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• The design of the experimental procedure to 
learn/evaluate computer vision/machine 
learning models is sensitive.
• Badly designed experiments lead to erroneously 

optimistic/pessimistic estimates of the system 
performance 

• One of the golden rules in machine learning is 
that the data should be split in three disjoint 
subsets:
• Learning (Training) set:  this is the set of instances 

used to fit the parameters of the hypothesis 
(model).
• In case of supervised learning, it consists of pairs of a 

input vectors and the corresponding ground truth, also 
known as the target or label.

• Validation set. It provides an unbiased evaluation 
of a model performance during the learning 
process, while tuning the model hyper-
parameters (e.g., acceptance/rejection threshold)

• Test set. It is used to provide an unbiased 
evaluation of a final model.

Computer Vision: Experimental Setup 



• Overfitting it is one of the most classical problems in Computer Vision/Machine
Learning problems.
• It occurs when the our model fits “too well” the learning data, but is fails to 

generalize to new data, i.e., the data where we actually want to use the model
• This is particularly probable when the model has a large number of parameters

• In such case, the model has too many degrees-of-freedom
• Nowadays, the breakthrough models based in deep-learning frameworks have a huge

number of parameters
• VGG-16 network, proposed in 2014, has 138,000,000 parameters!

Overfitting
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• The Occam’s razzor is a principle from philosophy that
states that:
• »Entia non sunt multiplicanda praeter necessitatem»

• This can be translated to:
• “More things should not be used than are necessary”

• Which in practical terms states that simple models 
should (in case of comparable effectiveness) be 
preferred over more complex ones.

Overfitting/Underfitting

Wiliam of Ockham

• In linear and logistic regression, this is equivalent to force the inferred 
parameters of  our model to be small.
• This is done by adding a term to the cost function we want to minimize:

• It is called the “regularization term” (and 𝝀 the regularization weight)
• Consider that 𝜃 = {𝜃0, 𝜃1, …, 𝜃𝐷}

J(𝜽) = !
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2+ 𝜆∑$%!& 𝜃𝑖2 



Overfitting/Underfitting

• Consider the following model:

• Suppose that we set 𝜆 too large. What happens?

• Minimizing the  J() function, it will force that 𝜃1… 𝜃4 will be 
approximately 0

• Hence, the inferred model will be given by:

ℎ𝜃 𝑥 = 𝜃0+ 𝜃1𝑥 + 𝜃2𝑥2+ 𝜃3𝑥3+ 𝜃4𝑥4

J(𝜽) = !
"#
∑$%!# ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 2+ 𝜆∑$%!& 𝜃𝑖2 
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Overfitting/Underfitting

• In practice terms, this adds one extra-parameter 𝜆 to our 
problem.
• This parameter is not part of the model, but instead, it is used during 

the learning process
• These are called “hyper-parameters”

• We saw that: 
• Too large values will lead to underfitted models
• Too small values will lead to overfitted models

• Typically, the choice of 𝜆 can be made according to the performance in 
the validation set.
• To adapt the linear and logistic regression learning processes, in order 

to obtain regularized models, one just have to consider that:

∫
∫ (𝒊

𝜆∑$%!& 𝜃𝑖2 = 2𝜆𝜃𝑖



• It is a statistical method used to estimate 
the performance of machine learning 
hypotheses (models).

• It is one of the most commonly used, being 
easy to understand and to implement, with 
estimates generally having comparable 
bias than other more sophisticated 
methods (e.g., bootstrapping)

• It is a resampling technique.
• The value for “K” is defined at the beginning
• The available data is randomly split at K 

samples (groups)
• The model is fitted “K” times, each time 

using 1 group as test set and the remaining 
(k-1) groups as learning data

• Performance is obtained for the test set 
• The final performance is given by the mean 

value of the “K” performance values.

K-Fold Cross Validation

K=5

Dataset

Test Learning



• Also, typically results are given in a (“mean” ∓ “standard deviation”) performance 
values
•  E.g.: “0.70 ∓0.02” means that it is expected that the model performs well 70% 

of the times, with “typical” variations of more or less 2%
• It has roots in the “law of big numbers” and in the “theorem of the

central limit”
• Considering that repeated observed performance values will approach

their “true mean” and that they follow a Gaussian distribution, one can 
conclude that about 68.2% of the times, the model performance will lie 
in the “mean ∓ standard deviation” interval.

K-Fold Cross Validation



• It is closely related to K-fold cross validation and follows the same idea:
• Generates multiple subsets, by sampling from a single, original dataset. 
• Each of the “new” sets can be used to estimate performance. 
• Since there are multiple sets (and therefore multiple estimates), one can also obtain 

the mean, standard deviation or a confidence interval for the estimate.

• The key difference is that bootstrapping resamples the data with 
replacement. 
• Given a dataset containing N points, bootstrap picks a data point uniformly at 

random, adds it to the bootstrapped set, puts that data point back into the dataset, 
and repeats.

• Why put the data point back? 
• In a real setting, data would come from the “real distribution of the data”. 
• But all we have is a dataset (i.e., a sample), we don’t have the real distribution of the 

data. Out set is supposed to represent the underlying distribution, i.e., it is an 
empirical distribution of data. 

• The rule is to simulate sub-sets by drawing from the empirical distribution. 
• Hence, the data point must be put back, because otherwise the empirical distribution 

would change after each draw.

Bootstrapping



• Also known as an error matrix, this table summarizes the model 
performance, providing more information that the simple “accuracy” value.
• For a  binary classification problem, it is a table with two rows and two 

columns, reporting the number of false positives, false negatives, true 
positives, and true negatives. 
• Each row corresponds to one predicted outcome (class)
• Each column corresponds to one actual (ground-truth) class  

• The model accuracy is given by:  !"#!$
!"#!$#%"#%$

• Precision: !"
!"#%"

(when it predicts “yes”, how likely it is correct?)  

• Recall: !"
!"#%$

(what is the proportion of “yes” that are actually detected?) 

Confusion Matrix 



• A Receiver Operating Characteristic curve (ROC), 
is a graphical plot that illustrates the performance 
of a binary classifier system, with respect to 
changes in its discrimination threshold.

• This curve shows the relationship between two 
measures:
• True Positive Rate
• False Positive Rate

• The True Positive Rate (TPR) is also known as 
recall and is given by:
• 𝑇𝑃𝑅 = #$

#$%&'
• The False Positive Rate (FPR) (1 – specificity) is 

given by:
• 𝐹𝑃𝑅 = &$

&$%#'
• This plot gives the TPR vs. FPR at different 

acceptance thresholds. 
• Low thresholds classify more items as positive, which 

increases both the TPR and FPR
• High thresholds classify less items as positive, which 

decreases both the TPR and FPR

ROC: Receiver Operating Characteristic
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• To obtain the data for a ROC curve, we start by sorting the output scores, 
obtained for the evaluation set:
• Consider that red dots correspond to class “0” (the negative class), and green 

dots to class “1” (the positive class)

• What happens when we set the acceptance threshold at?

• 6 (out of 8) negative samples are correctly rejected. TNR=6/8
• 2 (out of 8) negative samples are erroneously considered as positive. FPR = 2/8
• 7 (out of 10) positive samples are correctly accepted. TPR = 7/10
• 3 (out of 10) positive samples are erroneously considered as negative. FNR = 3/10

ROC: Receiver Operating Characteristic

❌ ✅



• Next, we obtain the TPR/FPR values for all possible acceptance 
thresholds:

• At t0, we have TPR=1, FPR=1
• At t1, …
• At ti, we have TPR=0.9, FPR=0.5
• …
• At tn, we have TPR=0, FPR=0

ROC: Receiver Operating Characteristic
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• The ROC curve reports all the possible
performance parameterizations of our
model:
• Either tuned for security or convenience

• When comparing two models, the best one
would have the ROC curve above the other
most times
• The optimal performance will correspond

to the (0,1) point in the plot
• The xi=yi line corresponds to the worst

possible model, with performance equal of
a random number generator.

ROC: Receiver Operating Characteristic

TP
R

FPR
0 1

1



• The ROC curve shows all possible
parameterization, and it is given as a plot
• To obtain a numeric value that sumarizes 

the effectiveness of a model, it is typically
used the Area Under Curve metric.
• It is given by:

• ∫!
" 𝑓 𝑥 𝑑𝑥

• with 𝑓 𝑥  corresponding to the ROC curve 
values. 
• AUC = 1 is the perfect system that obtains 

optimal performance with all possible 
acceptance thresholds
• AUC = 0.5 is the “random number” 

generator (worst possible system)

AUC: Area Under Curve
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• Precision-Recall is particularly suitable
when the classes are very imbalanced. 

• In information retrieval, precision is the
fraction of relevant items among actually
returned items. Recall is a measure of the
fraction of items that were returned among all
items that should have been returned.

• Precision/Recall plots are mostly used for 
detection purposes.

• In this type of problems, there are typically
much more positions where one object isn’t
than the positions that actually contain the
object.

Precision/Recall Plots



Precision/Recall Plots

Precision (P) is defined as 
the number of true 
positives (Tp) over the 
number of true positives 
plus the number of false 
positives (Fp).

𝑃 =
𝑇(

𝑇( + 𝐹(

Recall (R) is defined as the number of true 
positives (Tp) over the number of true positives 
plus the number of false negatives (Fn).

𝑃 =
𝑇(

𝑇( + 𝐹)

In opposition to 
ROCs, it can be

non-monotonous

“Every time one object is
detected, how likely it is

actually a match?”

“What is the
proportion of objects

detected?”



Average Precision (AP) and mAP

Average precision (AP) 
summarizes such a plot as the 
weighted mean of precisions 
achieved at each threshold, with 
the increase in recall from the 
previous threshold used as the 
weight:

𝐴𝑃 =)
*
(𝑅* − 𝑅*+,) 𝑃*

In practice, it can be seen as the
equivalent of AUC for ROC plots

Upon this metric, (measured for single class), we
obtain the “Mean Average Precisoon”, which is the
harmonic mean for all classes. 

𝑚𝐴𝑃 =
1
𝑘)-

𝐴𝑃-



F1 Score

The F1 score can be interpreted 
as a harmonic mean of the 
precision and recall, where an F1 
score reaches its best value at 1 
and worst score at 0. The relative 
contribution of precision and 
recall to the F1 score are equal.  

𝐹1 =
2 ×𝑃 ×𝑅
𝑃 + 𝑅

Precision and recall are a trade-off, i.e., one metric comes at the cost of another. Typically, 
more precision implies less recall values and vice-versa.

The F1 score combines precision and recall using their harmonic mean, and maximizing the F1 
score implies simultaneously maximizing both precision and recall. Thus, the F1 score has 
become one of the most popular choices of researchers for evaluating their models


