
COMPUTER VISION
MEI/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença
hugomcp@di.ubi.pt, 2023/24

Recurrent Neural Networks

• Recurrent Neural Networks (RNNs) are
deep learning model typically used to
process and convert a sequential data
input into a sequential data output.
• Sequential data—such as words,

sentences, or time-series— have
interrelated sequential components,
based on complex semantics and syntax
rules.
• The key idea in RNNs is to use (apart the

classical “weights”) an internal state that
is updated as a sequence is processed

The output y can
be seen not only as
a function of the
input x, but also of
the internal state h

Recurrent Neural Networks

• The forward step of RNNs is divided
into two phases:

• Step 1: Obtain the hidden state
at time “t” (𝒉!), given the input
at time “t” (𝒙!), and the
previous state (𝒉!"#).

• Step 2: Then, obtain the output
at time “t” (𝒚!), using the
recently updated state (𝒉!).

Recurrent Neural Networks

Random
initialization

Recurrent Neural Networks

• Step 1. To obtain the hidden state at time “t” (𝒉!) , we process a set of inputs
(𝒙$) , using the same function 𝒇% at every step.
• In practice, this is due to the fact that backpropagation (weights update) is

only done after a batch of steps.

• The pioneer architecture (Vanilla RNN) assumes that the state (𝒉!) is a single
hidden vector in the network.
• “s” is the dimension of the input/output space, and “d” is a hyper-parameter of the

RNN.

[d x d] Matrix

[d x 1] vector [d x s] Matrix

[s x 1] vector

[d x 1] vector

Recurrent Neural Networks

• Step 2. Once 𝒉! is found, the output at time “t” (𝒚!) , can also be obtained

• Hence, the first step of the corresponding computational graph is given by:

[s x d] Matrix

[d x 1] vector[s x 1] vector

Recurrent Neural Networks

• Only at the second step, the outputs (𝒚!) are obtained and the partial losses
found.
• Such partial loss values are then used to obtain the final loss ℒ that will be

used in backpropagation.

Recurrent Neural Networks: Example

• Text Generation. Consider a single training sequence (“hello”).
• The vocabulary is a set of four symbols: {“h”, “e”, “l”, “o”}
• We start by obtaining a latent representation of each element in the training

set. The simplest one is the hot-one encoding.
• ℎ → 1, 0, 0, 0 𝑇 ; 𝑒 → 0, 1, 0, 0 𝑇; 𝑙 → 0, 0, 1, 0 𝑇 ; o → 0, 0, 0, 1 𝑇

• More sophisticated content generation techniques (e.g., Chat GPT) obtain
richer representations, which elements lie in topological spaces (i.e.,
neighbor representations are related or are alike).
• It is reported that these representations play a very important role in the

final effectiveness of the model.
• In this example, we are working at the character level. However, “word” or

even “small sentence” levels can also be considered.
• “𝑐𝑎𝑡” → 1, 0, … , 0, 0 𝑇 ; 𝑑𝑜𝑔 → 0, 1, … , 0, 0 𝑇;

Recurrent Neural Networks: Example

• Step 1. Obtain the hidden state representations (𝒉!) for the training
sequence (“hell”).

• Suppose that (𝑾&&) and (𝑾'&) were initialized randomly.

Why isn’t the complete
set considered?

(𝒉!)

Recurrent Neural Networks: Example

• Step 2. Next, we can obtain the predicted elements at each time.

• Again, suppose that (𝑾&*) was initialized randomly.

𝒉! obtained in Step 1

• During training, we forward during
the entire sequence to obtain the
loss, and then backpropagate to
obtain the gradientes and adjust
weights.

• However, in practice, we run
forward/backward through
“chunks” instead of the whole
sequence.

• This is the equivalent to the notion
“batch” in classical CNNs
architectures

Recurrent Neural Networks: Example

Recurrent Neural Networks: Example

• A minimal example (in 112 lines of Python) is available at the web page of
this course. It contains a “Vanila” RNN learning process, depending
exclusively of “numpy” library.

• Based in a simple plain text file (input.txt”) it learns to generate text.

Credits: Andrej Karpathy

Recurrent Neural Networks: Applications

• One interesting application of RNNs is
“Image Captioning”, that regards to
obtain descriptions for visual content.
• The learning set is composed of a set of

images previously labeled (captioned) by
humans.
• A classical CNN architecture for global

image classification can be used (e.g.,
VGG or ResNet), removing the final
classification layer.
•We use the highest-level possible latent

representation

𝒗

Recurrent Neural Networks: Applications

• The latent representation 𝒗 is also
considered by the RNN, fusing text 𝒙 to
visual information 𝒗
• A new weights matrix 𝑾𝑖ℎ is also required

𝒗

Special tokens:

<START> +
<END>

Image Captioning: Results

Credits: Fei-Fei Li, Yunzhu Li, Ruohan Gao

