
9901 Geometric Computing Lecture 4 - 01/01/2010

Interpolation Methods
Lecturer: Abel Gomes Scribe: A. Gomes

Summary: In this lecture we review the fundamental concept of interpolation and its possible applications in
computer-aided geometric design, and start considering basic constructive methods for curves and surfaces.
We discuss curves and surfaces in more detail in future lectures.

Contents:

4.1 Introduction
4.1.1 Linear Interpolation
4.1.2 Cosine Interpolation
4.1.3 Cubic Interpolation
4.1.4 Hermite Interpolation

4.2 Linear Interpolation
4.2.1 Linear Interpolation and Barycentric Coordinates
4.2.2 Linear Interpolation and Geometric Ratios
4.2.3 Linear Interpolation over [a,b]

4.3 Piecewise Linear Interpolation

4.4 Repeated Linear Interpolation

4.5 de Casteljau Algorithm

4.6 Final Remarks

1

4.1 Introduction

We discuss here a number of interpolation methods that we commonly find in computer graphics and geo-
metric modeling. Interpolation means to calculate a point or several points between two given points. For
a given sequence of points, this means to estimate a curve that passes through every single point.

4.1.1 Linear Interpolation

Linear interpolation is the simplest interpolation method. Applying linear interpolation to a sequence of
points results in a polygonal line where each straight line segment connects two consecutive points of the
sequence. Therefore, every segment (P,Q) is interpolated independently as follows:

P (t) = (1− t) .P + t .Q (1)

where t ∈ [0, 1]. By varying t from 0 to 1 we get all the intermediate points between P and Q. Note that
P (t) = P for t = 0 and P (t) = Q for t = 1. For values of t < 0 and t > 1 result in extrapolation, that is, we
get points on the line defined by P , Q, but outside the segment (P,Q).

4.1.2 Cosine Interpolation

As shown in Fig. ??, the curve resulting from Linear interpolation has discontinuities at each point. In
certain circumstances, we need a smoother interpolating function, that is a function that allows for a smooth
transition between consecutive segments. The cosine interpolation carries out a transition that looks smooth,
though every segment is interpolated independently too.

http://local.wasp.uwa.edu.au/ pbourke/miscellaneous/interpolation/

4.1.3 Cubic Interpolation

...

4.1.4 Hermite Interpolation

...

4.2 Linear Interpolation

Let us now define linear interpolation in more mathematical terms.

Definition 1. A linear interpolation f : [0, 1]→ Rn, t 7→ f(t) = (f1(t), . . . , fn(t)) is an affine transformation
from an unit interval [0, 1] to a straight line segment in Rn, where f1(t), . . . , fn(t) are the function components
of f along each coordinate axis.

See Lecture 1 for more details on affine transformations. By definition, an affine transformation preserves
barycentric combinations. Therefore, if t ∈ [0, 1] is defined as a barycentric combination of the points 0, 1 ∈ R

t = α0 .0 + α1 .1, with α0 + α1 = 1

then,

f(t) = α0 .f(0) + α1 .f(1), with f(0), f(1) ∈ Rn

with α0 = 1−t and α1 = t. This is illustrated in Fig.??, where we intuitively see that the linear interpolation

preserves the ratio f(t)−f(0)
f(1)−f(t) = t−0

1−t .

2

4.2.1 Linear Interpolation and Barycentric Coordinates

Let us first see the relation between collinearity and barycentric coordinates. Let P0, P , P1 be three collinear
points in R3. Then, P is the barycentric combination of P1 and P2 given as follows:

P = α0P0 + α1P1, with α0 + α1 = 1

where α0 and α1 are the barycentric coordinates of P with respect to P0 and P1, that is

α0 =
D(P, P1)

D(P0, P1)
and α1 =

D(P0, P)

D(P0, P1)

where D(,) denotes the signed Euclidean distance between two points.
We are now at a position that allows to show that the linear interpolation is given by Eq. (1). Taking

into consideration the above expressions for α0 and α1, and the fact that a linear interpolation preserves
barycentric coordinates, we have:

P (t) = α0P0 + α1P1, with α0 + α1 = 1

where

α0 =
t− 1

0− 1
= 1− t and α1 =

0− t
0− 1

= t

that is,
P (t) = (1− t) .P0 + t .P1

4.2.2 Linear Interpolation and Geometric Ratios

By definition, the ratio of three collinear points P0, P , and P1 is given by

r(P0, P, P1) =
D(P0, P)

D(P, P1)

Taking into account the expressions of the barycentric coordinates α0, α1 given above, we have

r(P0, P, P1) =
α1

α0

We know that an affine transformation f : [0, 1]→ Rn preserves barycentric coordinates; as a consequence,
the ratio of barycentric coordinates is also preserved. Therefore, r(P0, P, P1) remains unchanged by affine
transformations, that is,

r(f(P0), f(P), f(P1)) =
α1

α0

In short, an affine transformation preserves the geometric ratio of collinear points, that is, the image of
a straight line segment is a straight line segment.

4.2.3 Linear Interpolation over [a, b]

The interval [a, b] can be obtained from the affine transformation of the interval [0, 1]. With t ∈ [0, 1] and
u ∈ [a, b], this affine trnsformation is given by

t =
u− a
b− a

so, replacing the expression of t into

P (t) = (1− t)P0 + tP1

3

we have

P (u) =
b− u
b− a

P0 +
u− a
b− a

P1

Because a, u, b and 0, t, 1 have the same geometric ratio as P0, P, P1, we end up showing that the linear
interpolation is invariant under affine domain mappings. By affine domain mapping we mean an affine
transformation from the real line to itself.

4.3 Piecewise Linear Interpolation

Piecewise linear interpolation involves not two points but a sequence of points P0, P1, . . . , PN ∈ Rn such that
a linear interpolation is applied to two consecutive points of this sequence. The result is a polyline P, called
piecewise linear interpolant of all points P0, P1, . . . , PN . This is illustrated in FIg. ??, where we determine
a point in each segment for every t ∈ [0, 1].

If the points P0, P1, . . . , PN are on a curve C, we say that the resulting polyline P is a piecewise linear
interpolant of the curve C; symbolically, we write P = P(C).

The piecewise linear interpolation enjoys two properties, as described in the sequel.

Property L4.1 (Affine Invariance)

If a curve C is subject to an affine transformation f , then a piecewise linear interpolant of f(C) is an affine
transformation of the original piecewise linear interpolant, that is,

P(f(C)) = f(P(C))

Property L4.2 (Variance Diminishing)

Let P(C) be a piecewise linear interpolant of the curve C, and π an arbitrary hyperplane that intersects both
C and P(C). Then, we have

#
(
π ∩ (P(C))

)
≤ #

(
π ∩ (C)

)
that is, the number of intersection points between the plane π and the interpolant is less or equal to the
number of points resulting from the intersection between π and the curve.

This is so because, unlike a straight line segment of the interpolant, the curve segment passing through
the two endpoints of such a straight line segment is not necessarily convex.

The Menelaus Theorem

Let us now have a look at an important theorem in the context of piecewise linear interpolation.

Theorem 2. Let A,B,C ∈ R2 be three points defining two straight lines that meet at B, and D,E, F points
in the lines defined by (B,C), (A,C), and (A,B), respectively, each one of which is distinct from the vertices
of the triangle ∆ABC. Then, the points D,E, F are said to be collinear if and only if

δ(A,F)

δ(F,B)
.
δ(B,D)

δ(D,C)
.
δ(C,E)

δ(E,A)
= −1

Proof Let us consider the piecewise linear interpolant of the points P0, P1, P2. Let us apply the same
linear interpolation to two points t, u ∈ [0, 1] ⊂ R in a way we get two image points P (t), P (u) in the straight
line segment (P0, P1), and other two image points Q(t), Q(u) in the straight line segment (P1, P2) in R2, as
illustrated in Fig. ??.

4

We intend to prove that

δ(Q(u), Q(t))

δ(Q(t), P1)
.
δ(P1, P (t))

δ(P (t), P (u))
.
δ(P (u), P)

δ(P,Q(u))
= −1

For that purpose, we have only to determine the unknown third ratio δ(P (u),P)
δ(P,Q(u)) , that is, we have to

determine the barycentric coordinates of P . Taking into account that P is a barycentric combination of
both straight line segments (P (u), Q(u)) and (P (t), Q(t)), we have{

P = α0P (t) + α1Q(t) with α0 + α1 = 1

P = α′0P (u) + α′1Q(u) with α′0 + α′1 = 1
(2)

Now, let us substitute the expressions of

P (t) = (1− t)P0 + tP1

Q(t) = (1− t)P1 + tP2

and

P (u) = (1− u)P0 + uP1

Q(u) = (1− u)P1 + uP2

into (7) so that we get {
P = α0(1− t)P0 + [α0t+ α1(1− t)]P1 + α1tP2

P = α′0(1− u)P0 + [α′0u+ α′1(1− u)]P1 + α′1uP2

(3)

By combining (7) and ((3)), we have
α0(1− t) = α′0(1− u)

α1t = α′1u

α0 + α1 = 1

α′0 + α′1 = 1

(4)

that is, 
α0 = α′0

1−u
1−t

α1 = α′1
u
t

(1− α′1) 1−u
1−t + α′1

u
t = 1

α′0 = 1− α′1

(5)

or, equivalently, 
α0 = 1− u
α1 = u

α′1 = t

α′0 = 1− t

(6)

Substituting these barycentric coordinates in (7), we obtain

5

{
P = (1− u)P (t) + uQ(t)

P = (1− t)P (u) + tQ(u)
(7)

Finally, we can write down

δ(Q(u), Q(t))

δ(Q(t), P1)
.
δ(P1, P (t))

δ(P (t), P (u))
.
δ(P (u), P)

δ(P,Q(u))
=
u− t
t

.
1− t
−(u− t)

.
−t

−(1− t)
= −1

4.4 Repeated Linear Interpolation

Let us now see how repeated linear interpolation allows for a procedure to construct parabolas. As we will
see in lectures to come, the generalization of this procedure leads us to the construction of Bézier curves.

So, let P0, P1, P2 be three points in R2. Using piecewise linear interpolation, we determine two points for
a given t ∈ R, one in the straight line defined by (P0, P1) and another defined by (P1, P2), as follows:{

P 1
0 (t) = (1− t)P0 + tP1

P 1
1 (t) = (1− t)P1 + tP2

(8)

where the exponent 1 indicates the degree of the polynomial. By applying the same linear interpolation at
t ∈ R to the new segment (P 1

0 (t), P 1
1 (t)), we have

P 2
0 (t) = (1− t)P 1

0 (t) + tP 1
1 (t) (9)

Substituting the expressions of P 1
0 (t) and P 1

1 (t) given by (8) into (9), we obtain

P 2
0 (t) = (1− t)2P0 + 2t(1− t)P1 + t2P2 (10)

which is a degree-2 polynomial representing a parabola. This construction procedure for parabolas uses
repeated linear interpolation.

Property L4.3 (Convex Hull)

The construction of a parabola using repeated linear interpolation enjoys the following the convex hull
property, because

P 2
0 (0) = P0 for t = 0;
P 2
0 (1) = P1 for t = 1; and
P 2
0 (t) is within the convex hull of the points P0, P1, P2 for t ∈]0, 1[.

Property L4.4 (Affine Invariance)

Taking into consideration the ratios

r(P0, P
1
0 , P1) = r(P1, P

1
1 , P2) = r(P ′0, P

2
0 , P

1
1) =

t

1− t
we conclude that the above construction of a parabola is invariant under affine transformations because the
piecewise linear interpolation is affine invariant.

6

4.5 de Casteljau Algorithm

The previous construction for parabolas in R2 can be generalized to degree-N polynomial curves even in R3,
using the well-known algorithm due to de Casteljau.

Let us then outline the de Casteljau algorithm for curves in R3. Given the points P0, P1, . . . , PN ∈ R3,
the degree-d curve point at t is calculated as follows:

P di (t) = (1− t)P d−1i (t) + tP d−1i+1 (t) (11)

where d = 1, . . . , N and i = 0, . . . , N − d, with P 0
i (t) = Pi. As we will see in a later lecture, this means that

PN0 (t) = Pi is a point of a degree-N Bézier curve. The vertices P0, . . . , PN are known as control points (or
Bézier points), and the corresponding polygon is called control polygon (or Bézier polygon).

The de Casteljau scheme behind the computation of the coefficients P di (t) can be organized into a trian-
gular matrix of points. For example, a cubic curve (N = 3) depicted in Fig. ?? has the following de Casteljau
scheme:

P0

P1 P 1
0

P2 P 1
1 P 2

0

P3 P 1
2 P 2

1 P 3
0

This suggests the use of a 2-dimensional array in the implementation of the algorithm, but this would be
a waste of memory space for higher-dimensional curves. Therefore, instead of using a 2-dimensional array to
store a triangular matrix, we use a column vector to accommodate the non-null elements of such a matrix.

So, given the column array P[] containing a number N+1 of control points Pi, the C program to compute
the degree-N curve point at t makes use of Eq. 11 as follows:

f loat deCaste l j au (int N, f loat P [] , f loat t)
{

int d , i ;

for (d=1;d<=N; d++)
for (i =0; i<=N−d ; i++)

P[i]=(1− t)∗P[i]+ t ∗P[i +1] ;
return P [0] ;

}

This program returns the curve point PN0 given the control points P0, P1, . . . , PN .

4.6 Final Remarks

References

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, M. and J. Crowcroft, “XORs in the air: practical
wireless network coding”, IEEE/ACM Transactions on Networking,, vol. 16, no. 3, pp. 497–510, 2008.

[2] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat, “Learning to Share: Narrowband-Friendly
Wideband Wireless Networks”, ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp.
147–158, 2008.

7

