
COMPUTER VISION
MEI/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2024/25

Convolutional Neural Networks (CNNs)

• CNNs are a type of Neural Networks that have been
augmenting their popularity in most tasks related to Computer
Vision
• E.g., Image Segmentation, Classification.

• The property of shift invariance gives them the biological
inspiration of the human visual system and keeps the number
of weights relatively small, making learning a feasible task.
• In opposition to traditional Feed-forward nets, neurons in

CNNs are arranged in three dimensions.

Convolutional Neural Networks (CNNs)

• Each layer of a CNN transforms a 3D input into a 3D output.
• This pioneering work in CNNs was due to Yann LeCun (LeNet5)

after many previous successful iterations since 1988.
• Initially, the LeNet architecture was used mainly for character

recognition tasks such as reading zip codes, digits...
• The efficacy of CNNs in visual tasks is the main reason behind

the popularity of deep learning. They are powering major
advances in computer vision, with applications for robotics,
security and medical diagnosis.

Convolutional Neural Networks (CNNs)

• The most typical structure of a CNN is:

Computer Vision @ UBI, 22/23, hugomcp@di.ubi.pt

Convolutions +
Non-linearities

Pooling
Fully Connected

Softmax

These operations are the basic building blocks of most CNNs, so understanding
how these work is an important step to understand the functioning of these
powerful models.

Convolutional Neural Networks (CNNs)

• Convolution
• This block computes the convolution between an input map

x with a bank of k multi-dimensional filters f, to obtain the
results y.

• Formally, the outputs y are given by:

Convolutional Neural Networks (CNNs)

• Convolution (padding and stride)
• Usually it is possible to specify top, bottom, left, right

paddings (Ph
-, Ph

+, Pw
-, Pw

+) of the input array and
subsampling strides (Sh,Sw) of the output array.

Ph
-

Ph
+

Pw
+

Pw
-

The output size is given by:

Convolutional Neural Networks (CNNs)

• Spatial Pooling
• The typical blocks are the max and sum pooling,

respectively computing the maximum and the summed
response of each feature channel in a H’ x W’ patch.

• Pooling progressively reduces the spatial size of the input
representation.
• This reduces the number of parameters and, therefore,

controls over fitting;
• Also, it makes the network invariant to small transforms,

distortions and translations in the input image (a small
distortion in input will not change the output of pooling).

Convolutional Neural Networks (CNNs)

• Pooling
• Note that Pooling down samples the input volume only

spatially;
• The input depth is equal to the output depth;
• The pooling operation is often considered deprecated. To

reduce the size of the representation, in is possible to use
larger strides in the convolution layers.

Example: max() pooling

Convolutional Neural Networks (CNNs)

• Batch Normalization
• Deep networks suffer from internal covariate shift—changes in

the distribution of each layer’s inputs during training.
• This slows down training and makes it harder to tune

hyperparameters.
• Batch Normalization (BN) addresses this by normalizing the

input of each layer so that it has a mean of 0 and variance of 1,
which stabilizes and accelerates learning.

• Typically applied after a convolutional or fully connected layer
and before the non-linearity (activation).
• In CNNs, BN is applied per feature map, i.e., the same mean and

variance are used across all spatial locations in a channel.
• BN behaves differently during training and inference:

• Training: uses batch statistics.
• Inference: uses running averages of μ and σ

Convolutional Neural Networks (CNNs)

• Given an input mini-batch B = {x1, x2,...xm} of size “m”, Batch
Normalization is applied for each feature map:

𝜇 =
1
𝑚
%
!"#

$

𝑥!

𝜎 =
1
𝑚
%
!"#

$

(𝑥!−𝜇)2

• The transformed features are given by:
𝑦! = 𝛾

𝑥! − 𝜇
𝜎 + 𝜖

+ 𝛽

where 𝛾, 𝛽 are learnable parameters

Obtained from all elements
in the feature map.

E.g, having
(M=2,C=1,H=2,W=2) it will

calculate a single mean
value, for all spatial and

depth slements

Convolutional Neural Networks (CNNs)

Consider a batch of 2 samples, each with 1 channel and a 2×2 feature
map:

Sample 1:

Sample 2:

You are told the BN layer uses:
• γ=1.5
• β=0.0
• ϵ=0

• Apply the BN procedure and obtain the transformed feature maps.

Convolutional Neural Networks (CNNs)

• Non-Linearity
• There are two basic non-linear activation functions used in

CNNS: “ReLU” (Rectified Linear Units) and “Sigmoid”.

• As advantages with respect to each other, Sigmoid is
consider not to blow up activation, while ReLU does not
vanishes the gradient
• In the case of Sigmoid, when the input grows to infinitely large,

the derivative tends to 0.
• However, in the case of ReLU, there is no mechanism to

constrain the output of the neuron, as the input is often the
output)

Convolutional Neural Networks (CNNs)
• Fully Connected layers
• Neurons in a fully connected layer have full connections to all

activations in the previous layer, as in a regular feed-forward network.
• In practical terms, these neurons resemble pretty much the neurons in

”Convolution” layers.
• The only difference between fully connected and Convolution layers

is that the neurons in the former layer are connected only to a local
region in the input, and that many of the neurons in a CONV volume
share parameters.
• However, the neurons in both layers still compute dot products, so

their functional form is identical.
• For example, an FC layer with K=4096 that is looking at some input

volume of size 7×7×512 can be expressed as a Convolution layer with
F=7 x 7 x 4096 (padding 0, stride 1).
• In other words, we are setting the filter size to be exactly the size of the

input volume;
• Hence the output will simply be 1×1×4096.

Convolutional Neural Networks (CNNs)

• Softmax
• Can be seen as the combination of an activation function

(exponential) and a normalization operator.
• It is usually applied as the transfer function of the last layer

of the CNN, where the idea is to push up the maximum
value of the responses to “1”, and all the other values to
“0”.
• In practice, it simulates the probability of the input

corresponding to each category, represented by a neuron in
the output layer.

Convolutional Neural Networks (CNNs)
• Most of the data memory used by CNNs is used in the early Convolutional

layers (where spatial resolution is maximal), whereas most of the
parameters of the network are in the fully connected layers.

• Example VGGNet, one of the well known and succeeded architectures:

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456 POOL2: [56x56x128]
memory: 56*56*128=400K weights: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

Convolutional Neural Networks (CNNs)
• VGGNet:
• The total memory used is about 4 bytes * 24,000,000 = 93 MB
• This is required only for the forward step
• In practice, the backward step requires around the double memory;
• The network has 138,000,000 parameters to be tuned by the back-

propagation algorithm.
• It should be noted that the conventional paradigm of a linear list of layers

is not the state-of-the-art anymore.
• Google’s Inception architectures and also Residual Networks from

Microsoft Research Asia.
• Both of these feature more intricate and different connectivity

structures.
• Most of the COTS (commercial off-the-shelf) models have complex graph-

based architectures.

Convolutional Neural Networks (CNNs)

Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

• Accuracy vs. Number of operations for a single forward step.
Circumference radii corresponds to the number of parameters

Convolutional Neural Networks (CNNs)

• An illustration of the most popular deep learning architectures
is provided in http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/

LeNet AlexNet VGG GoogLeNet Inception Resnet

CNNs: Example

• How to create (and instantiate) one CNN (Sequential):

(“Sequential” objects provide the simplest way. “Functional”
objects enable additional functionalities)

def cnn_model(input_shape=(32, 32, 3)):

 model = Sequential()

 model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=input_shape))
 model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
 model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
 model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Flatten())
 model.add(Dense(512, activation='relu'))
 model.add(Dense(10, activation='softmax'))

 return model

###
Instantiate model
model = cnn_model()
model.summary()

Compile model
model.compile(optimizer='rmsprop’, loss='categorical_crossentropy’, metrics=['accuracy'])

CNNs: Example

• How to use (or fine tune) one well known CNN model:
• Example: Inception.V3

• This is typically the approach that attains the best results.
• Not only the architecture was coherently designed, but also the

weights were optimized based in huge datasets.

def create_inception(tot_classes):
 imgs_input = Input((args['image_height'], args['image_width'], 3))

 if args['fine_tuning'] == 0:
 model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3),
 weights=None, include_top=False)
 else:
 model_tmp = inception_v3.InceptionV3(input_shape=(args['image_height'], args['image_width'], 3),
 weights='imagenet', include_top=False)
 model_tmp.trainable = False

 x = model_tmp(imgs_input, training=False)

 x = keras.layers.GlobalAveragePooling2D()(x)
 outs = Dense(tot_classes, activation='linear')(x)

 md = Model(inputs=imgs_input, outputs=outs)
 md.compile(optimizer=RMSprop(learning_rate=args['learning_rate']), loss=tf.keras.losses.MeanAbsoluteError())
 return md

CNNs: Example

• How to train one CNN:

• Typical preprocessing steps:

For small datasets
history = model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1, validation_split=.3)

For large datasets
for i in range(tot_batches):
 [X_batch, y_batch] = get_input_batch(i)
 loss = model.train_on_batch(X_batch, y_batch)

Images are typically normalized to the range [0, 1].
X_train = X_train.astype("float32") / 255
X_test = X_test.astype("float32") / 255

In classification problems, labels are typically converted to one-hot encoding.
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

ap = argparse.ArgumentParser()

ap.add_argument('-d', '--dataset', required=True, help='CSV learning dataset file')

ap.add_argument('-o', '--output_folder', required=True, help='Output folder')

ap.add_argument('-b', '--batch_size', type=int, default=100, help='Learning batch size')

ap.add_argument('-iw', '--image_width', type=int, default=512, help='Image width')

ap.add_argument('-ih', '--image_height', type=int, default=128, help='Image height')

ap.add_argument('-l', '--learning_rate', type=float, default=1e-3, help='Learning rate')

ap.add_argument('-de', '--decay_rate', type=float, default=1e-2, help='Decay rate')

ap.add_argument('-dr', '--dropout_rate', type=float, default=0.25, help='Dropout rate')

ap.add_argument('-e', '--epochs', type=int, default=1000000, help='Tot. epochs')

ap.add_argument('-pl', '--probability_learn', type=float, default=0.7, help='Probability Learning set')

ap.add_argument('-pv', '--probability_validation', type=float, default=0.15, help='Probability Validation set')

args = ap.parse_args()

Argument Parsing

The script is then executed by: “python3 script.py –d ‘data.csv’,...

def read_csv(dataset):

##########################

Load Data in '.csv' format: [[filename_1, label_1], [filename_2, label_2],...]

samp = []

with open(dataset) as f:

csv_file = csv.reader(f, delimiter=',')

for row in csv_file:

samp.append(row)

random.shuffle(samp)

return samp

Large Dataset Loading

The “csv” file should be in the format:
/path/image_1.jpg 1
/path/image_2.jpg 0
/path/image_3.jpg 2

def split_dataset(dt):

dt_l = []

dt_v = []

dt_t = []

onehot_encoder = OneHotEncoder(sparse=False)

onehot_encoder.fit(np.asarray([x[-1] for x in dt]).reshape(-1, 1))

out = onehot_encoder.transform(np.asarray([x[-1] for x in dt]).reshape(-1, 1))

dt = list(zip(dt, out))

for el in dt:

x = random.random()

if x < args.probability_learn:

dt_l.append([el[0][0], el[1]])

elif x < args.probability_learn + args.probability_validation:

dt_v.append([el[0][0], el[1]])

else:

dt_t.append([el[0][0], el[1]])

return dt_l, dt_v, dt_t

Dataset Splitting

Divides the available data into three
sub-sets: learning + validation + test

def get_input_batch(gt, idx, augm, tot_c):

tot = min(args.batch_size, len(gt) - idx)

imgs = np.zeros((tot, args.image_height, args.image_width, 1)).astype('float')

labels = np.zeros((tot, tot_c)).astype('float')

for i in range(tot):

img = cv2.imread(gt[idx + i][0])

if augm is not None:

img = augm.augment_image(img)

img = cv2.resize(img, (args.image_width, args.image_height))

imgs[i, :, :, 0] = img[:, :, 0] / 255

labels[i, :] = gt[idx + i][1]

return imgs, labels

Data Batch Loading

Load one batch of (maximum)
”batch_size” images and the
corresponding ground truth

def create_cnn(tot_c):

imgs_input = Input((args.image_height, args.image_width, 3))

conv12 = Conv2D(64, kernel_size=3, strides=2, padding="same")(imgs_input)

conv12_bn = BatchNormalization(momentum=0.8)(conv12)

conv12_a = LeakyReLU()(conv12_bn)

drop12 = Dropout(args.dropout_rate)(conv12_a)

conv13 = Conv2D(128, kernel_size=3, strides=2, padding="same")(drop12)

conv13_bn = BatchNormalization(momentum=0.8)(conv13)

conv13_a = LeakyReLU()(conv13_bn)

drop13 = Dropout(args.dropout_rate)(conv13_a)

conv14 = Conv2D(256, kernel_size=3, strides=2, padding="same")(drop13)

conv14_bn = BatchNormalization(momentum=0.8)(conv14)

conv14_a = LeakyReLU()(conv14_bn)

drop14 = conv14_a

drop14 = Dropout(args.dropout_rate)(conv14_a)

conv15 = Conv2D(512 , kernel_size=3, strides=2, padding="same")(drop14)

conv15_bn = BatchNormalization(momentum=0.8)(conv15)

conv15_a = LeakyReLU()(conv15_bn)

drop15 = Dropout(args.dropout_rate)(conv15_a)

Create CNN
conv16 = Conv2D(512, kernel_size=3, strides=2, padding="same")(drop15)

conv16_bn = BatchNormalization(momentum=0.8)(conv16)

conv16_a = LeakyReLU()(conv16_bn)

drop16 = Dropout(args.dropout_rate)(conv16_a)

pooled = Flatten()(drop16)

dense1 = Dense(128, activation='relu', kernel_constraint=None)(pooled)

drop1 = Dropout(args.dropout_rate)(dense1)

dense2 = Dense(64, activation='relu', kernel_constraint=None)(drop1)

drop2 = Dropout(args.dropout_rate)(dense2)

outp = Dense(tot_c, activation='sigmoid', kernel_constraint=None)(drop2)

out = Softmax()(outp)

md = Model(inputs=imgs_input, outputs=out)

md.compile(optimizer=SGD(lr=args.learning_rate, momentum=0.8),
loss=tf.keras.losses.CategoricalCrossentropy())

md.summary()

return md

Creates a CNN of 27 layers

i = 0
while i < len(l_s):

[imgs, gt] = get_input_batch(l_s, i, augmenter, tot_c)
lo = md.train_on_batch(imgs, gt)
lo_l.append(lo)
i += args.batch_size
print('\r Learn [%d - %d/%d]...' % (epoch, i, len(l_s)), end='')

Train()

One training epoch

i = 0
while i < len(v_s):

[imgs, gt] = get_input_batch(v_s, i, None, tot_c)
lo = md.test_on_batch(imgs, gt)
lo_v.append(lo)
i += args.batch_size
print('\r Valid [%d - %d/%d]...' % (epoch, i, len(v_s)), end='')

One validation epoch

ep = range(1, epoch + 1)

fig_1 = plt.figure(1, figsize=(18, 8))

plt.clf()

gs = gridspec.GridSpec(2, 2, figure=fig_1)

ax = fig_1.add_subplot(gs[0, 0])

ax.plot(ep, losses_learn, '-g')

ax.plot(ep, losses_valid, '-r')

ax.grid(True)

ax.title.set_text('Losses’)

...

Train()

Plot intermediate results

