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Convolutional Neural Networks (CNNs)

• CNNs are a type of Neural Networks that have been 
augmenting their popularity in most tasks related to Computer 
Vision
• E.g., Image Segmentation, Classification.

• The property of shift invariance gives them the biological 
inspiration of the human visual system and keeps the number 
of weights relatively small, making learning a feasible task.
• In opposition to traditional Feed-forward nets, neurons in 

CNNs are arranged in three dimensions.



Convolutional Neural Networks (CNNs)

• Each layer of a CNN transforms a 3D input into a 3D output.
• This pioneering work in CNNs was due to Yann LeCun (LeNet5) 

after many previous successful iterations since 1988. 
• Initially, the LeNet architecture was used mainly for character 

recognition tasks such as reading zip codes, digits...
• The efficacy of CNNs in visual tasks is the main reason behind 

the popularity of deep learning. They are powering major 
advances in computer vision, with  applications for robotics, 
security and medical diagnosis.



Convolutional Neural Networks (CNNs)

• The most typical structure of a CNN is:
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Convolutions + 
Non-linearities

Pooling
Fully Connected

Softmax

These operations are the basic building blocks of most CNNs, so understanding 
how these work is an important step to understand the functioning of these 
powerful models.



Convolutional Neural Networks (CNNs)

• Convolution
• This block computes the convolution between an input map 

x with a bank of k multi-dimensional filters f, to obtain the 
results y.

• Formally, the outputs y are given by:



Convolutional Neural Networks (CNNs)

• Convolution (padding and stride)
• Usually it is possible to specify top, bottom, left, right 

paddings (Ph
-, Ph

+, Pw
-, Pw

+) of the input array and 
subsampling strides (Sh,Sw) of the output array.  
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The output size is given by:



Convolutional Neural Networks (CNNs)

• Spatial Pooling
• The typical blocks are the max and sum pooling, 

respectively computing the maximum and the summed 
response of each feature channel in a H’ x W’ patch.

• Pooling progressively reduces the spatial size of the input 
representation.
• This reduces the number of parameters and, therefore, 

controls over fitting;
• Also, it makes the network invariant to small transforms, 

distortions and translations in the input image (a small 
distortion in input will not change the output of pooling).



Convolutional Neural Networks (CNNs)

• Pooling
• Note that Pooling down samples the input volume only 

spatially;
• The input depth is equal to the output depth;
• The pooling operation is often considered deprecated. To 

reduce the size of the representation, in is possible to use 
larger strides in the convolution layers.

Example: max() pooling 



Convolutional Neural Networks (CNNs)

• Batch Normalization
• Deep networks suffer from internal covariate shift—changes in 

the distribution of each layer’s inputs during training.
• This slows down training and makes it harder to tune 

hyperparameters.
• Batch Normalization (BN) addresses this by normalizing the 

input of each layer so that it has a mean of 0 and variance of 1, 
which stabilizes and accelerates learning.

• Typically applied after a convolutional or fully connected layer 
and before the non-linearity (activation).
• In CNNs, BN is applied per feature map, i.e., the same mean and 

variance are used across all spatial locations in a channel.
• BN behaves differently during training and inference:

• Training: uses batch statistics.
• Inference: uses running averages of μ and σ



Convolutional Neural Networks (CNNs)

• Given an input mini-batch B = {x1, x2,...xm} of size “m”, Batch
Normalization is applied for each feature map:
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• The transformed features are given by:
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𝑥! − 𝜇
𝜎 + 𝜖

+ 𝛽

 
where 𝛾, 𝛽 are learnable parameters 

Obtained from all elements 
in the feature map.

E.g, having 
(M=2,C=1,H=2,W=2) it will 

calculate a single mean 
value, for all spatial and 

depth slements



Convolutional Neural Networks (CNNs)

Consider a batch of 2 samples, each with 1 channel and a 2×2 feature 
map:

Sample 1:

Sample 2:

You are told the BN layer uses:
• γ=1.5
• β=0.0
• ϵ=0

• Apply the BN procedure and obtain the transformed feature maps.



Convolutional Neural Networks (CNNs)

• Non-Linearity
• There are two basic non-linear activation functions used in 

CNNS: “ReLU” (Rectified Linear Units) and “Sigmoid”.

• As advantages with respect to each other, Sigmoid is 
consider not to blow up activation, while ReLU does not 
vanishes the gradient
• In the case of Sigmoid, when the input grows to infinitely large, 

the derivative tends to 0.
• However, in the case of ReLU, there is no mechanism to 

constrain the output of the neuron, as the input is often the 
output)



Convolutional Neural Networks (CNNs)
• Fully Connected layers
• Neurons in a fully connected layer have full connections to all 

activations in the previous layer, as in a regular feed-forward network. 
• In practical terms, these neurons resemble pretty much the neurons in 

”Convolution” layers.
• The only difference between fully connected and Convolution layers 

is that the neurons in the former layer are connected only to a local 
region in the input, and that many of the neurons in a CONV volume 
share parameters.
• However, the neurons in both layers still compute dot products, so 

their functional form is identical. 
• For example, an FC layer with K=4096 that is looking at some input 

volume of size 7×7×512 can be expressed as a Convolution layer with 
F=7 x 7 x 4096 (padding 0, stride 1). 
• In other words, we are setting the filter size to be exactly the size of the 

input volume;
• Hence the output will simply be 1×1×4096.



Convolutional Neural Networks (CNNs)

• Softmax
• Can be seen as the combination of an activation function 

(exponential) and a normalization operator.
• It is usually applied as the transfer function of the last layer 

of the CNN, where the idea is to push up the maximum 
value of the responses to “1”, and all the other values to 
“0”.
• In practice, it simulates the probability of the input 

corresponding to each category, represented by a neuron in 
the output layer. 



Convolutional Neural Networks (CNNs)
• Most of the data memory used by CNNs is used in the early Convolutional 

layers (where spatial resolution is maximal), whereas most of the 
parameters of the network are in the fully connected layers. 

• Example VGGNet, one of the well known and succeeded architectures:

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0 
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864 
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0 
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456 POOL2: [56x56x128] 
memory: 56*56*128=400K weights: 0 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0 
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216 
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000



Convolutional Neural Networks (CNNs)
• VGGNet:
• The total memory used is about 4 bytes * 24,000,000 = 93 MB
• This is required only for the forward step
• In practice, the backward step requires around the double memory;
• The network has 138,000,000 parameters to be tuned by the back-

propagation algorithm.
• It should be noted that the conventional paradigm of a linear list of layers 

is not the state-of-the-art anymore.
• Google’s Inception architectures and also Residual Networks from 

Microsoft Research Asia. 
• Both of these feature more intricate and different connectivity 

structures.
• Most of the COTS (commercial off-the-shelf) models have complex graph-

based architectures. 



Convolutional Neural Networks (CNNs)

Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

• Accuracy vs. Number of operations for a single forward step. 
Circumference radii corresponds to the number of parameters



Convolutional Neural Networks (CNNs)

• An illustration of the most popular deep learning architectures 
is provided in http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/

LeNet AlexNet VGG GoogLeNet Inception Resnet



CNNs: Example

• How to create (and instantiate) one CNN (Sequential): 

(“Sequential” objects provide the simplest way. “Functional” 
objects enable additional functionalities)

def cnn_model(input_shape=(32, 32, 3)):

  model = Sequential()

  model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=input_shape))
  model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Flatten())
  model.add(Dense(512, activation='relu'))
  model.add(Dense(10, activation='softmax'))

  return model

# ###########################################################
# Instantiate model
model = cnn_model()
model.summary()

# Compile model
model.compile(optimizer='rmsprop’, loss='categorical_crossentropy’, metrics=['accuracy'])



CNNs: Example

• How to use (or fine tune) one well known CNN model:
• Example: Inception.V3

• This is typically the approach that attains the best results.
• Not only the architecture was coherently designed, but also the 

weights were optimized based in huge datasets.

def create_inception(tot_classes):
    imgs_input = Input((args['image_height'], args['image_width'], 3))

    if args['fine_tuning'] == 0:
        model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3), 
  weights=None, include_top=False)
    else:
        model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3), 
  weights='imagenet', include_top=False)
        model_tmp.trainable = False

    x = model_tmp(imgs_input, training=False)

    x = keras.layers.GlobalAveragePooling2D()(x)
    outs = Dense(tot_classes, activation='linear')(x)

    md = Model(inputs=imgs_input, outputs=outs)
    md.compile(optimizer=RMSprop(learning_rate=args['learning_rate']), loss=tf.keras.losses.MeanAbsoluteError())
    return md



CNNs: Example

• How to train one CNN:

• Typical preprocessing steps:

# For small datasets
history = model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1, validation_split=.3)

# For large datasets
for i in range(tot_batches):
 [X_batch, y_batch] = get_input_batch(i)
 loss = model.train_on_batch(X_batch, y_batch)

# Images are typically normalized to the range [0, 1].
X_train = X_train.astype("float32") / 255
X_test  = X_test.astype("float32") / 255

# In classification problems, labels are typically converted to one-hot encoding.
y_train = to_categorical(y_train)
y_test  = to_categorical(y_test)



ap = argparse.ArgumentParser()

ap.add_argument('-d', '--dataset', required=True, help='CSV learning dataset file')

ap.add_argument('-o', '--output_folder', required=True, help='Output folder')

ap.add_argument('-b', '--batch_size', type=int, default=100, help='Learning batch size')

ap.add_argument('-iw', '--image_width', type=int, default=512, help='Image width')

ap.add_argument('-ih', '--image_height', type=int, default=128, help='Image height')

ap.add_argument('-l', '--learning_rate', type=float, default=1e-3, help='Learning rate')

ap.add_argument('-de', '--decay_rate', type=float, default=1e-2, help='Decay rate')

ap.add_argument('-dr', '--dropout_rate', type=float, default=0.25, help='Dropout rate')

ap.add_argument('-e', '--epochs', type=int, default=1000000, help='Tot. epochs')

ap.add_argument('-pl', '--probability_learn', type=float, default=0.7, help='Probability Learning set')

ap.add_argument('-pv', '--probability_validation', type=float, default=0.15, help='Probability Validation set')

args = ap.parse_args()

Argument Parsing

The script is then executed by: “python3 script.py –d ‘data.csv’,...



def read_csv(dataset):

# ##########################

# Load Data in '.csv' format: [ [filename_1, label_1], [filename_2, label_2],...]

samp = []

with open(dataset) as f:

csv_file = csv.reader(f, delimiter=',')

for row in csv_file:

samp.append(row)

random.shuffle(samp)

return samp

Large Dataset Loading

The “csv” file should be in the format:
/path/image_1.jpg 1
/path/image_2.jpg 0
/path/image_3.jpg 2



def split_dataset(dt):

dt_l = []

dt_v = []

dt_t = []

onehot_encoder = OneHotEncoder(sparse=False)

onehot_encoder.fit(np.asarray([x[-1] for x in dt]).reshape(-1, 1))

out = onehot_encoder.transform(np.asarray([x[-1] for x in dt]).reshape(-1, 1))

dt = list(zip(dt, out))

for el in dt:

x = random.random()

if x < args.probability_learn:

dt_l.append([el[0][0], el[1]])

elif x < args.probability_learn + args.probability_validation:

dt_v.append([el[0][0], el[1]])

else:

dt_t.append([el[0][0], el[1]])

return dt_l, dt_v, dt_t

Dataset Splitting

Divides the available data into three
sub-sets: learning + validation + test



def get_input_batch(gt, idx, augm, tot_c):

tot = min(args.batch_size, len(gt) - idx)

imgs = np.zeros((tot, args.image_height, args.image_width, 1)).astype('float')

labels = np.zeros((tot, tot_c)).astype('float')

for i in range(tot):

img = cv2.imread(gt[idx + i][0])

if augm is not None:

img = augm.augment_image(img)

img = cv2.resize(img, (args.image_width, args.image_height))

imgs[i, :, :, 0] = img[:, :, 0] / 255

labels[i, :] = gt[idx + i][1]

return imgs, labels

Data Batch Loading

Load one batch of (maximum) 
”batch_size” images and the
corresponding ground truth



def create_cnn(tot_c):

imgs_input = Input((args.image_height, args.image_width, 3))

conv12 = Conv2D(64, kernel_size=3, strides=2, padding="same")(imgs_input)

conv12_bn = BatchNormalization(momentum=0.8)(conv12)

conv12_a = LeakyReLU()(conv12_bn)

drop12 = Dropout(args.dropout_rate)(conv12_a)

conv13 = Conv2D(128, kernel_size=3, strides=2, padding="same")(drop12)

conv13_bn = BatchNormalization(momentum=0.8)(conv13)

conv13_a = LeakyReLU()(conv13_bn)

drop13 = Dropout(args.dropout_rate)(conv13_a)

conv14 = Conv2D(256, kernel_size=3, strides=2, padding="same")(drop13)

conv14_bn = BatchNormalization(momentum=0.8)(conv14)

conv14_a = LeakyReLU()(conv14_bn)

# drop14 = conv14_a

drop14 = Dropout(args.dropout_rate)(conv14_a)

conv15 = Conv2D(512 , kernel_size=3, strides=2, padding="same")(drop14)

conv15_bn = BatchNormalization(momentum=0.8)(conv15)

conv15_a = LeakyReLU()(conv15_bn)

drop15 = Dropout(args.dropout_rate)(conv15_a)

Create CNN
conv16 = Conv2D(512, kernel_size=3, strides=2, padding="same")(drop15)

conv16_bn = BatchNormalization(momentum=0.8)(conv16)

conv16_a = LeakyReLU()(conv16_bn)

drop16 = Dropout(args.dropout_rate)(conv16_a)

pooled = Flatten()(drop16)

dense1 = Dense(128, activation='relu', kernel_constraint=None)(pooled)

drop1 = Dropout(args.dropout_rate)(dense1)

dense2 = Dense(64, activation='relu', kernel_constraint=None)(drop1)

drop2 = Dropout(args.dropout_rate)(dense2)

outp = Dense(tot_c, activation='sigmoid', kernel_constraint=None)(drop2)

out = Softmax()(outp)

md = Model(inputs=imgs_input, outputs=out)

md.compile(optimizer=SGD(lr=args.learning_rate, momentum=0.8), 
loss=tf.keras.losses.CategoricalCrossentropy())

md.summary()

return md

Creates a CNN of 27 layers



i = 0
while i < len(l_s):

[imgs, gt] = get_input_batch(l_s, i, augmenter, tot_c)
lo = md.train_on_batch(imgs, gt)
lo_l.append(lo)
i += args.batch_size
print('\r Learn [%d - %d/%d]...' % (epoch, i, len(l_s)), end='')

Train()

One training epoch

i = 0
while i < len(v_s):

[imgs, gt] = get_input_batch(v_s, i, None, tot_c)
lo = md.test_on_batch(imgs, gt)
lo_v.append(lo)
i += args.batch_size
print('\r Valid [%d - %d/%d]...' % (epoch, i, len(v_s)), end='')

One validation epoch



ep = range(1, epoch + 1)

fig_1 = plt.figure(1, figsize=(18, 8))

plt.clf()

gs = gridspec.GridSpec(2, 2, figure=fig_1)

ax = fig_1.add_subplot(gs[0, 0])

ax.plot(ep, losses_learn, '-g')

ax.plot(ep, losses_valid, '-r')

ax.grid(True)

ax.title.set_text('Losses’)

...

Train()

Plot intermediate results


