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Attention and Transformers 

• The Transformer architecture was 
proposed in the paper entitled “Attention 
is All You Need”
• As of March 2024, this paper had over 

111,000 citations from peers
• It was responsible for expanding the 2014 

attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture. 
• The paper is considered the founding

document for modern artificial 
intelligence, as transformers became the
main architecture of large language (and
vision) models (e.g., Chat GPT).

Key concepts: 
embeddings, 
positional encoding 
and attention



Attention and Transformers 

• It was originally proposed for “Machine translaJon” purposes, i.e., 
sequence-to-sequence tasks.
• The focus was on improving Seq2seq techniques for machine translaJon, 

but even in their paper the authors saw the potenJal for other tasks like 
“ques/on answering” and for what is now called mulJmodal GeneraJve AI.

Seq2Seq Architecture
Input Sequence: 𝒙!; 
Output Sequence: 𝒚!; 

Often 𝒄 = 𝒉𝑒𝑛𝑑

Initial decoder state

Main problem: Very large input sequences can be bottlenecked
in the fixed-size state representation (Suppose T=100?)



Attention and Transformers 

• Using this architecture, the encoder must encapsulate the entire input into 
a fixed-size vector that is passed to the decoder. 
• With Attention, the complete input sentences aren’t required to be 

encoded into a single vector. Instead, the decoder attends to different 
elements in the input sentence at each step of output generation. 
• The previous generation of recurrent models had long paths between input 

and output words. For a 50-word sentence, the decoder had to recall 
information from 50 steps ago for the first word (and that data had to be 
squeezed into a single vector).



Attention and Transformers 
General Architecture:
Transformers share the encoder/decoder 
architecture, placing a stack of elements in 
each part of the pipeline (E/D). 

The original implementation used a stack of 6 
elements at each side.

Each Encoder is divided into two parts: a 
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also 
uses an attention layer that helps the decoder 
to find the most relevant parts of the input 
sentence



Attention and Transformers - Input Embedding
• The process starts (before feeding the input data to the first Encoder), by

obtaining latent representations of the input elements. 
• In practice, this first encoder begins by converting input tokens - words or

subwords - into vectors using Embedding layers. 
• These embeddings should capture the semantic meaning of the tokens and

convert them into numerical vectors.
• It is a more sophisticated variant of the “one-hot encoding” previously saw.

• As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.
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Positional Encoding

A set of sin() and cos() functions of 
different frequencies are used. This 
way, each input element is combined 
(added) to a vector that contains 
information about the position of the 
element within the sequence 
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Attention and Transformers

• Most encoders receive a list of input vectors 𝒙, each of the size 512. 
• After embedding the elements 𝒙i, each of them flows through each of the 

two layers of the encoder. 

A key property is 
that each input 
element 𝒙i follows an 
independent path in 
the network. There 
are dependencies 
between these 
paths in the self-
attention layer. The 
feed-forward layer 
does not have any 
dependencies.



Self Attention Mechanism - Encoder

• A:en;on enables the models to relate each word in the input with other 
words. For instance, in a given example, the model might learn to connect 
the element “𝒙i” with “𝒙j”.
• This allows the encoder to focus on different parts of the input sequence as it 

processes each token
• It is based in 3 types of vectors: Queries 𝒒j, Keys 𝒌j and Values 𝒗j

• AXenJon is about how much weight the query word (e.g., 𝒒1) should give 
each word in the sentence (e.g., 𝒌1, 𝒌2 ,…). This is obtained via a dot product 
between the query and all the keys. 
• The dot product tells us how similar two vectors are. 
• If the dot product between a query-key pair is high, we pay more aFenGon to it. 
• These dot products then go through a so#max which makes the aFenGon scores 

(across all keys) sum to 1

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on 
their spines (keys) that suggest their content. We compare your query to these titles to decide how 
relevant each book is, and how much attention to give each book. Finally, we can get the information 
(value) from the relevant books to answer your question.



Self Attention Mechanism - Encoder

• We start by obtaining 3 vectors for each input element:
• The Query, Key and Value. They are all created by multiplying the embedding by three

matrices trained during the learning process.

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (64 << 512)

Multiplying 𝒙! by 𝑾𝑄 yields 𝒒!, by 𝑾𝐾 yields 𝒌! and by 𝑾𝑉 yields 𝒗! 



Self Attention Mechanism - Encoder
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• Next, the inner product between the query 𝒒i, and all
the key elements (𝒌1,… 𝒌n) measures the similarity of 
the query with respect to every other element (𝒒i.𝒌j)
• Normalizing and applying a softmax for all 

products gives us how much of the corresponding 
value vector should be used in the final sum to 
obtain the output vector 𝒛i.

• Formally, this step yields the parameters of a 
linear combination between all the vectors, that 
will be used to represent the input 𝒙i. 

• The resulting vector is sent to the feed-forward layer. 
• The output of the final encoder layer is a set of 

vectors, each representing the input sequence with a 
rich contextual understanding. This output is then 
used as the input for the decoder in a Transformer 
model.

  

Self Attention Mechanism - Encoder

❤ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear 
combination of the other elements in the space, depending on the similarity/importance of each one with respect to the 

input. ❤

Attention that the element “it” 
gives to the remaining 
elements, for two two 

different “heads”.



Self Attention Mechanism - Decoder
• The whole output (sentence) of the encoder is concatenated into a “Keys” and a 

“Values” matrices (𝑲encdec and 𝑽encdec).
• These matrices provide all the informa2on the needed and fed all decoders in the stack.

• Then, the decoder starts to produce its outputs, unRl a special element (<END>) 
indicates that the process must be stopped.
• At each itera2on, the set of previous outputs are also given as input.
• The self a:en2on layers are only allowed to a:end to earlier posi2ons in the output sequence. 

This is done by masking future posi2ons (se@ng them to “ − ∞”) before the soCmax step in the
self-a:en2on calcula2on. 

1st input
2nd input
3rd input
…



Self Attention Mechanism - Decoder
• The final part of the decoder works pretty much as a standard 

“classification” CNN, returning a vector with as many entries as 
the number of elements in the dictionary. After a “softmax()” 
layer, the index o the maximum element is found and the 
corresponding entry in the dictionary returned.

• Real-Life Well-Known Transformers:

• Google's 2018 release of BERT, an open-source natural language processing framework, revolutionized 
NLP with its unique bidirectional training. Pre-trained on Wikipedia, excels in various NLP tasks, 
prompting Google to integrate it into its search engine for more natural queries. 

• LaMDA (Language Model for Dialogue Applications) is a Transformer-based model developed by Google, 
designed specifically for conversational tasks, and launched during in 2021. They are designed to 
generate more natural and contextually relevant responses, enhancing user interactions in various 
applications.

• ChatGPT, developed by OpenAI, are advanced generative models known for their ability to produce 
coherent and contextually relevant text. They are suitable for content creation, conversation, language 
translation, .... GPT's architecture enables it to generate text that closely resembles human writing, 
making it useful in applications like creative writing, customer support, and even coding assistance. 


