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Convolutional Neural Networks (CNNs)

qCNNs are “the” type of Neural Networks that have been 
augmenting their popularity in most tasks related to Computer 
Vision
qE.g., Object Detection, Segmentation and Classification.

qThe property of shift invariance gives them the biological 
inspiration of the human visual system and keeps the number of 
weights relatively small, making learning a feasible task.

qIn opposition to traditional feed-forward nets, neurons in CNNs 
are arranged in three dimensions.
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Convolutional Neural Networks (CNNs)

• The most typical structure of a CNN is:
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Convolutions + 
Non-linearities

Pooling
Fully Connected

Softmax

These operations are the basic building blocks of most CNNs, so understanding 
how these work is an important step to understand the functioning of these 
powerful models.
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Signals and Systems

qWhat is a signal?

qIt can be regarded as a description how a parameter varies
(dependent variable) with respect to another (independent
variable);

qE.g., the voltage of an electric charge varies with respect to 
time (1D signals) ;

qE.g., the intensity of a pixel varies with respect its location in 
image (2D signals);

qTipically, signals are denoted by upper case letters.
qDiscrete signals are denoted by []:

qE.g., X[n], Y[k] 
qContinuous signals are denoted by ()  

qE.g., X(i), Y(j)
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Linear Systems

qA system is said to be linear if it complies two mathematical
properties:

qHomogeneity;

qAdditivity;

qThere is a third property which is not a strict requirement for 
linearity, but it is mandatory for most pratical digital signal
processing techniques:

qShift invariance
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Linear Systems: Homogeneity

¨ Let f: RàR be a system, such that f(x)=y. 
¨ If z=kx then f(z)=k f(x).

¨ In practical terms a system is homogenous if an amplitude 
change in the input corresponds to an identical amplitude 
change in its output.
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Linear Systems: Exercises

qConsider the following system f:R2àR, such
that:
qf(x,y)=2x-4y+2
qDetermine the homogeneity of “f”.

qNow, consider the following system g:RàR, 
such that:
qg(x)= exp(x)
qDetermine the homogeneity of “g”.
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Linear Systems: Additivity

¨ Let f: RàR be one system, such that f(x1)=y and f(x2)=z. 
¨ If x3=x1+x2 then f(x3)=f(x1)+f(x2)=y+z

¨ In practical terms a system is said to be additive if the added 
signals pass by the system without interacting.
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Linear Systems: Exercises

qConsider the following systems. Evaluate their additivity:

qf: RàR, such that
qf(x) = x;

qg:RàR, such that
qg(x)=0;

qh:R2àR, such that
qh(x,y)=xy;

qz:R2àR, such that
qz(x,y)=x+3y;
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Superposition of Signals

qWhen we are working with linear systems, the only way signals can be combined is 
by scaling (multiplication of the signals by constants), followed by addition.
qThe process of combining several signals into a single one is called synthesis
qThe inverse process, broking a signal into its fundamental parts, its called decomposition. 
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Superposition of Signals

qIt’s the heart of signal processing system.
qIt gives the overall strategy to understand how systems 

and signals are analyzed:
qHaving one input signal:

qWe decompose it into simpler signals:

q...remember that our goal is to understand the system!
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Superposition of Signals

qNext, each input signal component passes individually
through the system:

qThese are the output signal components.
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Superposition of Signals

qInstead of trying to understand how complicated signals pass through the system, 
all we need to know is how their simplest components are affected by the system.

qFinally, the output signal  components are summed and we get the signal output, 
exactly equal as if the original signal was passed through the system.
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Signal Decomposition

qImpulse Decomposition

qDecomposes the original signal “x” (length N) into N signals, where each component 
contains only one non-zero value:
q xk(k)=x(k)
qxk(j)=0, j<>k

qImpulse decomposition is important because it allows signals to be 
examined one sample at a time.

qBy knowing how a system responds to an impulse, the system output can 
be calculated for any given input. This approach is called convolution and 
will be the subject of further discussions.

qExercise: Consider the following signal, represented in time-domain:
q[2,3,-4,1,0,5,2,4]

qUse impulse decomposition in the above signal and extract the resulting 
impulses.
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Signal Decomposition

• Impulse Decomposition
• The notion of “Delta function” (d) is extremely important, when 

using impulse decomposition. A delta function has the central 
component equal to 1and the remaining ones equal to 0. 
• Let fk(x) be a signal resultant of input decomposition of f(x).

• fk(x) = k d(x+t). Every input is s scaled and shifted version of the delta 
function 
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Inpulse Response

• Impulse Decomposition
• According to the above discussion, the output signal can be found by 

adding the output of these scaled and shifted impulse responses.
• In practical terms, if we know the response of a system to an 

impulse, we know the exact transformation that corresponds to our 
system. 

• Then, we can apply it to any arbitrary input signal.
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Inpulse Response

• Impulse Decomposition
• The impulse response completely 

determines the system’s behavior via 
convolution.

𝑦 𝑛 = $
!"#$

$
ℎ 𝑘 . 𝑥[𝑛 − 𝑘]

• In practice, the input response is the 
“kernel” that will be used to transform 
any input signal x[] in the corresponding 
output y[] 

h[k]



Computer Vision @ UBI, 22/23, hugomcp@di.ubi.pt

Inpulse Response

Audio Processing:
• The impulse response of a room (reverb kernel) determines 

how a sound will reverberate.
• Convolution with this impulse response simulates different 

acoustic environments.
Image Processing:

• A Gaussian blur is applied by convolving an image with a 
Gaussian kernel (which acts as the impulse response).

• An edge detection filter uses an impulse response (like the 
Sobel or Laplacian kernel).

Communications & Control Systems:

• In wireless communication, the multipath impulse response 
models how a transmitted signal arrives at a receiver after 
multiple reflections.

• In control systems, the impulse response helps design 
controllers by analyzing system stability.

h[k]
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Signal Decomposition

qFourier Decomposition

qIt resulted from a very important finding, by J. Fourier
q“Any periodic signal can be decomposed by a (potentially infinite) sum of simpler periodic 

signals”.

qIn practice, it decomposes any N length signal into N+2 signals,  half of them “sin” waves 
and the remaining “cosine” waves.
qThe first cosine component has fundamental frequency 0. 
qThe second has fundamental frequency 1.
q…
qSimilar observations for the sin waves.

qSince the frequency of each component is fixed, the only thing that changes for 
different signals being decomposed is the amplitude of each of the sine and cosine 
waves. 
qHence, any signal can be represented by the amplitude of the corresponding “sin” and “cosine“ waves.
qSimilar to a recipe, we can postulate that any input signal y[t] is a sum of “x1” sin(0t) + “x1” cos(0t) + … 
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Fourier Decomposition: Example
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Signal Decomposition

qExercise: Consider the following impulse response of a 1D 
signal in a system “f” (centered at index “0”).
q[0, 0, -1, 0, 1, 0, 0]

qDetermine:
qf([1,2,4,0,-1,1,0,2,3,1,0])

qIn the general signal processing domain, the impulse response 
of a system is called “filter kernel” or “convolution kernel”.

qIn image processing, it is called point spread function.
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Convolution

qIt is a mathematical operation that describes the relationship 
between three signals:
qOne input signal;
qOne impulse response;
qYielding the output signal

qAs it combines addition (+) with multiplication (x), it is usually 
denoted by “*”.
qY[k]=H[k]*X[k]
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Convolution: Exercise

qObtain the result of the convolution of the following signals:
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Convolution: Exercise

qObtain the result of the convolution of the following signals:
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Convolution: Examples

qLow-pass filtering:
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Convolution: Examples

qHigh-pass filtering:
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Convolution: Examples

qDiscrete derivative:
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Convolution: Caution!!

qWhen an input signal is convolved with an impulse response 
of length “M”, then the first and last “M-1” components are 
not fully reliable.
qWhy is this?
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Frequency Domain

qAny signal can be represented by a linear combination of 
basis-functions. 

qIn case of 2D images, we have the following function:

qHere, ak are the contributions of each basis-function to the original image.
qBasis functions are exponentials, complex and expressed in terms of 

harmonic functions (“sin” and “cos”):
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Discrete Fourier Transform (DFT)

qWe can build the following correspondence between any 
signal represented in the time (space) and frequency domains:



Computer Vision @ UBI, 22/23, hugomcp@di.ubi.pt

Discrete Fourier Transform (DFT)

qSuppose we have the following signal, 
represented in the time-domain:

qBy using the DFT algorithm, we are 
able to express it in the following way:



Computer Vision @ UBI, 22/23, hugomcp@di.ubi.pt

Discrete Fourier Transform (DFT)

qOften, it is more understandable 
to express the output of the DFT 
in Polar coordinates (magnitude + 
phase) , rather than in the original 
real and imaginary components:

qMag(X[k])
qsqrt( Re(X[k])2+Im(X[k])2)

qPhase(X[k])
qarc tan(Im(X[k])/Re(X[k]))
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Convolution Theorem

qThe convolution of two signals in a given domain 
(either spatial or frequency) corresponds to the 
point-by-point multiplication in the complementary 
domain.

qH(x)=f(x)*g(x) ßà H(x)=F(x) x G(x)

qThis is extremely important in modern DSP and in practical 
terms, enabled the existence of most state-of-the-art 
technologies and devices:
qTV, radio, computer,…;
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Filters

qAccording to the convolution
theorem, the convolution in 
time|frequency domain
corresponds to multiplication
in frequency|time domain.

qEach filter has an impulse
response, a step response 
and a frequency response:
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Filters

qImpulse Response
qOutput of the system to an impulse;

qStep Response
qOutput of the system when the input is a step;

qIt can be obtained without passing any signal thorugh the
system.

qBy integrating (running sum in discrete mathematics) the
impulse response.

qFrequency Response
qIt can plotted in liner or logarithmic scales (decibels).
qCorresponds to the Fourier Transform of the Inpulse Response
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Filters

¨ The step response is often used to measure how well a 
filter performs in the time domain, mostly in terms of: 
¨ Transition speed. In order to discriminate components

of a signal, the duration of the step should be shorter
that the spacing of events. Thus, the transition speed
should be as fast as possible. 
¨ Usually expressed by the proportion of samples

between a low a high amplitude levels (10 and
90%).   
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Filters: Examples

qTransition Speed
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Filters: Examples

qOvershoot. 
qIt corresponds to inverse variations to the major 

variation of step response. 
qIt changes the signal amplitude non-homogeneously.
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Filters: Examples

qLinear Phase. 
qUsually it is desired that the upper half of the step 

response is symmetrical to the lower half. 
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Filters: Summary

qWhen analyzing a system in terms of its frequency response, 
the most important factor is to observe the amount of 
frequencies that are blocked or passing through the system.
qThe pass band refers to the range of frequencies that pass trough the system
qThe stop band gives the frequencies that are blocked
qThe transition band is on the boundary
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Filters
qWe are usually interested in filters that have a fast roll-off (short

transiction band) and without ripples. Finally, in order to actually block
frequencies, we want to keep good stop band attenuation (expressed in 
logarithmic scale). 

A Bel (Alexander Bell) expresses that the 
power is changed one order of magnitude. 
As such, decibel values of -10dB, 0dB, 
10dB mean power ratios of 0.1, 1 and 10. 
Amplitude is the square root of  power. 
As such, 20dB mean that amplitude 
changes one order of magnitude  
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Filters: Examples


