COMPUTER VISION MEI/1

University of Beira Interior, Department of Informatics

Hugo Pedro Proença

hugomcp@di.ubi.pt, 2023/24

Neural Networks: Gradient Descent

- Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function.
 - To find a (local?) minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient.
- It is based on the observation that if a multi-variable function F(x) is defined and differentiable in a neighborhood of a point x_(t) then F(x) decreases fastest if one goes from x_(t) in the direction of the negative gradient of F at x_(t): -∇ F (x_(t))

Neural Networks: Gradient Descent

- It follows that, if:
 - $\mathbf{x}_{(t+1)} = \mathbf{x}_{(t)} \gamma \nabla F(\mathbf{x}_{(t)})$
- then, for γ small enough, then $F(\mathbf{x}_{(t)}) \geq F(\mathbf{x}_{(t+1)})$
- Based on this observation, in practice one starts with an initial guess $\mathbf{x}_{(0)}$ typically random and update iteratively $\mathbf{x}_{(t+1)}$ such that the sequence $\{\mathbf{x}_{(i)}\}$ converges to a minimum.
- The **learning rate** γ plays a major role in the final results of the optimization algorithm.
 - Too small values would take too long time to achieve a minimum;
 - Too large values might be even worse: might lead to diverging sequences.

Gradient Descent: Unimodal Functions

Consider the following 2D function:

•
$$f(x, y) = x^2 + 2y^2$$

1. Plot the function in the [-5.0, 5.0] x [-5.0, 5.0] interval

2. Create a Python script that, starting from a random point (x_0, y_0) , use the gradient descent algorithm to find the function minimum.

Gradient Descent: Unimodal Functions

• Easom's Function. Repeat the previous exercise, for the function below

•
$$f(x, y) = -\cos(x) * \cos(y) * \exp(-((x - \pi)^2 + (y - \pi)^2))$$

1. Plot the function in the [-10.0, 10.0] x [-10.0, 10.0] interval

2. Create a Python script that, starting from a random point (x_0, y_0) , use the gradient descent algorithm to find the function minimum.

Gradient Descent: Multimodal Functions

• Himmelblau's Function. Repeat the previous exercise, for the function below

•
$$f(x,y) = (x^2+y - 11)^2 + (y^2+x - 7)^2$$

1. Plot the function in the $[-5.0, 5.0] \times [-5.0, 5.0]$ interval

2. Create a Python script that, starting from a random point (x_0, y_0) , use the gradient descent algorithm to find the function minimum.

Gradient Descent: Multimodal Functions

• Ackley's Function. Repeat the previous exercise, for the function below

•
$$f(x,y) = -20 \exp\left(-0.2\sqrt{\frac{x^2+y^2}{2}}\right) - \exp\left(\frac{\cos(2\pi x) + \cos(2\pi y)}{2}\right) + \exp(1) + 20$$

1. Plot the function in the [-5.0, 5.0] x [-5.0, 5.0] interval

2. Create a Python script that, starting from a random point (x_0, y_0) , use the gradient descent algorithm to find the function minimum.

Gradient Descent: Multimodal Functions

• Ackley's Function. Repeat the previous exercise, for the function below

•
$$f(x,y) = -20 \exp\left(-0.2\sqrt{\frac{x^2+y^2}{2}}\right) - \exp\left(\frac{\cos(2\pi x) + \cos(2\pi y)}{2}\right) + \exp(1) + 20$$

1. Plot the function in the [-5.0, 5.0] x [-5.0, 5.0] interval

2. Create a Python script that, starting from a random point (x_0, y_0) , use the gradient descent algorithm to find the function minimum.

Backpropagation

- "Backpropagation" is the short name for "backward propagation of errors";
- Algorithm for supervised learning of multi-layer artificial neural networks based in gradient descent;
- The key concept is the <u>chain</u> rule:
 - $\delta g/\delta x = \delta g/\delta f \cdot \delta f/\delta x$
- Calculates the gradient of the error function with respect to the neural network's weights;
- It is a generalization of the delta rule for perceptrons to multilayer feed-forward neural networks.

• Consider the following simple function:

$$f(x_1, x_2, x_3) = (x_1 + x_2)x_3$$

• ...and the corresponding network:

•
$$p = x_1 + x_2$$
; $\frac{\partial p}{\partial x_1} = 1$; $\frac{\partial p}{\partial x_2} = 1$

•
$$f = px_3$$
; $\frac{\partial f}{\partial p} = x_3$; $\frac{\partial f}{\partial x_3} = p$

We need:

 $\frac{\partial f}{\partial x_1}$; $\frac{\partial f}{\partial x_2}$; $\frac{\partial f}{\partial x_3}$

- According to the chain rule, $\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial p} \frac{\partial p}{\partial x_1}$
- $\frac{\partial f}{\partial x_1} = x_3 1$ ("if x_1 changes Δ , then f will change $x_3 \Delta$ ")
 $\frac{\partial f}{\partial x_2} = x_3 1$

• A slight more complex example regarding the well known "logistic regression" classifier:

• Consider the following input x = [-1, -2]; w = [-3, 2, -3]

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

• Forward Pass:

• Consider the following input x = [-1, -2]; w = [-3, 2, -3]

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

• Consider the following input x = [-1, -2]; w = [-3, 2, -3]

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

• Consider the following input $\mathbf{x} = [-1, -2]$; $\mathbf{w} = [-3, 2, -3]$

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

• Consider the following input x = [-1, -2]; w = [-3, 2, -3]

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

• Consider the following input x = [-1, -2]; w = [-3, 2, -3]

• Consider the following input $\mathbf{x} = [-1, -2]$; $\mathbf{w} = [-3, 2, -3]$

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

• Consider the following input x = [-1, -2]; w = [-3, 2, -3]

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

Backpropagation

• In case of any branches, gradientes should be summed up.

