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ETL Output

qSuppose that the output provided by an ETL data 
transformaton process yielded the following data source:
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ETL Output: Intractable Outputs

qEven considering that each elemento of the data set was stored
in “int32” format
q It is an immutable value type that represents signed integers with

values that range from negative 2,147,483,648 through positive 
2,147,483,647

qEven this relativelly small data type would yield 10.000.000 x 600.000 
x 32 bits:
q 19 200 000 000 000 bits
q 2 400 000 000 000 bytes
q approx. 2 400 000 000 KB
q approx.  2 400 000 MB
q approx. 2 400 GB
q approx. 2.4 TB

qThis kind of data could easily become intractable, from the
computational perspective.
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Statistics

• The Covariance Matrix contains all covariance values between
every possible dimension of a feature space : 

• Values along the main diagonal describe the variance of the
corresponding dimension.
• Based on its definition, it is obvious that cov(x,y)=cov(y,x), i.e., 

the covariance matrix is symetric with respect to its main
diagonal.  
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Statistics

•Exercise. Obtain the covariance matrix for the given 
data set:

Obs. X1 X2 X3

1 2 2 4

2 3 4 6

3 5 4 2

4 6 6 4
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Eigenvectors and eigenvalues

• Consider the multiplication of a matrix by a vector:

• In the first case, the resulting vector is not a multiple of the
original vector.
• Oppositelly, in the second case, the resultant vector (12,8) is a 

multiple of the multiplier. As such, the latter is an eigenvector.
• The correspondong eigenvalue is “4”
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Eigenvectors and eigenvalues

• By analysing the direction of the original and resultant vectors:

• Regarding the matrix as a transformation (similarly to the
previosuly seen transformation matrices), it can be concluded
that in the second case, the direction was not changed. This is
the key insight the notion of eigenvector.
• The given matrix does not change the direction of its eigenvectors.
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Eigenvectors and eigenvalues

•The notion of eigenvalue is strongly related to the
eigenvector. 
• It is the value that should by multiplied by the

eigenvector to obtain the original vector. 
• In the above example, 4 was the eigenvalue that

corresponds to the given eigenvector. 
•As such, eigenvalues and eigenvectors come in pairs

and are always inter-related.
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Eigenvectors and eigenvalues

• As a summary, the eigenvectors of a matrix correspond to the
directions that are not changed by the transformation matrix.
• Not all matrices have eigenvectors.
•Matrices have to be square.
• A (n x n) matrix has – at most – “n” eigenvectors.
• The set of eigenvectors of a matrix (image) is widely used to 

describe the spatial content of that image (feature).
• In MATLAB, this eigenanalysis is made by the “eig()” function:
• [V,D] = eig(A)
• Returns the eigenvectors (D) and corresponding eigenvalues (V) of

matrix A.
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Eigenvectors and eigenvalues

• There is an important property to be stressed: the eigenvectors of a matrix
are orthogonal. This is to say that they form an orthogonal basis of the
matrix.
• We are able to express every point of a data set by linear combinations of

its basis-vectors.
• This is specially usefull for the analysis of principal components (PCA). 
• It is usual to determine the eigenvectors/eigenvalues in their normalized

version, i.e., with length normalized to 1.
• As previously seen, the length of a vector does not affect its property of

being (or not) an eigenvector.
• Hence, having an eigenvector (x1, ..., xn) it is usual to divide each

component by the norm of this vector, in order to obtain length “1”:
• ||(x1,..., xn)|| = sqrt ( x1

2 + ... + xn
2)  
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Eigenvectors and eigenvalues

•Exercise
• Determine, from the following vectors, which are 

eigenvector of the matrix given below and, if positive, 
determine the corresponding eigenvalue. 
• Matrix:

• Vectors:
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Principal Component Analysis

•The Principal Component Analysis (PCA) it’s a well
known way to detect patterns on data, by expressing it
on a way that enhances similarities or differences. 
•Detecting patterns on high dimensional data is a hard

task, either for humans or machines. 
• Requires huge amounts of data. An empirical rule says that

at the minimum, d2 instances are required to analyze a d-
dimensional data set.

•PCA is also used to compress data (reduce
dimensionality), without loosing substantial
information.
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Principal Component Analysis

•Step 1. The analysis of principal components requires a 
data set (with dimension n) and cardinality (k).
•Step 2. Removal of energy. For each dimension, the

corresponding mean is subtrated to each component. 
As such, all dimensions of the data set have zero 
energy.
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Principal Component Analysis

•Step 3. Calculus of the covariance matrix. Here, the
relationships between independent components are 
detected, together with an assessment of the data 
dispersion in each dimension (by analysing the main
diagonal components). 
•Step 4. As the covariance matrix is square, it is possible

to obtain the set of eigenvectors and correspºonding
eigenvalues. 
•Step 4.1. Eigenvectors normalization. All eigenvectors

are normalized to have norm equal to 1.
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Principal Component Analysis

•Step 5. Selection of components. The set of
eigenvectors is sorted by decreasing order, considering
the corresponding eigenvalues. From this set, the “k1” 
principal components are selected.
• This is the step that performs the reduction of

dimensionality.
•Step 6. A transformation matrix is built, by

concatenating the eigenvectors selected in the
previous step.
• This matrix will be used to represent all points in the reduced dimensionality feature space. 

MAT=[ vect1, vect2, ... Vectk1]
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Principal Component Analysis

•Step 7. Data Transformation. As the transformation
matrix has “d” lines (corresponding to the dimension
of the original feature space and k1 columns
(corresponding to the dimension of the new feature
space), when multipling each original data point by the
transformation matrix, we obtain a vector of k1
components. These are the new representation of the
data points, in the principal components space.

[1 x d] x [d x k1] = [1 x k1]
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Principal Component Analysis

• How to choose the value of k1?
• The previously described process does not give any information about a strategy to select

the dimensionality of the principal components feature space. 
• There is no formal rule. However, some heuristics about what is generally better exist. 

• Usually, the variation in magnitude of consecutive eigenvalues (after sorting) is
measured. When changes in magnitude are higher than a threshold, the selection
process is stopped.

• Most frequently, the proportion of the data variability that is kept by the selected
components is measured.
• We are interested in keeping around 90-95% of the original data variability. 
• The analysis can be done by measuring the proportion of the sum of eigenvalues :

• Variability:
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PCA: Example

•Having a set of 128 face images (with dimensions 64 x 
64). 
•Each face can be regarded as a point represented in a 

feature space of 4096 dimensions (64 x 64).
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PCA: Example

•The PCA algorithm is used to select the principal 
components.
• In pratice, the eigenvectors (with dimension 4096) with

largest corresponding eigenvalues will be selected. 
•As an example, the facial recognition process can be

done in the new feature space of (much more) reduced
dimension.
•Or, the PCA can be also used to represent a face, with

much less information.
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PCA: Example

• Example of the 16 principal components (eigenvectors with the
largest eigenvalues) from the above data set:
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Principal Component Analysis

• The Principal Component Analysis (PCA) it’s a 
well known way to detect patterns on data, by
expressing it on a way that enhances similarities
or differences. 
• Detecting patterns on high dimensional data is a 

hard task, either for humans or machines. 
• Requires huge amounts of data. An empirical

rule says that at the minimum, d2 instances
are required to analyze a d-dimensional data 
set.

• PCA is also used to compress data (reduce
dimensionality), without loosing “too much” 
information.



Principal Component Analysis

•Step 1. The analysis of principal components requires a 
data set (with dimension n) and cardinality (k).
•Step 2. Removal of energy. For each dimension, the

corresponding mean is subtrated to each component. 
As such, all dimensions of the data set have zero 
energy.
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Principal Component Analysis

•Step 3. Calculus of the covariance matrix. Here, the
relationships between independent components are 
detected, together with an assessment of the data 
dispersion in each dimension (by analysing the main
diagonal components). 
•Step 4. As the covariance matrix is square, it is possible

to obtain the set of eigenvectors and corresponding
eigenvalues. 
•Step 4.1. Eigenvectors normalization. All eigenvectors

are normalized to have norm equal to 1.
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Principal Component Analysis

•Step 5. Selection of components. The set of
eigenvectors is sorted by decreasing order, considering
the corresponding eigenvalues. From this set, the “k1” 
principal components are selected.
• This is the step that performs the reduction of

dimensionality.
•Step 6. A transformation matrix is built, by

concatenating the eigenvectors selected in the
previous step.
• This matrix will be used to represent all points in the reduced dimensionality feature space. 

MAT=[ vect1, vect2, ... Vectk1]
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Principal Component Analysis

•Step 7. Data Transformation. As the transformation
matrix has “d” lines (corresponding to the dimension
of the original feature space and k1 columns
(corresponding to the dimension of the new feature
space), when multipling each original data point by the
transformation matrix, we obtain a vector of k1
components. These are the new representation of the
data points, in the principal components space.

[1 x d] x [d x k1] = [1 x k1]



Principal Component Analysis

• How to choose the value of k1?
• The previously described process does not give any information about a strategy to select

the dimensionality of the principal components feature space. 
• There is no formal rule. However, some heuristics about what is generally better exist. 

• Usually, the variation in magnitude of consecutive eigenvalues (after sorting) is
measured. When changes in magnitude are higher than a threshold, the selection
process is stopped.

• Most frequently, the proportion of the data variability that is kept by the selected
components is measured.
• We are usually interested in keeping around 90-95% of the original data variability. 
• The analysis can be done by measuring the proportion of the sum of eigenvalues :

• Variability:
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PCA: Example

•Having a set of 128 face images (with dimensions 64 x 
64). 
•Each face can be regarded as a point represented in a 

feature space of 4096 dimensions (=64 x 64).
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PCA: Example

•The PCA algorithm is used to select the principal 
components.
• In pratice, the eigenvectors (with dimension 4096) with

largest corresponding eigenvalues will be selected. 
•As an example, the facial recognition process can be

done in the new feature space of (much more) reduced
dimension.
•Or, the PCA can be also used to represent a face, with

much less information.

Data Science @ UBI, 20/21, hugomcp@di.ubi.pt



PCA: Example

• Example of the 16 principal components (eigenvectors with the
largest eigenvalues) from the above data set:
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