handle data variations inherent to the less controlled acquisition process, 
and how to optimally handle the variations in the traditional data variation factors. 
At last, how would periocular biometrics benefit from the fusion with other features? Even considering 
that the use of multiple traits might be important to compensate for acquisition adversities, and iris being 
a fit candidate for score level fusion during periocular recognition, the way of maximize the outcome of 
this (or other) association is yet to be clearly established. 
 
Apart from the imaging, encoding, matching and fusion alternatives detailed on the previous sections, 
Bakshi, Sa & Majhi (2013) addressed the boundary definition issue by actually studying its proportions 
impact on the recognition performance and the trade-off with computational cost, and proposing an 
optimized ROI with minimal template size and maximal recognition accuracy. 
 
 
7. CONCLUSION 
 
This chapter addressed the use of information in the vicinity of the eye (periocular region) to perform 
biometric recognition. Particularly for uncontrolled data acquisition scenarios, the periocular region is 
regarded as an interesting trade-off between using the entire face or using exclusively the iris. Information 
inside the periocular area is considered to be highly different between individuals and relatively stable 
over lifetime.  
 
According to the above properties, several research groups have been concentrating their efforts in 
developing algorithms for periocular recognition, that usually profit of the heterogeneous types of 
information in this region: shapes of eyelids, texture of the skin and iris, distribution of eyelashes and skin 
key points (e.g., spots). This heterogeneity propitiates the fusion at different levels (data, features or 
scores), from various types of recognition algorithms, which is known to potentially increase robustness 
against degraded data. 
 
Having presenting the publicly available data sets where experiments are being carried out, we also 
summarized the most relevant research on this topic and compared the state-of-the-art results in terms of 
recognition performance. Also, we discussed the issues and directions for further work on this topic.  
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