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1 Introduction

Any user in the world that has to access a protected service or location, or that
simply wants to protect its owned devices, has to struggle with assuring a secure
access to them. This is a first aspect that characterizes self-handled authentication
strategies. Actually, the use of special signs, objects or passphrases goes back to
the very origins of human communities. Watchwords asked by sentinels, or the 5-
pointed pentagon tattooed on the palm of members of the Pythagorean school are
examples of a kind of authentication often seen in the literature. The first attempt
to use computer support for authentication is represented by passwords, that first
appeared at the Massachusetts Institute of Technology in the mid-1960s, where a
massive compatible time-sharing computer (CTSS) was used to pioneer many of the
milestones of computing, including password-based authentication. In those times,
a single password was sufficient to access one’s virtual space and files, which af-
terall were the only resources to protect. Afterwards and beyond any forecasting,
computers massively entered every-day life, with Internet allowing the creation of
an increasing number of remote services of various kinds. This has caused both the
corresponding increase of the number of passwords to use, and also the grow of the
password theft risk, due to the increasing value of the protected resources. More and
more complex and non-trivial passwords must be used. However, the more they are
difficult to crack, the more they are difficult to remember. The possible alternative
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or addition represented by possession of physical objects (e.g., keys and cards) does
not solve these problems. Rather, the need to keep the physical object always avail-
able when needed, and the possibility that it can be lost or stolen, may make things
even worse for the users. In this awkward scenario, biometric authentication, though
not being invincible, seems to provide a more “natural” alternative. The users can
just exploit what they are or the way they behave to be recognized an granted privi-
leges.

The other core element in present authentication scenarios is that mobile equip-
ment is ubiquitous nowadays. Smartphones substituted old cellular phones, that in
turn had replaced traditional landlines. The possibility to communicate almost wher-
ever and whenever represents a characterizing aspect of the still ongoing technolog-
ical revolution. However, the whatever dimension, that allows the new communica-
tion devices and protocols, is even more disrupting. The uses of present smart mo-
bile devices include storing/transferring in real time almost any kind of multimedia
information. Such data is often personal, and often sensitive. The exchange of sen-
sitive information requires a twofold approach to address increasing security needs:
it is both necessary to reliably identify the owner before the use of the device, and
to reliably identify the user of a remote service at the moment the device connects
to it. Biometrics can both enforce and make authentication simpler in conventional
controlled environments. The next step is to move biometrics in uncontrolled set-
tings, where there is no operator to guide in the capture of a ”good quality” sample,
and on mobile devices. Mobile biometric recognition is the new frontier for secure
use of data and services.

It is interesting to remind the basic principles and issues that characterize bio-
metric authentication. The paper by Clarke published in 1994 [Clarke, 1994] is
among the earliest ones devoting specific attention to biometric recognition. Avail-
able means to achieve formal identification of individuals are classified as: 1) ways
to merely distinguish among individuals - Names and Codes; 2) ways to verify in-
dividual identity - Knowledge-Based Identification and Token-Based Identification;
and, finally, 3) biometrics, that can be used for both verification and identification.
In this classification, The term “biometrics” refers to identification techniques re-
lying on some physical and difficult-to-alienate characteristic. Of course, they re-
quire suitable measurements and matching strategies. Clarke further sketches a first
taxonomy of biometric traits [Clarke, 1994]: 1) those based on appearance, that in-
clude the usual elements reported in any identity document, such as height, weight,
color of skin, hair and eyes, visible markings, gender; race, facial hair, glasses,
that are supported by photographs; 2) those based on (social) behavior, including
body-signals, voice characteristics, speech style, visible handicaps, that are sup-
ported by video (or audio) recordings; 3) those based on bio-dynamics, including
the way of signing and keystroke dynamics, that require specific capture strategies;
4) those based on natural physiography, including skull measures, teeth and skeletal
injuries, fingerprint sets and handprints, retinal scans, vein patterns, hand geome-
try, and DNA; 5) those based on imposed physical characteristics, including collars,
bracelets, microchips, and transponders. The paper by Jain et al. [Jain et al., 1997]
simplifies this classification into two broad classes, namely physical or behavioral
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traits, that are still used at present as reference. The paper further elaborates on
Clarkes human identifiers to list the properties of a biometric trait. They are the
well-known universality, uniqueness, collectability, performance, and circumven-
tion. In [Jain et al., 2004] biometric traits are further classified as either supporting
unique identification (hard traits, e.g., face or fingerprints), or providing informa-
tion lacking sufficient distinctiveness and/or permanence to differentiate any two
individuals (soft traits, e.g. demographic traits and most behavioral traits).

Notwithstanding the optimistic premises, the kind of interaction required from
the biometric recognition systems may cause troubles to non-expert users, espe-
cially in unattended scenarios where no operator is there to assist during the task. In
general, authentication systems are often difficult to use. Quoting from a paper pub-
lished in 2001 by Sasse et al. [Sasse et al., 2001]: “The security research community
has recently recognised that user behaviour plays a part in many security failures,
and it has become common to refer to users as the ’weakest link in the security
chain’. We argue that simply blaming users will not lead to more effective security
systems.” In 2000 Nielsen [Nielsen, 2000] assumes that “in the future, security will
improve through biological [biometric] verification mechanisms, such as fingerprint
recognition or retina scanning ”; yet also alerts that “it will take time for this in-
frastructure to be built (and fingerprint systems won’t work for some people)”. The
conclusion in [Sasse et al., 2001] is even more skeptical: “biometric systems may be
a good fit for some user-tasks-context configurations, but not all of them.” Concerns
raised in 2004 [Patrick, 2004] and related to the acquisition step, are unfortunately
still valid, as researchers dealing with biometric recognition know very well. Finger-
print readers may suffer from dirt, bad framing, different pressure and motion; face
recognition systems are affected by PIE (pose, illumination, expression) distortions,
and also by aging of the subject. Iris scanners may suffer from the bas alignment
of the eye with the camera lens. These problems become dramatically critical when
dealing with mobile biometrics. In this case, more problems rise because of the
unattended acquisition, since the user may not be able to capture a good sample,
and further be unaware of what good sample means in the different cases. The 2007
work by Sasse [Sasse, 2007] proposes an apparently obvious solution: Biometric
systems should have user-friendly, intuitive interfaces that guide users in presenting
necessary traits.” However reliable use of selfie-biometrics is still an open prob-
lem. Mobile biometric recognition is continuously increasing its popularity, thanks
to the possibility to exploit personal and/or wearable devices equipped with more
and more accurate sensors. Mobile equipment is ubiquitous nowadays and allows
capturing biometric traits anytime in any place, by incorporating all necessary hard-
ware equipment and software applications for capturing and processing biometric
data. However the capture phase still poses crucial problems. This dichotomy Fig-
ure 1 inspired MICHE (Mobile Iris CHallenge Evaluation) project.

The chapter develops as follows. Section 2 summarizes the main concepts re-
lated to iris recognition and how MICHE challenges are positioned with respect to
the past and present research scenarios. Section 3 briefly describes the challenge
setup with its two separate phases, and the dataset used as benchmark for evaluating
participating approaches. Section 4 deals with the first MICHE-I challenge, focused
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on iris segmentation. Section 5 presents the results of the following challenge, fo-
cused on iris recognition.

2 Iris recognition and MICHE challenges.

The iris is the circular structure in the central part of the eye that determines what
is popularly defined as the eye color, but from a functional point of view it has a
muscular nature that is responsible for controlling the diameter and size of the pupil
( the inner black disk, actually a hole) and therefore the amount of light reaching
the retina. From an optical point of view and comparing the eye to a camera, the
pupil represents the aperture, while the iris has the role of the diaphragm. From the
biometric recognition point of view and of the involved processing steps, it is worth
reminding which are the most relevant external visible structures that contribute
to characterize a human iris. The pupillary zone is the most internal part of the
iris, whose edges mark the pupil boundary. These edges are well visible in light
color eyes, while it may be difficult to distinguish them in very dark eyes. The
latter is one of the problems to be addressed during iris region segmentation in

Increasing popularity of mobile biometrics
Uncontrolled conditions

Non-technical users
Lower computational resources

Fig. 1 Increasing popularity of mobile biometrics vs. increasing use by non-technical users.



MICHE competitions 5

visible light. Proceeding towards the external iris border, the collarette is a very
thick region that separates the pupillary region fron the ciliary zone. In this region,
the sphincter muscle and dilator muscle regulate the pupil dilation. It is relatively
easy to identify this region in eyes which are not too dark, since it is made up of
radial ridges extending from the periphery to the pupillary zone. The ciliary zone
extends up to meet the sclera. The overall iris structure is characterized by both
regularities, represented by radial furrows, as well as singularities, represented by
crypts and possible lighter/darker spots (Figure 2).

The iris is among the best candidates for biometric recognition. It is extremely
discriminative: right and left iris of the same person are so different to hinder a
correct matching. This is due to the fact that randotypic elements largely overcome
genotypic ones in individual development. In other words, contrarily to, e.g., face,
the genetic baggage has very little influence on the iris makeup process. Its small
size makes related image processing quite fast with respect to face, and its peculiari-
ties make it very difficult to spoof an iris template. The most used kind of iris codes,
devised by Daugman [Daugman, 1993], is among the less expensive templates from
the storage point of view, and the acquisition is little intrusive. For all these reasons,
the iris is a natural candidate for mobile biometric recognition.

Research results regarding related techniques have quickly progressed from
the pioneering work by Daugman [Daugman, 1993] and Wildes [Wildes, 1997],
mostly pertaining controlled settings and Nera-Infrared (NIR) capture settings,
to the use of deep learning [Liu et al., 2016], with the most recent NICE (Noisy
Iris Challenge Evaluation) addressing iris recognition in less controlled settings
[Proença and Alexandre, 2007, Proenca and Alexandre, 2012]. Mobile setting and
especially the inherent problems related to uncontrolled acquisition are addressed in
the two challenges of the MICHE project [De Marsico et al., 2017, De Marsico et al., 2018]
whose results are the core topic of this chapter. Whatever the context, the iris recog-
nition workflow follows the same processing steps, which are typical of any object

Image adapted from the original image by JDrewes - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3117810

Ciliary zone

Pupillary zone

Collarette

Fig. 2 Most relevant regions of iris images, for biometric recognition purposes. The collarete di-
vides the pupillary and cilliary zones, an is particularly visible in light-pigmented irises.
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detection/recognition procedure. The ease of localizing the eyes within the faces,
and the characteristic annular shape of the iris, should facilitate a reliable and ac-
curate detection of this anatomical element and the creation of a suitable repre-
sentation. This especially holds when NIR capturing is used, since reflections and
illumination variations have little influence on images, and a controlled acquisition
guarantees a correct position with respect to the camera. On the contrary, when
capture is carried out in Visible Light (VL), while images usually contain precious
chromatic features than NIR images, they are also much more seriously affected by
many noisy artifacts produced by light sources and reflections, and their process-
ing suffers from dark pigmentation. Therefore, the first difficulties soon arise when
attempting to detect and segment the iris. Of course, a poor segmentation compro-
mises all the following steps, since feature extraction would be possibly carried out
on non-iris regions, while the complete set of (possibly unconnected) iris regions
would not be correctly identified. Iris segmentation was the focus of the first MICHE
challenge, aimed at assessing the accuracy of the candidate algorithms. It is worth
noticing that segmentation not only identifies the useful iris region, but also usu-
ally produces a segmentation mask to be used during matching to leave out non-iris
patches. The step following segmentation is iris sample normalization. In most ap-
proaches, this does not only entail reducing iris images to a common size, but also
computing a polar representation facilitating the following processing. The most
used technique to obtain this is the Rubber Sheet Model introduced by Daugman
[Daugman, 2009]. The same procedure is applied to the segmentation mask After-
wards, different approaches extract and match different features, either related to
the regular patterns that can be identified, or to possible singularities, either local or
global [Bowyer and Burge, 2016]. Feature extraction and recognition are the focus
of the second MICHE challenge. Figure 3 shows the typical steps in iris processing
and recognition and points out those addressed by MICHE. Of course the kind of
the final result depends on the entailed recognition modality, either verification (1:1
matching) or identification (1:N matching).

3 Challenge setup and MICHE dataset

As anticipated above, the Noisy Iris Challenge Evaluation (NICE I) addressed the
problem of matching images captured in unconstrained conditions. The iris dataset
used as benchmark, namely UBIRIS.v2 [Proenca et al., 2010] has been captured in
the visible wavelength (VW), at-a-distance (4 to 8m), and on the move. The results
confirm how VW and uncontrolled conditions together dramatically affect recog-
nition performance. Similar conclusions result from the following NICE II contest
[Proenca and Alexandre, 2012]. Notwithstanding this, MICHE project addresses a
further problem. While UBIRIS datasets were acquired by high resolution cameras,
MICHE dataset, as we will detail better in the following, only uses built-in cameras
of different smartphones, that at the moment of capture produced images of un-
doubtedly lower quality than UBIRIS ones. MICHE challenges followed the same
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NICE schema: a first one focusing on iris segmentation and using as benchmark
MICHE dataset, and a second one focused on feature extraction and matching, car-
ried out with an extended version of the dataset and using as a common segmentation
tool the best method resulted form the first challenge.

Why was a new dataset required? The Chinese Academy of Sciences was
a pioneer in collecting the first publicly available iris datasets dealing with iris
images, continuously updated from CASIA-IrisV1 to CASIA-IrisV4 since 2002
[Ma et al., 2003, Sun et al., 2014]. Its images are either collected under NIR or
are synthesized. Therefore, until NIR sensors will spread on mobile devices, these
datasets cannot be used to assess iris processing on mobiles. Similar considerations
hold for benchmarks used for ICE competition mentioned before. On the contrary,
UBIRIS datasets, available from SOCIA Lab at University of Beira Interior (Por-
tugal), though being captured in visible light and uncontrolled conditions. have a
much better resolution than average mobile sensors. Figure 4 shows some details of
the last CASIA versions, while Figure 5 shows a sample from a ICE competition
and a sample from UBIRIS, both from a left eye. Looking at the two samples it is
easy to understand the difference between the two addressed contexts.

The aim of MICHE was to assess the real feasibility of iris recognition when
images are captured in visible light, by ”normal” user level mobile devices, by ”nor-
mal” (non necessarily technical) users in uncontrolled/unattended conditions, and
when cross-device matching can be needed (Figure 6)

ACQUISITION SEGMENTATION NORMALIZATION

FEATURE EXTRACTION
&

CODING
MATCHING

RECOGNITION RESULT

VERIFICATION IDENTIFICATION

YES/NO IDENTITY

Fig. 3 The main phases of iris recognition processing chain (bold font underlines the phases ad-
dressed by MICHE challenges).
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MICHE challenges provided as a benchmark a dataset reflecting this specific
set up. Before continuing, it is worth pointing out two symmetrical considerations.
The accuracy of capture/ quality of the captured image may be enhanced due to
the usually short distance (not more than the length of a normal human arm) and
to the user natural attitude to have a frontal pose while taking a selfie. In addition,
in this case we are considering collaborative users, that have all interest in being
recognized. The reverse of the medal is that the quality of the captured image can
suffer from possible lower resolution of the mobile device camera, from motion blur
and illumination distortions, from incorrect image framing, that can be all caused by
either/both the kind of device, the possible lack of technical experience of the user,
and by the lack of control on user capture operation. Addressing these problems
requires more robust detection/segmentation and matching procedures. It is worth
pointing out again that the performance of the matching can be dramatically affected
by the quality of the segmentation. This is the reason for having all participants
to the second part of the challenge to all use the same segmentation: they have
a common starting point so that it is possible to evaluate the addition of feature
extraction/matching in a fair way.

The composition of the dataset used for MICHE reflects the use of different mo-
bile devices for the acquisition and a realistic simulation of the acquisition process
including different sources of distortion/noise. The data was captured across several
acquisition sessions separated in time, to get a realistic amount of intra-class varia-
tions. All images were annotated with metadata useful to carry out demographics- as
well as well as device-based analysis. In order to reproduce a real-world setting, the

CASIA DATASET (LATEST VERSION)

CASIA_INTERVAL

CASIA_LAMP

CASIA_IRISTHOUSANDs
CASIA_DISTANCE

Fig. 4 Last versions of CASIA datasets.
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WHY MICHE-II

NICE (Noisy Iris Challenge Evaluation) COMPETITIONS by SOCIA LAB AT BEIRA INTERIOR

First crucial difference: images in visible light
Second crucial difference: uncontrolled conditions, normal equipment

Why not much suited for mobile testing?
Very high image resolution

Fig. 5 A sample from ICE (left) and one from UBIRIS (right).

subjects involved in experiments were given no special instruction but were rather
advised to take a selfie of their eye as they would do if asked in a real situation.
For instance, subjects usually wearing eyeglasses could either remove or keep them.
The self-images of their iris were acquired by normally holding the mobile device.
For each session, a minimum of 4 shots for each camera (a device could possibly
have two) and acquisition mode (either indoor or outdoor) was requested. Indoor
acquisition was affected by various sources of artificial light, sometimes combined
with natural light sources. Outdoor acquisition exploited natural light only. Only one
iris per subject was acquired. The three kinds of devices used for data acquisition
purposes (both smartphones and tablets) that (at the time!) were representative of
the current top market category, can represent at present medium-level devices, and
are listed by increasing camera resolution:

• Galaxy Tablet II (GT2)

Visible light, «normal» device, «normal» user, uncontrolled/unattended conditions

Cross-device matching

Fig. 6 Cohesive perspective of the MICHE operational context.
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– Operating System: Google Android
– Posterior Camera: N/A
– Anterior Camera: 0.3 Megapixels

• iPhone5 (IP5)

– Operating System: Apple iOS
– Posterior Camera: iSight with 8 Megapixels (72 dpi)
– Anterior Camera: FaceTime HD Camera with 1.2 Megapixels (72 dpi)

• Galaxy Samsung IV (GS4)

– Operating System: Google Android
– Posterior Camera: CMOS with 13 Megapixel (72 dpi)
– Anterior Camera: CMOS with 2 Megapixel (72 dpi)

It is interesting to point out that it is possible to identify three groups of images
at three different resolutions (1536 x 2048 for iPhone5, 2322 x 4128 for Galaxy S4,
and 640 x 480 for the tablet). Examples are shown in Figure 7. This is a further
challenge for cross-device matching.

Sources of noise affecting the MICHE dataset images include all those that can
be present in real-world unattended settings. Different kinds of reflexes are among
the most frequent ones, and can be caused by either artificial light or natural light
sources, as well as by people or objects in the scene. Out of focus and blur can
be either due to an incorrect capture operation or to involuntary movements of the
hand and/or of the head and/or of the eye during selfie capturing. Part of the region
of interest may be occluded by eyelids, eyeglasses, eyelashes, hair, or shadows.
The device itself may introduce artifacts due to low resolution or sensor defects,
or it may present different color dominants. Further problems are raised by off-
axis gaze and variable illumination. Actually, Figure 8 shows that these factors can
also affect images in in UBIRIS.v2 (http://nice2.di.ubi.pt/). However comparison of
Figure Figure 7 and Figure Figure 8 is useful to further point out the features of
MICHE images. Most of all, due to lack of precise framing and to different capture
distances, it is possible to obtain either well centered eyes or half faces or partial
eye images. Of course, this causes a different position, size and sharpness of the
region of interest, i.e. the region useful for iris recognition. This happens because
capture can happen from a very close distance up to a distance equal to the arm
length, even if in general the users maintain an average capture distance that is in
the middle. This means that more robust eye localization technques are required as
a first processing step, but at the same time it is possible to use, when present, useful
information from the periocular region.

The dataset is annotated by metadata through a reference XML file for each iris
image. The information recorded regards image acquisition (e.g., device character-
istics, distance from the device, outdoor/indoor indication) and archiving (e.g., file
name and file type), subject demographics, and the conditions under which the im-
age was acquired. At present, MICHE dataset contains images from 75 different
subjects, acquired in two sessions separated in time (1 to 9 months apart) with 1297
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Fig. 7 Examples of MICHE images. From top to bottom, images were taken by iPhone5, by
Galaxy S4, and Galaxy Tablet II devices.

images by GS4, 1262 images from IP5, and 632 images from GT2. The dataset
also contains a MICHE Fake and a MICHE Video subsets, to test Presentation At-
tack Detection (PAD) approaches and recognition from dynamic data. More details
on the dataset can be found in [De Marsico et al., 2015]. Table 1 summarizes the
difference in terms of possible distortions between controlled and uncontrolled ac-
quisition. It is worth pointing out that ”controlled” in this context means assisted
by an expert operator that can appreciate the possible defects in the obtained image



12 Silvio Barra and Maria De Marsico and Hugo Proença and Michele Nappi

Table 1 Summary of the data degradation factors affecting image acquisition in con-
trolled/uncontrolled conditions

Motion
blur

Out of
focus

Reflec-
tions

Occlusions
(eyelids/
eyelashes)

Off-axis
Closed/
partially
closed eye

Partial
eye region
(bad
framing)

Extended
periocular
region (bad
framing)

Low
Resolu-
tion

Controlled NO NO YES YES NO NO NO NO
YES/
NO

Uncontrolled YES YES YES YES YES YES YES YES
YES/
NO

and ask to repeat the acquisition until a satisfactory visual quality is achieved. Low
resolution can be considered as a possibly common problem for the two settings,
depending on the acquisition device. However, in uncontrolled conditions it can add
to possible other distortions, and can be more frequent in mobile capture.

4 MICHE-I challenge: iris segmentation

The participants to MICHE-I challenge had the above described dataset as a com-
mon benchmark. The aim of the challenge and of the analyses carried out on its
results was to explore both image covariates that are likely to cause a decrease in
the performance levels of the compared algorithms, and the further effect of cross-
device operations. Segmentation was the only focus of the challenge, however par-
ticipants had the possibility to also integrate their proposal with a recognition mod-
ule. This allowed to test both the original approaches, and possible re-combinations
of segmentation (S) and recognition (R) modules.

The analysis of results went beyond the evaluation/identification of the best ap-
proaches, but also focused on the image features/distortions that can mostly posi-
tively/negatively affect the final recognition performance, and on interoperability is-
sues caused by the use of different devices in enrollment vs. testing phases. Having

Fig. 8 Examples of UBIRIS images.
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more recognition modules available, it was also possible to investigate multi-classier
strategies, to complement the strengths of more different approaches. The fusion
was carried out at score level either by the popular Simple Sum, or by a weighted
sum policy assigning higher weights to methods achieving a lower Equal Error Rate
(EER) in a pre-testing step. Returning to the challenge setting, the performance mea-
sures chosen to evaluate the different iris/non iris segmentation strategies were a set
of quite classical ones used for binary classification: Accuracy, Precision, Sensitiv-
ity, Specificity, Pratt, F1 Score, Rand Index, Global Consistency Error, E1 score,
Pearson Correlation Coefficient. Final recognition, when included in the participant
methods, was carried out in verification mode (1:1 matching). The corresponding
performance measures were Decidability index, Equal Error Rate (EER), and Re-
ceiver Operator Characteristic (ROC) curves with corresponding Area Under Curve
(AUC). Since MICHE-I was especially focused on iris segmentation, more metrics
were used to measure performance in this operation. Moreover, when present, the
results of proposals also addressing iris recognition were analyzed concentrating on
the segmentation methods allowing a more reliable feature extraction and matching
thanks to a better separation of the eye regions.

4.1 Metrics used to evaluate the segmentation quality

Table summarizes the performance measures used to evaluate the candidate methods
in MICHE-I, and that are quite common for classification problems (in our case,
iris/non-iris) or even multi-class problems. Some of them are specifically suited for
segmentation: Pratt metric is introduced in [Pratt, 2007] and Global Consistency
Error in [Martin et al., 2001].

Each of the metrics exploited to evaluate the segmentation quality is able to cap-
ture some specific aspect of a correct classification. Of course, it is firstly important
to correctly classify an existing edge pixel (true positives vs. false negatives) and
this ability is different from avoiding false positives (vs. true negatives). Actually
the two can be in contrast, so that the lower the rate of false negatives, the higher
the number of false positives could be. This common for binary classifiers, and as
a matter of fact they do not play an asymmetrical role in evaluating segmentation
algorithms: an algorithm that achieves the former might be less effective to achieve
the latter. Errors in either direction can differently affect the test of the process-
ing. A contour interruption caused by false negatives can hinder if not completely
compromise the detection of a shape, or produce an unconnected contour where a
connected one is needed/expected. The role of the first 4 metrics is to measure these
aspects separately. F1-score rather provides an overall estimate of the ability of the
algorithm to distinguish true edge pixels from false ones without missing too many
of them. RI is a measure of the overall agreement between positive/negative classi-
fications and ground truth, taking into account pairs of corresponding pixels. It can
be extended to more different candidate classifications. E1-Score represents a kind
of complementary measure, since it rather measures the proportion of disagreeing
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Table 2 The performance measures used to evaluate the methods submitted to MICHE-I

Accuracy Accuracy measures the proportion of true results, summing up true positives
and true negatives and computing the rate with respect to the total number of
samples.

Precision Precision measures the proportion of the true positives against all the returned
positive results, that include both true and false positives.

Recall Recall is also called the true positive rate, or the sensitivity, and measures the
proportion of positives that are correctly identified as such, i.e. true positive
against ground truth positives.

Specificity Specificity is the true negative rate, and measures the proportion of negatives that
are correctly identified as such, i.e. true negatives against ground truth negatives.

F1-Score F1-Score can be interpreted as a weighted average of the precision p and the
recall r, and is defined as: F1−Score = 2× Precision×Recall

Precision+Recall ; it ranges from a best
value of 1 and a worst worst value of 0

Rand Index
(RI)

The Rand Index counts the fraction of pairs of corresponding pixels in given seg-
mentation and ground truth, whose elements are either both labeled as edge or
both labeled as non-edge, both in ground truth and in the returned segmentation.

E1-Score E1-Score represents the classification error rate of the algorithm on the input
image, and is given by the proportion of corresponding disagreeing pixels (that
have a different label in the returned segmentation and in ground truth); it can
be computed by the logical EXCLUSIVE-OR operator.

Pratt Pratt metric is defined as a function of the distance between correct and mea-
sured edge positions; it is also indirectly related to the false positive and false

negative edges: Pratt = 1
max{EG,ED} ×

ED
∑

k=1

1
1+α+d2

i
where where EG and ED are

the number of ground truth and detected edge points respectively, di is the dis-
tance from the i− th detected edge point and the closest ground truth one, and α

is a scaling constant that in the original metric formulation is α = 1
9 ; this metric

takes into account the global trend of the distances between returned and ground
truth edges; it ranges between an optimal value of 1 and a minimum of 0.

Global Con-
sistency Error
(GCE)

The Global Consistency Error evaluates at which extent one segmentation can
be viewed as a refinement of the other; given two segmentations S1 and S2, a
pixel pi and regions R(S1, pi) and R(S2, pi). containing the pixel in segmen-
tation S1 and S2 respectively, a local (asymmetric) error measure is defined
as E(S1,S2, pi) =

|R(S1,pi)\R(S2,pi)|
|R(S1,pi)| , so that it is possible to compute a local re-

finement error in each direction at each pixel; the Global Consistency Error
forces all local refinements to be in the same direction, being finally defined
as GCE = 1

n min{∑
i

E(S1,S2, pi),∑
i

E(S2,S1, pi)} with n the number of pixels;

substituting the minimum of the sums with the sum of the minima provides the
Local Consistency Error (LCE), that would rather allow refinement in different
directions in different parts of the image.

Pearson Corre-
lation Coeffi-
cient (PCC)

The Pearson Correlation Coefficient is a measure of the linear correlation be-
tween two random variables X and Y, returning a value between +1 and 1 in-
clusive, where 1 is total positive correlation, 0 is no correlation, and -1 is total
negative correlation.



MICHE competitions 15

pixels. Pratt metric evaluates accuracy from a point of view more strictly related to
the specific segmentation problem, since it returns a global estimate of the distance
between the detected contours and the ground truth: not only true/false, not only
lack of correspondence, but also distance from the true result. In this respect GCE
provides a similar yet more ”directed” result, taking into account the direction of
the error too: it measures how the errors with respect to ground truth (the direction
is fixed) can result in a less detailed segmentation though bringing much the same
core information. Finally, PCC is the usual Pearson correlation, to evaluate if the
result segmentation and the ground truth present a similar trend.

4.2 Methods participating in MICHE-I

Since most proposals included both segmentation and recognition, both approaches
will be briefly summarized when appropriate. A first observation deriving from the
analysis of the methods is that it is a common practice to try to compensate for
poor image quality using different approaches. A frequent one entails the use of
the periocular region as an extra source of information. When the resolution of the
iris region is not sufficient, or too many distortions are present, recognition can be
supported by additional features extracted from the region around the eye. Among
the other proposals along this line, this approach had been proposed also in NICE II
challenge (addressing recognition), and in particular by the winning method by Tan
et al. [Tan et al., 2012]. A combined approach using more sets of features/methods
can reduce the specific sensitivity to any particular data covariate. Last but not least,
it is possible to exploit color compensation techniques to attenuate the typical cross-
device difference of sensor features. The participating methods are listed below by
alphabetical order of the first author’s last name.

The approach by Abate et al. [Abate et al., 2015] for the challenge relies on an
algorithm based on the watershed transform for iris segmentation, namely water-
shed Based IRis Detection (BIRD). The first step is to compute for each RGB
channel the gradients in a colored, illumination-corrected image. The final gra-
dient image is obtained by averaging the gradients computed over the separate
channels. The watershed transform exploits the topographical distance approach
[Roerdink and Meijster, 2000]. The output of the watershed transform guides the
binarization of the original image and the circle detection step, in order to find a
parametrized expression for both the pupil and the sclera boundaries. Also this pro-
posal exploits the the periocular region, which is localized using as reference the
length of the iris radius. Differently form Santos et al, that exploit a rectangular
periocular region, BIRD relies on a different choice. Starting from the approximat-
ing circle detected during the iris segmentation process, BIRD exploits its center
coordinates and radius to construct two concentric ellipses that enclose part of the
area around the iris. Both ellipses are centered in the center of the iris, but they are
defined by different major and minor axes, always determined starting from the iris
radius. The area enclosed by the ellipses is processed in a way similar to the Daug-
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mans Rubber Sheet Model. The resulting rectangular region has a resolution which
depends on the granularity chosen for the parameters (angle) and of the mapping.
This way of processing the periocular region is quite original. For both regions fea-
ture encoding is done by means of 64-bit color histograms, matched using the cosine
dissimilarity and Hamming distance. Iris and periocular results are fused at a score
level, by implementing a simple sum approach.

The proposal by Barra et al. [Barra et al., 2015] also includes segmentation and
recognition. The segmentation method, named IS IS, was originally proposed in
[De Marsico et al., 2010]. The original method entails using Canny edge detector to
identify edges, and then the pupil boundary is identified by a voting scheme that
ranks circular edges by uniformity of the inner region and contrast between the
inner and outer regions. Iris is identified after applying the Rubber Sheet Model to
the image, by inspecting the dark-to-light intensity variations along the columns of
the image in polar coordinates. The method is modified to run on mobile devices.
Feature encoding relies on spatial histograms (spatiograms). Common histograms
can be considered as first order spatiograms, while higher order ones contain further
information relating to the spatial domain spanned by the pixels falling in each bin.
Second order spatiograms used here store also the mean and covariance matrix of
the pixel coordinates. Spatiograms are matched by correlation-based techniques.

The proposal by Haindl and Krupička [Haindl and Krupička, 2015] focuses on
the detection of the non-iris components, especially reflections, for the parametriza-
tions of the iris ring. The accurate detection of eyelids and reflections can have a
significant impact on the final iris segmentation. The proposed model adaptively
learns its parameters on the iris texture part, and then searches for iris reflections by
the recursive prediction analysis. After detecting reflections, Pupil parametrization
is carried out by form fitting techniques. Next, data is converted into the polar do-
main according to the usual Rubber Sheet Model technique. In the resulting stripe a
texture analysis phase determines the regions of the normalized data that should not
belong to the iris, according to a Bayesian paradigm.

As other proposals, Hu et al. [Hu et al., 2015] apply a combined approach and
fuse different iris segmentation techniques, selected according to their performance
in addressing specific cases of degraded images. They proposal implements a model
selection strategy, which selects the final parametrizations for iris and pupil bound-
aries among the candidates returned by the used baseline segmentation strategies.
The selection relies on the image description provided by histograms of local gra-
dients, that are inputted to a support vector machine providing the fused response.
This strategy is designed to be modular and can be updated by adding/substituting
baseline segmentation methods. This proposal does not entail either coding or clas-
sification.

The method submitted to the challenge by Santos et al. [Santos et al., 2015] en-
tails both segmentation and recognition, and exploits all three techniques mentioned
above. It uses both the information from the iris and from the periocular region, en-
coded/matched in a localized way. The first step is iris ring segmentation, which is
carried out according to a variation of the integro-differential operator by Daugman.
As a matter of fact, the characterizing part of this proposal is the encoding/matching
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step. Once identified, this ring also allows locating the periocular region-of-interest
(ROI). According to a combined strategy, information encoding exploits a family
of texture descriptors used separately in the iris ring and in the regions surrounding
the cornea (i.e., eyelids, eyelashes, skin and eyebrows). In particular, the perioc-
ular region undergoes a twofold examination, entailing both a distribution-based
analysis of patches defined over a fixed grid, and a global analysis of the whole
region. The former is carried out by computing both local binary patterns (LBP),
histogram of oriented gradients (HOG), and Uni- form LBP (ULBP). Each descrip-
tor is computed separately for each patch and quantized into histograms. Global
analysis rather entails feature extraction from the whole periocular ROI. In this case
the descriptors applied are scale-invariant feature transform (SIFT) and GIST (a
set of five descriptors originally introduced in [Oliva and Torralba, 2001] to model
the shape of a scene in a way that bypasses the segmentation and the processing
of individual objects or regions). Iris information is encoded according to the clas-
sical approach described by Daugman [Daugman, 1993]. It may appear that much
more information is captured and stored from the periocular region than from the
iris. During matching, scores from all the adopted descriptors are fused by a non-
linear supervised neural network. It is worth pointing out that the method further ex-
ploits device-specific calibration techniques, that compensate for the different color
rendering characterizing each experimental setup. The latter is especially useful in
cross-sensor tests. In summary, this method both uses information from two differ-
ent sources, the iris and the periocular region, and further uses different descriptors
to fully exploit their different characteristics. The overall proposal is a good example
of how a difficult setting can be addressed by an ensemble of techniques.

4.3 Some interesting notes on achieved results

We will not report the detailed results of the competition. The interested reader
can refer to [De Marsico et al., 2018]. The same will be done for the results from
MICHE-II. Rather, we will underline some interesting aspects as possible guidelines
to take into account.

For each method and for each device, the segmentation was carried out on images
captured both indoor and outdoor (OUT); in some cases no segmentation at all was
returned, and tgis represents a kind of Failure To Enroll (FTE) error. The method by
Haindl and Krupička achieves the highest rate of successfully segmented images,
while the method used by Barra et al. achieves the lowest. However, thanks to the
number of different performance measures exploited, it was possible to observe that
the usable segmentation results returned by the latter, although less in number, were
more accurate, providing the highest level of similarity with the ground truth. From
the point of view of similarity with ground truth, the second method achieving the
best results was the one by Abate et al. Therefore these two methods should provide
higher quality masks, since they apply a more strict quality criterion for the obtained
segmentation. Surprisingly enough, the methods by Haindl Krupička and by Hu
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et al. were instead more reliable in terms of the rate of success in the following
recognition step. This seems a contradiction, therefore a more careful investigation
was carried out entailing the comparison of the 50 best common segmentations from
the different methods. When working on the pictures where the segmentation task
is easier, the results are different from those above. The mean scores on all devices
testify that the method by Haindl and Krupička is actually the most reliable one. This
means that it is not possible to predict the behavior of any method when problematic
samples are submitted.

It is interesting to have a look to Figure 9 to appreciate the differences that can
be observed in the segmentation masks, whose accuracy can be influenced by the
capture condition (indoor vs. outdoor), by the resolution of the image, determined
by the capture device, and by the segmentation method.

Fig. 9 Examples of the segmentation result in good quality MICHE images.

It is possible to observe the frequent degradation of image quality passing from
indoor to outdoor conditions, caused by a huger presence of reflections. However,
indoor capture can be influenced by the different color temperature of the illumina-
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tion sources and of the sensor (see for example IP5 IN and GS4 IN in Figure 9). A
higher resolution can be desirable to capture finer details. However, also the amount
of noise can be greater. An example is given by the more stable segmentation pro-
duced on GT2 images. Of course, a final assessment can only be provided by the
recognition results obtained on images captured in corresponding conditions.

4.4 Recombination of segmentation and recognition modules

Recognition was not specifically addressed in MICHE-I. However, since most
submitted proposals also included a recognition module, this allowed to carry
out further evaluations. We recombined segmentation and recognition modules in
different ways. The aim was to evaluate how the two parts of a proposal de-
pended on each other, and which segmentation methods provided a more robust
preliminary step for different codings. The well-separable and not already pub-
lished segmentation modules were those included in the proposals by Abate et al.
[Abate et al., 2015], Barra et al. [Barra et al., 2015], Hu et al. [Hu et al., 2015], and
Santos et al. [Santos et al., 2015], that have been described above.

The performances achieved by the recognition methods included in the proposals
submitted to MICHE-I were evaluated in verification mode (1:1 matching, where it
is to intend that a probe subject is matched against a single gallery subject, though
possibly exploiting more templates per subject). The used Figures of Merit (FOMs)
were decidability, area under curve (AUC) with reference to the Receiver Operat-
ing Characteristic (ROC) curve, and equal error rate (EER). The preliminary iden-
tification of the iris ROI was carried out in turn using the segmentation methods
of the challenge proposals. Decidability is the same FoM used for the NICE II
competition [Proença and Alexandre, 2012]. The first step to compute it requires
to carry out a ”one-against-all” comparison for each image I = I1; . . . ; In of the
data set. The matching process exploits the segmented images and the correspond-
ing binary maps M = M1; . . . ;Mn that provide the noise-free iris region identified
by the segmentation step. The comparison provides a set of intra-class dissimi-
larity values DI = DI1; . . . ;DIk, with k the number of image pairs belonging to a
same iris, and a set of inter-class dissimilarity values DE = DE1; . . . ;DEm, with
m the number of image pairs belonging to different irises. The decidability value
d′(DI1; . . . ;DIk;DE1; . . . ;DEm) → [0;∞[ used as evaluation measure is computed
separately for each recognition method as:

d′ =
|avg(DI)−avg(DE)|√
1
2 × (σ2(DI)+σ2(DE))

, (1)

where avg and σ2 have the conventional meaning of average and variance functions
computer over the parameter sets.

The challenge proposals including a clearly separable recognition module were
those by Abate et al. [Abate et al., 2015], Barra et al.[Barra et al., 2015], and San-
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tos et al. [Santos et al., 2015]. A further recognition method was submitted for a
special issue based on but non limited to the challenge, namely the one presented
by Raja et al. in [Raja et al., 2015]. It was tested in combination with all the four
segmentation modules in order to get a wider set of experiments. This approach to
feature extraction and recognition is based on deep sparse filtering. Sparse filtering
[Ngiam et al., 2011] is an unsupervised algorithm which does not explicitly aim to
model the distribution of data. It optimizes a simple cost function of sparsity using
l2 normalized features. The only parameter required in learning sparse filters is the
number of features, as the sparse filters are learned by optimizing sparsity in feature
distribution. Extending the method to deep sparse filters, a variable number of layers
form the building blocks in learning. In the proposed approach, the deep sparse filter
consists of two layers such that layer 1 is trained using 200,000 random patches of
size 16 16 pixels from 4212 natural images. The sparse filtered features obtained as
output from the layer 1 are normalized and provided to layer 2 using a feedforward
network. The sparse filter is trained at layer 1 with 256 filters of dimension 16 16
features and at layer 2 with 256 sparse filters of 16 16 features. The sparse filter
features obtained from layer 2 are exploited to extract features from the iris images.
Each iris image is convolved with the 256 filters of layer 2, so that a total of 256 re-
sponse images are obtained. These images are binarized, and pooled at pixel feature
level in groups of eight so to obtain a response image from each pool. Afterwards
an histogram is extracted from each obtained image and histograms are chained to
form a feature vector.

When recognition is assessed in a context like the one addressed by MICHE, it is
significant to also test cross-device performance. Segmentation can affect the final
process by a different accuracy in identifying pixel regions belonging to the iris.
Some such regions may be missing or some non-iris patches may erroneously enter
the feature extraction and matching step. The first kind of errors become critical
if quite extended, so that relevant information may be left out from the matching.
This may either cause a FA (the missing region was a highly characterizing one) or
a FR. The second hypothesis is less frequent,because the remaining part of the iris
could be sufficient for a positive recognition. On the other hand, the second type
of error may affect the final result even if less extended, since it introduces differ-
ences between two irises even where pixels should not have been considered for the
matching, therefore erroneously increasing the differences. The most frequent con-
sequence is a FRR, since in general the non-iris regions have a structure significantly
different from the iris regions of both the same eye or of different eyes. Differently
from segmentation, feature extraction and matching relies on finer details, that allow
to summarize the microstructure of the iris region. In this case artifacts and sensor-
typical noise introduced by a sensor can cause a higher accuracy degradation when
captured images are matched against those captured by a different sensor. In partic-
ular, the Sensor Pattern Noise (SPN) as defined in [Lukas et al., 2006] is so specific
of each device, though of the same brand and model of others, that it could be used
to identify the one that captured an image.

Cross-sensor matching experiments were implemented by alternatively using sets
of images acquired by the same device as either probe set (gallery) or as test set,
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including intra-device recognition. Each combination of probe-gallery devices will
be referred as a class off comparison. Detailed report of experimental results can be
found in [De Marsico et al., 2018]. It is interesting here to just underline the main
observed aspects.

The first observation deriving from the inspection of the results is that the recog-
nition method by Santos et al. systematically outperforms the others in all classes
of comparisons and with all segmentation algorithms. Among the classes of com-
parison, those entailing the same device generally allow better performance with re-
spect to heterogeneous pairs. The class of comparison GT2vsGT2 achieves a higher
level of performance (on average and compared to the others) in terms of both the
EER values achieved by the various combinations of segmentation/recognition, and
of the relationship between FARs and FRRs (better ROC curves). This happens
notwithstanding the poorer resolution of the embedded camera. However this class
generally presents the lowest decidability values. The apparent contradiction may
be caused by the fact that the sizes of probe and gallery sets for GT2 are smaller
than the others. This means a lower percentage of intra-classes uncertainty, which
contributes to increase the level of performance, and to a lower intra-class gener-
alizability of the results. Another non obvious observation is that performances are
sensitive to the swap of the probe/gallery role of images from different sources.
Of course this depends on the different level of detail of images from devices with
different resolution. In general, the higher the resolution of the probe (the amount
of details) with respect to the gallery images, the worse the result, because part of
the probe information does not get matched. Finally, the segmentation methods by
Haindl and Haindl and Krupička , and by Hu et al. provide more stable results, that
cause less performance difference in the following recognition step., even if in both
cases the superiority of the recognition by Santos et al. if even more evident.

A final analysis on the results of MICHE-I on when using a single recognition
system was carried out to identify the ”intrinsic” covariates that can mainly affect
recognition. For this reason, ”extrinsic” covariates were neglected. In particular,
for each experiment the device was fixed for both probe and gallery, to neglect
factors related to the device difference. Moreover also the segmentation and the
recognition methods were fixed, in order to neglect the differences in the achieved
similarity given by the specific techniques. The aim was to identify the best/worst
pairwise comparisons that were common to all experiments. For each experiment,
each gallery template is compared with each of the others of the same subject, and
the full set of the obtained intra-subject dissimilarity scores is organized in a list
ordered by ascending values. Given device and methods peculiarities, such scores
may fall in different ranges and have different distributions across the experiments.
However, it is still worth comparing the obtained rankings. The samples considered
as the ”best” ones, always appear on the heading part of the ordered lists, meaning
that they always achieve a very good similarity when compared with samples of
the same subject. The contrary holds for ”worst” samples. The possible recurrent
features of the latter are the most interesting, because they represent those intrin-
sic conditions that can hinder a correct recognition. Figure 10 shows some typical
examples of ”worst” samples.
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Fig. 10 Examples of ”worst” samples.

It is possible to observe that the occlusions by the eyelids are rather evident
in most of the pictures; the average brightness of images is low, or the iris falls
in a shadow region; reflections of unpredictable nature can affect images captured
outdoors (image in the upper left corner of Figure 10. On the contrary, in ”good”
samples the visibility of the irises and of the pupils is high, thus making it easier to
detect and segment them.

Aiming at a possible gain in accuracy, the combination of multiple recognition
methods was evaluated. In this last round of experiments, the different recognition
results were fused at score level. Each experimental session was identified by the
pair of (possibly different) capture devices capturing gallery and probe, by the seg-
mentation method, and by the recognition strategy exploited. The latter can entail
either a single method or a score level fusion of the results from a possible subset of
them. For each session, each recognizer involved produced a dissimilarity matrix:
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the lower the value of a cell (score), the higher the probability that the images on the
row and on the column depicted two irises from the same subject. In order to fuse
more results, the values in the matrices had to be normalized, in order to obtain com-
parable values in a common range [0,1]. This was achieved by the Min/Max rule,
by considering the minimum and the maximum value for each matrix. Two score
level fusion strategies were investigated: the Simple Sum fusion and the Matcher
Weighting fusion. The former consists in just summing up the scores produced by
each of the M methods involved in a session. The values in the obtained distance
matrix are normalized again to remain in the range [0,1]. The Matcher Weighting
fusion assigns to each matcher m a weight wm that is inversely proportional to the
achieved EER em and is defined as follows:

wm =

1
M
∑

m=1

1
em

em
, (2)

where 0≤ wm ≤ 1 and
M
∑

m=1
wm = 1.

The number of segmentation methods, of recognition methods, of pairs of
probe/gallery devices, and the consequent number of their combinations, makes the
amount of results to analyze and report extremely large. It is easy to guess how this
amount further increases by introducing possible combinations of recognition meth-
ods in multimodal strategies, and possible different fusion strategies for each such
combination. Once again, we report here only the most relevant outcomes. Given the
4 segmentation method,and for each of them the 9 combinations of probe/gallery de-
vices, an overall analysis of the fusion results testifies that the improvement achieved
by using any of the two fusion strategies is rather limited. In many cases the AUCs
are just a little wider than the ones obtained by an execution of Santos et al. al-
gorithm alone. This means that the four recognition methods taken into account
have not sufficiently complementary ability to extract and match relevant features.
In other words, they rely on similar information content, though represented in dif-
ferent ways. The increased computational demand required by running different
methods and by the fusion of their results is not positively counterbalanced by a
significant enough improvement in the recognition accuracy. In conclusion, a gener-
ally well performing method can achieve better performance than the combination
of weaker ones, if the latter do not represent different kinds of information so to
balance each other flaws.

5 MICHE-II challenge: iris recognition

Along the line of NICE challenges, the second round of MICHE challenge, namely
MICHE-II, focused on iris recognition. As already underlined, the accuracy of the
encoding in correctly extracting relevant and discriminative features, and the follow-
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ing recognition, can be generally heavily affected by the quality of the segmentation.
In order to provide a common starting point to all participants, not only a common
benchmark was provided, that represents an extension of the previous dataset though
maintaining the same feature distribution and variety. As for the send phase, all the
competing methods had to start from the results of the same segmentation algorithm,
in order to be able to assess the net contribution on the feature extraction/recognition
alone. As for NICE, the best segmentation algorithm from MICHE-I was chosen,
namely the one by Haindl and Krupička [Haindl and Krupička, 2015]. Of course,
different feature extraction procedures can produce different templates, and specific
approaches to similarity/distance evaluation. Therefore, the competitors were free
to choose a suitable distance measure for the produced iris templates, with the only
constraint to be a semi-metric. The higher is the dissimilarity, the higher is the prob-
ability that the two irises are from different subjects. Given I the set of images from
the MICHE database, and Ia and Ib ∈ I, the dissimilarity function D had to be defined
as:

D : Ia× Ib→ [0;1]⊂ R, (3)

with properties

D(Ia; Ia) = 0 (4)
D(Ia; Ib) = 0!Ia = Ib (5)
D(Ia; Ib) = D(Ib; Ia) (6)

Each algorithm had to return a full dissimilarity matrix among probe and gallery
sets. New images were added and distance matrices were computed from scratch
during the evaluation of the methods, in order to avoid any kind of bias while cre-
ating the final rank. Distance matrices were used to compute the classical FoMs to
rank them, namely Recognition Rate (RR) for identification, and Receiver Oper-
ating Characteristic (ROC) curves, in particular the Area Under Curve (AUC), for
verification.

5.1 Methods participating in MICHE-II

We summarize below the main characteristics of the participants. As for MICHE-I,
the methods are listed by alphabetical order of the first author’s last name, even if
they were assigned an identifying label. Also in this case a special issue following
the challenge hosted a further method that was evaluated and compared in a second
round.

The methods labeled as irisom was implemented is first described in [Abate et al., 2017a]
and experiments are extended in extended in [Abate et al., 2017c]. It implements iris
recognition in the visible spectrum through unsupervised learning by means of Self



MICHE competitions 25

Organizing Maps (SOMs). The proposed method starts with a first step of image en-
hancement by simple image processing techniques, like contrast enhancement and
histogram adjustment. Then it exploits unsupervised learning by Self Organizing
Maps (SOMs). The SOM network clusters iris features at pixel level, after discard-
ing those marked as non-iris in the segmentation mask. The discriminative feature
map is obtained by using RGB data of the iris combined with the statistical descrip-
tors of kurtosis and skewness, computed at pixel level in a neighborhood window
of size 3× 3. The network produces a feature map with the activation status of the
neurons for each pixel. The map represents a cluster decomposition of the image,
which maps the problem of iris recognition onto a lower dimensional space. The
method then computes the Histogram of Gradients (HOG) over the obtained feature
maps, and the result is used as a feature vector. Verification relies on the Pearson
correlation coefficient computed in the [0,1] real interval. The best results for this
method were achieved with 5×5 and 10×10 SOMs.

The method otsedom is described in [Aginako et al., 2016a], and experiments
are extended in [Aginako et al., 2017a]. The proposal was submitted by a joint team
from Universidad del Pais Vasco (UPV) and Universidad de Las Palmas de Gran Ca-
naria (ULPGC). The approach combines popular Computer Vision techniques and
Machine Learning paradigms. Starting from the segmentation, well known local
descriptors are computed. Those suitable to the problem are selected after evaluat-
ing a collection of 15, with different grid configuration setups. Popular examples
of the selected descriptors are Local Binary Patterns (LBP), Local Phase Quanti-
zation (LPQ), and Weber Local Descriptor (WLD). They are used individually to
build separate classifiers by a supervised Machine Learning approach. Each classi-
fier computes the dissimilarity between two irises by the histogram distance between
the two a-posteriori probability distributions computed from the two iris images. In
a second step, the best combination of subsets of classifiers are evaluated to build
the best multi-classifier system out of the individual ones. In practice, the final al-
gorithm combines the best five descriptors to obtain a robust dissimilarity measure
of two given iris images. The mode of each a-posteriori probability for each class
value is used to combine the classifiers. Some combinations of local descriptors also
take into account periocular region.

A group with a slightly different composition from the above presented a further
set of proposals collectively labeled as ccpsiarb [Aginako et al., 2016b]. The exper-
iments presented by the authors are extended in [Aginako et al., 2017b]. Based on
the training dataset given by MICHE II, a set of classifiers is constructed and tested,
aiming at classifying a single image. Iris images are processed using well-known
image processing algorithms. Different transformations of the original pictures can
highlight different characteristics of the images. Examples of the transformations
tested are Equalization, Gaussian, Median, etc. This phase aims at expressing the
variability in the aspect of a picture, so to obtain different values for the same pixel
(feature) positions. The output image are considered the input of the previously
trained classifiers, obtaining the a posteriori probability for each of the considered
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class values. The classifiers implement some well known ML supervised classifica-
tion algorithms, with completely different approaches to learning: IB1, NaiveBayes,
Random Forest and C4.5. Experiments take into account the 19 image collections
obtained by applying single transformations, and the four different classifiers, giv-
ing a total of 76 experiments. After testing all these combinations, the Edge trans-
formation followed by IB1 classification (identified as combination ccpsiarb 17) is
identified as the combination providing the best results.

The tiger miche method described in[Ahmed et al., 2016], with experiments ex-
tended in extended in [Ahmed et al., 2017], uses a combination of a popular iris
code approach and a periocular biometric based on the Multi-Block Transitional
Local Binary Patterns. To generate iris codes, the method convolves the unwrapped
iris image with 1-D Log-Gabor filter. Log-Gabor functions are chosen because they
have no DC component, and this can alleviate the negative influence of light inten-
sity differences on textural information, which affects the images captured in the
visible spectrum. Since a 1-D filter is used, each row in the unwrapped image is
treated as 1-D signal. It is multiplied in a frequency domain with 1-D Log-Gabor
filters of different scales, that capture textural information with different level of
details. To generate the iris code, the phase information of the output signals is
quantized into four levels, one for each possible quadrant in the complex plane. The
coding then discards iris code values at positions corresponding to either very small
or very large amplitudes of filter response. Hamming distance is used to match the
iris codes, once adapted to take the segmentation mask into account.

Transitional LBP (TLBP) uses comparisons between neighbor pixels in a clock-
wise direction for all pixels, except the central one, so that it encodes encodes infor-
mation about the partial ordering of border pixels. Its formulation is

T LBPP,R = s(g0,gP−1 +
P−1

∑
i=1

s(gi−gi−1)2i, (7)

where, as usual, g0 is the central pixel of the window over which the code is com-
puted, P is the number of neighbors, R is the window radius, ans s(x) returns 1 or 0
according to the sign of its argument. Multi-block extensions of both LBP and TLBP
use the average gray values from the blocks of pixels instead of the gray values of
individual pixels to create the code. The method uses block sizes 3× 3, 9× 9, and
15× 15. For each block size, it computes T LBP12,3 and T LBP24,6 codes and their
histograms, which are concatenated to create a feature vector. Histogram vectors are
matched using Chi-Square distance between the concatenated histograms.

The Hamming distance between two iris codes and the periocular matching score
are computed separately, and then combined by a score-level fusion to improve the
system accuracy. The values returned by the matchers fall in different ranges and
present a very different score distributions, therefore the authors exploit z-score nor-
malization.
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The method labeled as karanahujax is described in [Ahuja et al., 2016], with ex-
periments extended in [Ahuja et al., 2017]. It exploits a hybrid convolution-based
model, for verifying a pair of periocular images containing the iris. The baseline pro-
posed model is based on Root Scale-Invariant Feature Transform (SIFT). The binary
mask is used to get the iris image rid of occlusions. Then Dense color Root SIFT de-
scriptors [Arandjelovic and Zisserman, 2012] are computed, giving keypoints with
identical size and orientation. The hybrid model is conceived as a combination of
this baseline model and of two deep networks, an unsupervised one and a supervised
one. The unsupervised convolution-based deep learning approach (Model1) uses a
stacked convolutional architecture, with external models learned a-priori on external
facial and periocular data, on top of the baseline Root SIFT model: the approach is
completed by different score fusion strategies. The supervised approach (Model2)
also uses a stacked convolution architecture but the feature vector is learned in a
supervised manner. The fusion carried out in the hybrid model exploits an average
of the computed scores after suitable normalization.

FICO matcher exploits the FIRE (Fast Iris REcognition) algorithm is described
in [Galdi and Dugelay, 2016]. Related experiments are extended in extended in
[Galdi and Dugelay, 2017]. The key features of the method are the use of a combi-
nation of classifiers exploiting the iris color and texture information, and its limited
computational time, that makes it particularly attractive for fast identity checking on
mobile devices. The classifiers whose results are fused respectively exploit the dis-
tance among color, texture, and ”cluster” features, meaning the presence of specific
pixel aggregations in the image. In order to compute color distance, given two irises,
each picture is first split into small blocks. For each pair of corresponding blocks,
the color distance is computed, and the minimum color distance obtained is the fi-
nal score re-turned by the color descriptor. The exploited color distance measures is
the KolmogorovSmirnov distance. Given the cumulative histograms of images, with
ĥi = ∑

j≤i
h j, the distance is defined as:

dK−S(H,K) = max
i
(|ĥi− k̂i|). (8)

The texture descriptor relies on the MinkowskiBouligand dimension (box-counting
dimension). The box-counting dimension of a set S is defined as:

dimbox(S) = limε→0
logN(ε)

log 1
ε

, (9)

where where N(ε) is the number of boxes of side length ε required to cover the set
S. Images are decomposed in layers according to the colors, each layer is divided
into blocks and for each of them the box-counting dimension is computed. These
are finally chained in a feature vectors, and matching relies on Euclidean distance.

”Clusters” are connected components resulting from morphological operators ap-
plied to image layers obtained as for texture description. The features characterizing
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clusters are centroid coordinates, orientation and eccentricity. Such cluster features
vectors are chained to make up an image feature vector.

Two versions of the method are tested, namely V1 that uses of three kinds of
descriptors, by suitably waiting the obtained distances, and V2 that does not use
texture.

The method Raja described in [Raja et al., 2017] did not participate in the first
round of the MICHE-II competition, but was submitted for the following special is-
sue and was therefore tested from scratch together with the others. It proposes deep
sparse filtering carried out on both multiple image patches and on the complete im-
age. The image corresponding to each RGB channel is divided into a number of
blocks. Both such blocks and the whole image are processed to obtain deep sparse
histograms using the set of deep sparse filters. The final feature vectors is the con-
catenation of the set of histograms obtained from different channels and blocks.
The extracted features are represented in a collaborative subspace, to jointly repre-
sent the set of training samples that correspond to enrollment. In such space a new
classification approach is adopted.

5.2 Some interesting notes on achieved results

The ranking of the participant methods was obtained by running all the methods
from scratch at BipLab - University of Salerno, over an extended set of images
after segmenting them with the segmentation algorithm provided for the competi-
tion. The final rank list in Table 1 reports the best performing version among the
ones submitted for each author (label). The rank was obtained by averaging the
Recognition Rate (RR) and the Area Under Curve (AUC) achieved, and considering
only images captured by the two smartphones. Both cross-device (ALLvsALL) and
single-device settings were considered

• tiger miche
• karanahujax Model2
• Raja
• irisom 10x10
• FICO matcher V1
• otsedom
• ccpsiarb 17

As for the segmentation results, details can be found in [De Marsico et al., 2017],
while it is interesting here to point out some interesting aspects of the outcomes.

As a first observation. the better the ranking achieved, the more stable the method
with respect to the test setting. Of course, the hardest conditions are those found
in ALLvsALL, where gallery and probe images come from different devices in
unpredictable pairings. As expected, all methods provided consistently lower per-
formances in this condition. The results confirmed the observation stemming from



MICHE competitions 29

MICHE-I results: the images over which the best results were achieved in homo-
geneous settings (gallery and probes from the same device) come from IP5, and
the achieved results further present a lower standard deviation, notwithstanding the
lower resolution of the camera. Once more this seems to suggest that, in the given
uncontrolled and noisy conditions, higher resolution may also increase the way the
noise typical of iris images can affect recognition. A related observation regards the
way the different methods behave with respect to the different devices. The best
method achieves high results with both cameras. Four methods, namely karanahu-
jax Model2, irisom 10x10, FICO matcher V1 and ccpsiarb 17 rather achieve their
best performance with IP5. Methods developed in more versions are more stable
w.r.t. the different variations. For instance, karanahujax Model1 and karanahu-
jax Model2 achieve the same final score, but Model2 achieves the better behav-
ior in ALLvsALL. A similar constant behaviour is observed for the many ver-
sions of ccpsiarb, while FICO matcher V2 achieves dramatically worse results than
FICO matcher V1, confirming the expected outcome that texture distance is criti-
cal for iris matching. Execution times were not evaluated in the competition, but
are important for real-time operations. The best method tiger miche also achieved
the best result in terms of time required by the single matching operation. Only
FICO matcher V1 did better, and even more FICO matcher V2, that, however, pro-
vides much lower recognition accuracy. On the other extreme we find the methods
relying on ML techniques, which therefore seem not suited for a real time opera-
tional setting.

6 MICHE after the challenges

The previous sections have shown the role of the MICHE dataset within the chal-
lenges using it as benchmark: robust approaches have been designed, developed and
tested both for segmentation and recognition/verification purposes, mainly thanks
to the dual nature of the dataset itself:

• the different acquisition modalities adopted for the enrollment of the subject,
from the indoor/outdoor acquisition to the different illumination conditions, and
most of all the different of devices, have allowed the design and testing of cross-
sensor verification algorithms;

• from a different point of view, the capture protocol assured a well-balanced pres-
ence of images presenting all the possible distortions that can affect iris images
in realistic mobile unattended conditions.

In the last years, pattern recognition performance both in terms of accuracy and
of computing time have been considerably improved, mainly due to the wide dif-
fusion of the artificial intelligence-based approaches like fuzzy-controllers configu-
rations and Machine/Deep Learning techniques. Therefore, it has become possible
to address more complex problems and conditions, also in biometrics. As a conse-
quence, despite the high level of complexity of the images in the MICHE dataset,
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and thanks to its characteristics, a number of researchers investigating iris recogni-
tion have used it also outside the challenge to train and/or test their architectures
over these images, also reaching quite interesting results. These approaches have
successfully addressed each of the issues involved in a typical iris recognition sys-
tems, as summarized in Figure 11.

Fig. 11 A schema organizing the works that have used MICHE dataset according to the specific
goal of the research.

Eye Landmark Detection The proposal in [Huang et al., 2018] deals with a
novel approach for eye landmarks detection with two-level cascaded convolutional
neural networks. The network at the first level utilizes eye state estimation as an
auxiliary task to provide the initial positions of the eyes. The shallower network at
the second level fine tunes eye positions by taking as input some small regions cen-
tered at predicted eye points locations.

Noise Removal. The goal of the work presented in [Abate et al., 2017b] is im-
plement an effective lightweight fuzzy-based solution for noise removal from iris
images, which allows a fast yet reliable segmentation approach which preserves the
original resolution of the iris images.

Sclera Segmentation. Sclera segmentation can represent a preliminary step for
either a correct iris identification or for further processing based on the segmented
area. The paper [Alkassar et al., 2016] proposes a new sclera quality measure and a
method for sclera segmentation under relaxed imaging constraints. In particular, the
quality measure is based on a focus measure. The sclera segmentation is obtained by
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fusing the information about pixel properties of both the sclera area and of the skin
around the eye. The authors also propose a template rotation for sclera alignment,
and distance scaling methods to minimize the error rates when noisy eye images are
captured at-a-distance and on-the-move, together with overcoming head pose rota-
tion.

Iris Segmentation. The method in [Radman et al., 2017] accurately localizes
the iris by a model relying on the Histograms of Oriented Gradients (HOG) descrip-
tor and on a Support Vector Machine (SVM) classifier, namely HOG-SVM. Based
on the achieved localization, the iris texture is automatically extracted by means of
a cellular automaton which evolves via the GrowCut technique.

The study in [Arsalan et al., 2017] proposes a two-stage iris segmentation scheme
based on a convolutional neural network (CNN); which is capable of accurate iris
segmentation in severely noisy environments of iris recognition by visible light cam-
era sensor.

The same group proposes in [Arsalan et al., 2018] a densely connected fully con-
volutional network (IrisDenseNet), able to determine the true iris boundary even
with low-quality images. The approach ensures an improved information flow be-
tween the network layers, by introducing dense connectivity, i.e., the direct con-
nections from any layer to all subsequent layers in a dense block. The experiments
are carried out on five datasets, acquired in both visible and NIR light, including
MICHE.

The segmentation method proposed in [Amjed et al., 2018] is designed for the
unconstrained environment of the Smartphone videos. It is based on the preliminary
choice of the best frames from the videos. Then it tries to enhance the contrast of
these frames between dark and light regions by applying two fuzzy logic member-
ship functions on the negative image.

Feature Extraction. The proposal in [Zhang et al., 2018] deals with a nonlinear
dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA).
This tool is able to extract the high nonlinearity and inherently time-varying dynam-
ics of batch process, but, being an unsupervised feature extraction method, it lacks
the ability to utilize batch process class label information. The authors propose a
novel batch process monitoring method based on the modified GKSFA, namely
discriminant global preserving kernel slow feature analysis (DGKSFA), which in-
tegrates discriminant analysis and GKSFA. MICHE dataset is used to exemplify
discriminant and cluster analysis, to help explaining the proposed nonlinear contri-
bution plot.

Iris Recognition. The paper [Li and Huang, 2017] proposes an iris recognition
mechanism to solve the problem of user authentication in wearable smart glasses.
Given the premises, the contribution deals with both hardware and software. As for
the hardware, a set of internal infrared camera modules is designed, including an in-
frared light source and a lens module, which is able to take clear iris images within
25 cm. As for the software, the devised iris segmentation algorithm is devised to be
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used on smart glasses devices. Regarding the iris recognition, the authors propose
an intelligent Hamming distance (HD) threshold adaptation method which dynam-
ically fine-tunes the HD threshold used for verification according to empirical data
collected. The research in [Lee et al., 2017] proposes a new recognition method for
noisy iris and ocular images by using one iris and two periocular regions, both cen-
tered in the pupil and with a slightly different radius. The approach exploits three
convolutional neural networks (CNNs).

Periocular Authentication. The experiments in [Dellana and Roy, 2016] apply
a Convolutional Neural Network (CNN) to carry out periocular authentication on
two datasets. Several different data augmentation techniques are tried to increase
accuracy, and the results testify their relative benefits.

Miscellanea. MICHE has bee exploited as benchmark even for experimenting
algorithms out of the scope of the ”hard” biometric recognition (individual sub-
ject recognition), like in [Rattani et al., 2017], in which a feasibility study of gen-
der recognition from ocular images has been proposed. In an even wider scope,
given the multiple cameras involved in the acquisition process of MICHE dataset,
some works have used it to assess sensor identification methods. The purpose in that
case is to classify the images according to the sensor that shot it. As an example,
[Kauba et al., 2018] and [Freire-Obregon et al., 2018] propose two approaches with
this goal. They are respectively based on deep learning networks and on a technique
based on photo-response non-uniformity noise (PRNU). Sensor features have also
been occasionally exploited for binding the identity of a subject to the information
related to the sensor of his/her smartphone, as shown in Figure 12, in order to ob-
tain a double check of the user fusing biometrics and hardware metrics. Interesting
detailed analyses are reported in [Galdi et al., 2015] and [Galdi et al., 2016].

Fig. 12 The fusion of the information related to the subjects and those related to the smartphone
sensor could both improve the verification of user identity and confirm the ownership of the device.
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Reddy et al. [reference is below] proposed OcularNet, a convolution neural network (CNN) model, using six registered overlapping patches from the ocular and periocular region are extracted to train a small CNN for each patch named PatchCNN to extract feature descriptors. As the proposed method is a patch-based technique, one can extract features based on the availability of the region in the eye image. The proposed Ocular-Net with 1.5M parameters obtained comparative performance with popular ResNet-50 model which has 23.4 M parameters.

"N. Reddy, A. Rattani and R. Derakhshani, "OcularNet: Deep Patch-based Ocular Biometric Recognition," 2018 IEEE International Symposium on Technologies for Homeland Security (HST), Woburn, MA, USA, 2018, pp. 1-6".
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A. Rattani and R. Derakhshani, "Online co-training in mobile ocular biometric recognition," 2017 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, 2017, pp. 1-5.
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7 Conclusions

This chapter addressed the chalenges and difficulties in performing reliable bio-
metric recognition, using self-acquired images from the subjects attempting to as-
sess top a resource (selfies). In particular, we described the MICHE dataset, used as
main data source for two international competitions about segmentation/recognition
effectiveness of biometrics systems in such type of data. Based on our MICHE ex-
perience, it is possible to identify a number of take-home messages, presented below
in the form of a list:

• An experienced operator could control specific critical conditions (e.g., pose,
illumination, eye framing), possibly repeating the sample capture. However, this
is not possible in uncontrolled/unattended conditions;

• The acquisition of the iris using visible light and in uncontrolled conditions
presents peculiar difficulties, but it may rise even more problems when the op-
erational setting entails a mobile application: it is necessary to compensate for
users’ lack of technical experience/ability, poor image quality, and also consider
the possibly different features of the devices used for enrollment/recognition;

• Indoor conditions usually rise less illumination distortions with respect to out-
door, where a higher number of illumination sources may affect the image qual-
ity. On the other hand, data yielding from different environments has high prob-
ability of being heterogenous, due to the different color temperature of illumina-
tion sources;

• Reflections are more evident in outdoor than in indoor environments, but a more
diffused and uniform illumination can create better conditions for localization
and segmentation;

• Higher resolutions increase the amount of information colected, but also increase
the levels of noise. Hence, the signal-to-noise ratio appears to be weakly corre-
lated with the resolution of the images acquired;

• It is not possible to fully and reliably predict the behavior of any method when
problematic samples are submitted, i.e., there is substantial amount of work to
be done in terms of reliability and robustness of recognition in case of severely
degraded samples;

• The periocular region, coded either by the same or by different descriptors than
those used for the iris, can improve the recognition accuracy by providing addi-
tional information. as a matter of fact, using this multi-trait strategy has become
a quite used solution, especially when expecting poor quality eye samples;

• The combined use of multiple types of features can reduce the negative effect of
a particular data covariate. However, at the same time, it tends to augment the
computational complexity of the recognition chain, which might be particularly
problematic for the execution in mobile devices;

• Typical cross-sensor differences may modify the iris micro-texture and possi-
bly introduce artifacts, but several problems can be addressed by suitable color
compensation techniques;
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• It appears that the higher the resolution of the probe with respect to the gallery
images, the higher the amount of unmatched information and therefore the lower
the recognition accuracy. This observation suggests that a gallery update should
be carried out when the sensor technology improves too dramatically;

• The increase of noise due to higher resolution might be limited to uncontrolled
conditions where no capture adjustment is attempted, as in the case of the
MICHE dataset. Due to the lack of extensive cross-resolution tests in either con-
trolled or uncontrolled conditions, it is not possible to generalize this observation;

• Intrinsic factors affecting the recognition problem (not related to either the cap-
ture device or the segmentation/recognition methods) are the iris occlusions due
to eyelids, the low brightness of the samples, the existence of shadows in the iris
region, and reflections of unpredictable shape and color inside the iris ring;

• Fusion of different features and different classifiers can improve the matching
phase, when each component highlights and takes into account a different rele-
vant aspect for coding and matching. However:

– fusing more recognition methods can be effective only if they take into ac-
count sufficiently complementary information; this may not be true notwith-
standing the different way of representing features, if the information content
is basically the same;

– it is not sufficient to fuse different computer vision techniques to enhance
the image and different descriptors to capture different properties; it is also
necessary to identify those processing steps able to extract the really relevant
information.

• Machine-Learning based techniques seem still too demanding, especially in
terms of the computational time cost, to be exploited in real-time operations in
mobile devices, where the computing power is limited and the requirement of
low energy consuption is a strong constraint.
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