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Data Science: Interpretability/Explainability?
• In the context of Data Science, explainability and interpretability are often 

used interchangeably. 
• Interpretability is about the extent to which a cause and effect can be 

observed within a system. 
• The extent to which we are able to predict what is going to happen, given a change in 

input or algorithmic parameters. 

• Explainability, meanwhile, is the extent to which the internal mechanics of a 
machine or deep learning system can be explained in human terms. 
• In summary, interpretability is about being able to discern the mechanics 

without necessarily knowing why. Explainability is being able to quite literally 
explain what is happening.
• Supposing that we are doing a science experiment at school. 

• The experiment might be interpretable insofar as you can see 
what you’re doing, 

• However, it is only explainable once we dig into the chemistry behind.
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• Automated models can be astonishingly good at making predictions, but they 
often can’t yield explanations for their forecasts in terms that humans can easily 
understand. 
• The features from which they draw conclusions can be so numerous, and their 

calculations so complex, that it is often impossible to perceive exactly why a 
model produces a specific answer (explainability).

• Interpretability is also crucial for several reasons. If we don’t understand how a 
model works, it is difficult to transfer knowledge into a different domain, for 
example. 
• It is also important for guarding against embedded bias or debugging an 

algorithm. It helps to measure the effects of trade-offs in a model. 
• More broadly, as automated systems play an increasingly 
important role in society, understanding precisely how they produce 
their answers will become more critical.
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• Another difficulty is that most of the well-known techniques that interpret/explain 
the output of a machine-learning system were developed for tabular data, i.e., 
data where the number of features is relatively short, and have an obvious 
semantical meaning.
• For example, consider the following SHAP plot, interpreting the model that predicts the survival 

chances of Titanic passengers:
A prediction 
of 0.93 was 
produced. 

The SHAP plot illustrates the most
important attributes the model:
- If the passenger was not in third class,
survival chances increase substantially;
- If the passenger was female: survival
chances increase even more;
- If the passenger was not in first class:
survival chances fall slightly.



Explainability/Interpretability Taxonomy

• The existing techniques for Explainability/Interpretability are divided 
in terms of:
• Depth
• This is related to the length to which we explain a given model, i.e., 

whether the technique constraints the model’s complexity to make it more 
transparent (intrinsic explainability) or allows complexity and focuses on 
explaining exclusively the system outputs (post hoc explainability). 

• Scope
• Indicates the range that a technique possesses, i.e., if it explains 

individual(instance) predictions (local) or the whole model’s behaviour 
(global). 

• Applicability
• Divides the techniques based on their model affinity, i.e., 
whether they are only compatible with a specific family of 
models (model-specific) or any kind of model (model-agnostic). 

C. Molnar. Interpretable machine learning. A guide for making black box models explainable, 2019.  https://christophm.github.io/interpretable-ml-
book/



Explainability/Interpretability: Typical Techniques
• The three most common techniques include LIME, Shapley values 

(SHAP) and Saliency Maps.  
• LIME (Local interpretable model-agnostic explanations) use a 

surrogate linear model, trained on perturbed data (e.g., corrupted 
clusters of adjacent pixels), to locally approximate the behaviour 
of a complex black-box model. 
• Shapley values are based in game theory. Shapley values are 

assigned to the features based on how important they are to a 
given prediction. 
• Saliency maps use the derivative of a highly complex function 

(essentially, a CNN) with respect to a given input image, to 
determine which pixels need to be changed the least, while also 
changing the output class the most. 

• Finally, other methods were proposed exclusively for visualisation 
purposes (e.g., PDP and ALE), which produce plots that correlate the 
independent 
variables to a target variable, exploiting the data marginal and 



LIME
• Local interpretable model-agnostic explanations 

(LIME) (Ribeiro, M.T., Singh, S. and Guestrin, C.) is a 
method for fitting local, interpretable models that 
can explain single predictions. 
• LIME explanations surrogate models, i.e., models 

(like a linear model or decision tree) that are 
learned on the predictions of the original black box 
model.
• Algorithm:

• Choose one instance of interest for which we want to 
have an explanation of its black box prediction. 

• Perturb the data and get the black box predictions for 
these new points (e.g., super pixels).

• Fit a novel weighted, interpretable model on the 
dataset with the variations (e.g., linear regression).

• The explanation is given by the super-pixels with the 
largest weights. 

Instance Explanation “Labrador”



Saliency Maps
• In essence, saliency is what “stands out” in an 

image, enabling to focus on the most important 
regions. 
• There are three main families of visual saliency 

methods:
• Static saliency: This class of algorithms relies on 

image features and statistics to localize the most 
interesting regions of an image.

• Motion saliency: Algorithms in this class typically rely 
on video or frame-by-frame inputs. The motion 
saliency algorithms process the frames, keeping track 
of objects that move. 

• Objectness: These algorithms that compute 
“objectness” generate a set of “proposals”, or more 
simply bounding boxes of where it thinks an 
object/foreground may lie in an image.

Input Data Class-specific 
Saliency masks



Shapley Values

• Are particularly suited for tabular data.
• Upon a particular instance and feature

that we want to “explain”, the idea is to 
compare the responses provided by the 
system with all possible coalitions 
with/without the feature value.
• Values outside the coalition are draw randomly.

• By accumulating the differences between 
the system responses when the feature 
has/has not a particular value, we obtain 
information about how important is that 
feature value.

Instance

300,000€



Shapley Values: Example
• Suppose we want to evaluate the contribution of 

the ”cat-banned” feature value when it is added to a 
coalition of ”park-nearby” and ”area-50”. 

• We simulate that only ”park-nearby”, ”cat-banned” and 
”area-50” are in a coalition by randomly drawing another 
apartment from the data and using its value for the floor 
feature. 

• The value floor-2nd was replaced by the randomly 
drawn floor-1st. Then we predict the price of the 
apartment with this combination (€310,000). 

• In a second step, we remove ”cat-banned” from the 
coalition by replacing it with a random value of the cat 
allowed/banned feature from the randomly drawn 
apartment. In the example it was cat-allowed, but it 
could have been cat-banned again. We predict the 
apartment price for the coalition of ”park-
nearby” and ”area-50” (€320,000). 

• The contribution of cat-banned was €310,000 - €320,000 
= -€10,000. 

Instance

300,000€



Shapley Values: Coallitions
• In the previous exemple, we cannot be certain that the observed difference (-10.000€ 

was due to the “cat banned” feature, or to any other of the values used in that particular 
case (multi-dimensional analysis).

• This can be measured by obtaining all the possible coallitions, with 0, 1, ...N features
• The final Shapley value yields from the average of the model responses in all coallitions.


