
COMPUTER VISION
MEI/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2023/24

Attention and Transformers

• The Transformer architecture was
proposed in the paper entitled “Attention
is All You Need”
• As of March 2024, this paper had over

111,000 citations from peers
• It was responsible for expanding the 2014

attention mechanism (originally proposed
by Bahdanau et. al.) into the Transformer
architecture.
• The paper is considered the founding

document for modern artificial
intelligence, as transformers became the
main architecture of large language (and
vision) models (e.g., Chat GPT).

Key concepts:
embeddings,
positional encoding
and attention

Attention and Transformers

• It was originally proposed for “Machine translaJon” purposes, i.e.,
sequence-to-sequence tasks.
• The focus was on improving Seq2seq techniques for machine translaJon,

but even in their paper the authors saw the potenJal for other tasks like
“ques/on answering” and for what is now called mulJmodal GeneraJve AI.

Seq2Seq Architecture
Input Sequence: 𝒙!;
Output Sequence: 𝒚!;

Often 𝒄 = 𝒉𝑒𝑛𝑑

Initial decoder state

Main problem: Very large input sequences can be bottlenecked
in the fixed-size state representation (Suppose T=100?)

Attention and Transformers

• Using this architecture, the encoder must encapsulate the entire input into
a fixed-size vector that is passed to the decoder.
• With Attention, the complete input sentences aren’t required to be

encoded into a single vector. Instead, the decoder attends to different
elements in the input sentence at each step of output generation.
• The previous generation of recurrent models had long paths between input

and output words. For a 50-word sentence, the decoder had to recall
information from 50 steps ago for the first word (and that data had to be
squeezed into a single vector).

Attention and Transformers
General Architecture:
Transformers share the encoder/decoder
architecture, placing a stack of elements in
each part of the pipeline (E/D).

The original implementation used a stack of 6
elements at each side.

Each Encoder is divided into two parts: a
Self-Attention layer followed by a Feed-
forward (Dense) one.

The Decoder has a similar structure, but also
uses an attention layer that helps the decoder
to find the most relevant parts of the input
sentence

Attention and Transformers - Input Embedding
• The process starts (before feeding the input data to the first Encoder), by

obtaining latent representations of the input elements.
• In practice, this first encoder begins by converting input tokens - words or

subwords - into vectors using Embedding layers.
• These embeddings should capture the semantic meaning of the tokens and

convert them into numerical vectors.
• It is a more sophisticated variant of the “one-hot encoding” previously saw.

• As Transformers do not have a recurrence mechanism like RNNs, “Positional
encodings” added to the input embeddings to provide information about the
position of each token in the sequence. This allows them to understand the
position of each word within the sentence.

“Hello”
Embedding

Layer

0.1

0.7

1.4

2.1

0.4

Positional Encoding

A set of sin() and cos() functions of
different frequencies are used. This
way, each input element is combined
(added) to a vector that contains
information about the position of the
element within the sequence

0.1

0.7

1.4

2.1

0.4

+

0.1

0.8

1.1

2.2

0.5

=

p

Embedding with positional context

Attention and Transformers

• Most encoders receive a list of input vectors 𝒙, each of the size 512.
• After embedding the elements 𝒙i, each of them flows through each of the

two layers of the encoder.

A key property is
that each input
element 𝒙i follows an
independent path in
the network. There
are dependencies
between these
paths in the self-
attention layer. The
feed-forward layer
does not have any
dependencies.

Self Attention Mechanism - Encoder

• A:en;on enables the models to relate each word in the input with other
words. For instance, in a given example, the model might learn to connect
the element “𝒙i” with “𝒙j”.
• This allows the encoder to focus on different parts of the input sequence as it

processes each token
• It is based in 3 types of vectors: Queries 𝒒j, Keys 𝒌j and Values 𝒗j

• AXenJon is about how much weight the query word (e.g., 𝒒1) should give
each word in the sentence (e.g., 𝒌1, 𝒌2 ,…). This is obtained via a dot product
between the query and all the keys.
• The dot product tells us how similar two vectors are.
• If the dot product between a query-key pair is high, we pay more aFenGon to it.
• These dot products then go through a so#max which makes the aFenGon scores

(across all keys) sum to 1

Intuition: Imagine a library. We have a specific question (query). Books on the shelves have titles on
their spines (keys) that suggest their content. We compare your query to these titles to decide how
relevant each book is, and how much attention to give each book. Finally, we can get the information
(value) from the relevant books to answer your question.

Self Attention Mechanism - Encoder

• We start by obtaining 3 vectors for each input element:
• The Query, Key and Value. They are all created by multiplying the embedding by three

matrices trained during the learning process.

Typically, the dimensionality of the query, key and value vectors is smaller than the dimensionality of the embedding (64 << 512)

Multiplying 𝒙! by 𝑾𝑄 yields 𝒒!, by 𝑾𝐾 yields 𝒌! and by 𝑾𝑉 yields 𝒗!

Self Attention Mechanism - Encoder

Embedding

“word” 0.1 0.2 0.1 0.4

𝒙i
0.1 0.2 0.1

𝒒i

0.1 0.2 0.1

𝑽

0.1 0.2 0.1

𝑲

0.1 0.2 0.1

0.1 0.2 0.1

0.1 0.2 0.1

.

0.1 0.2 0.1

0.1 0.2 0.1

0.1 0.2 0.1

10.1

2.3

0.1

8.4

+

0.1 0.2 0.1𝒛i

10.1

2.3

0.1

8.4

Softmax

0.7

0.05

0.0001

0.24

Inner Products
between the

interest query
elemento and all

the key vetors in the
dictionary

The higher the
scores, the higher

the similarity
between vectors

Softmax layer to
assure a linear

combination that
keeps the norm

Output
corresponding to 𝒙i

• Next, the inner product between the query 𝒒i, and all
the key elements (𝒌1,… 𝒌n) measures the similarity of
the query with respect to every other element (𝒒i.𝒌j)
• Normalizing and applying a softmax for all

products gives us how much of the corresponding
value vector should be used in the final sum to
obtain the output vector 𝒛i.

• Formally, this step yields the parameters of a
linear combination between all the vectors, that
will be used to represent the input 𝒙i.

• The resulting vector is sent to the feed-forward layer.
• The output of the final encoder layer is a set of

vectors, each representing the input sequence with a
rich contextual understanding. This output is then
used as the input for the decoder in a Transformer
model.

Self Attention Mechanism - Encoder

❤ This is the “heart” of the Attention mechanism. To replace a representation of the input element by a linear
combination of the other elements in the space, depending on the similarity/importance of each one with respect to the

input. ❤

Attention that the element “it”
gives to the remaining
elements, for two two

different “heads”.

Self Attention Mechanism - Decoder
• The whole output (sentence) of the encoder is concatenated into a “Keys” and a

“Values” matrices (𝑲encdec and 𝑽encdec).
• These matrices provide all the informa2on the needed and fed all decoders in the stack.

• Then, the decoder starts to produce its outputs, unRl a special element (<END>)
indicates that the process must be stopped.
• At each itera2on, the set of previous outputs are also given as input.
• The self a:en2on layers are only allowed to a:end to earlier posi2ons in the output sequence.

This is done by masking future posi2ons (se@ng them to “ − ∞”) before the soCmax step in the
self-a:en2on calcula2on.

1st input
2nd input
3rd input
…

Self Attention Mechanism - Decoder
• The final part of the decoder works pretty much as a standard

“classification” CNN, returning a vector with as many entries as
the number of elements in the dictionary. After a “softmax()”
layer, the index o the maximum element is found and the
corresponding entry in the dictionary returned.

• Real-Life Well-Known Transformers:

• Google's 2018 release of BERT, an open-source natural language processing framework, revolutionized
NLP with its unique bidirectional training. Pre-trained on Wikipedia, excels in various NLP tasks,
prompting Google to integrate it into its search engine for more natural queries.

• LaMDA (Language Model for Dialogue Applications) is a Transformer-based model developed by Google,
designed specifically for conversational tasks, and launched during in 2021. They are designed to
generate more natural and contextually relevant responses, enhancing user interactions in various
applications.

• ChatGPT, developed by OpenAI, are advanced generative models known for their ability to produce
coherent and contextually relevant text. They are suitable for content creation, conversation, language
translation, GPT's architecture enables it to generate text that closely resembles human writing,
making it useful in applications like creative writing, customer support, and even coding assistance.

