Computer Graphics for Digital Games
Video Game Technologies

14475: MSc in Computer Science and Engineering
13828: MSc in Game Design and Development

0041.0000%010020L00%0020L0000%0K410200L010L400002111101001010100%111010000100%00LLL0L0010

11010101040L1101.0000410000%010010100L00101000 LULLDLUULULULHDUUE{LLLLLDLDDLDL

| DLDLDLDLDPE LL%DLDD?%DLDDL].I].I].ID].I DLDLLULU 101011301,0000 41

Chap. 3 — Geometric Object Data Structures

Chapter 3: Geometric Object Data Structures

Outline

— Motivation.

— Geometric structures versus topological structures.
— Topological data structures: introduction.

— Incidence and adjacency relationships.

— Triangle soup (or spaghetti) data structure.

— Full incidence and adjacency data structure.

— Partial incidence and adjacency data structure.

— Winged-edge data structure.

— Half-edge data structure.

— Symmetric data structure.

— Topological inference and reasoning on incidence and adjacency.

— Euler operators (still incomplete!: not considered for teaching and learning)

Chapter 3: Geometric Object Data Structures

Motivation:
— Representing and manipulating geometric objects in space.
— “Representing” means mathematical and computational representations of geometric objects.
— “Manipulating” means operators to model and construct complex objects from simpler ones.

ﬂ

Geometric coverage:

— Points, straight and curved lines, planes and surfaces, solids, and n-D objects
Solids’ motivation:

— CT (computerized tomography) produces voxelized solids

— CAD systems require solid data for engineering analysis

— Ray tracing requires solid interiors for refraction purposes

cross-sectional image of abdomen finite elements in eng. analysis ray tracing solids with
refraction

Chapter 3: Geometric Object Data Structures

Brief history of geometric models

Wireframe models:

— 1950, vertices (points) and edges (lines)
— Solids are represented with ambiguities
Free-form surfaces:

— 1960’s (Bézier surfaces and B-splines)

— Mathematical (parametric) description of
the surface

Solid modelis:
— 1970’s, dimensional homogeneity,
manifoldness condition (B-reps and CSG)
Non-manifold modelis:

— 1980’s, relaxation of manifoldness
condition

A geometry is a pair (G,*), where:
—G is a set of transformations;

—* is an operation of concatenation.

Euclidean geometry:

— translation

— rotation

Affine geometry:

— scaling

— shearing

Projective geometry:

— orthogonal projection

— perspective projection

Chapter 3: Geometric Object Data Structures

Chapter 3: Geometric Object Data Structures

Topological Data Structures

Chapter 3: Geometric Object Data Structures

Topology / connectivity

— Generic sets of entities: vertices, edges and faces

— Overlayed sets of entities: only meet and disjoin

— Meet: topological relation that defines connectivity between entities. Entities of
different dimension are “connected” in different ways: relations (vertex-, edge-, face-
based)

— Disjoin: topological relation that defines the entities of lower dimension are in the
boundary of higher dimension entities.

Chapter 3: Geometric Object Data Structures

— Independent faces
— Redundant vertices (because they are not shared by triangles).
— No topology/connectivity information.

= Face Table

Fo: (X0:Y0:Z0)s (X15Y15Z1)s (X23¥2:Z2)
Fi: (X3,Y3,23)s (X40Y4.Z4), (Xs5,Y5,Z5)
FO Fy: (XesYe:Z6)s (X7,Y7,27), (Xs,Y8:Z8)

1
N>

Chapter 3: Geometric Object Data Structures

— Spaghetti data structure: represents sets of points, lines and polygons

— Can be used for both generic sets of entities and overlayed sets (plane subdivisions)
— The geometry of any spatial entity is described independently of other entities

— No topology/connectivity information is recorded

— Points, lines and polygons are stored separately.
— For each polygon, we store a (ordered) list of coordinates of points on its boundary.

X4,Y4
X11.Y1] XYl X8,Y8

X3.Y3 X2.Y2 X9.Y9

X10,Y10 X3,Y3 X10,Y10

oo X4,Y4 XI1.Y! 1

X5.Y5 ’ X5.Y5 X3,Y3
. 4

X6,Y6 — X7Y7 XIYI X6,Y6 X2,Y2

X8,Y8 X7.Y7 X1.Y]

XYl X8,Y8

Chapter 3: Geometric Object Data Structures

Advantages:

Disadvantages:

No easy way of solving queries such as: “do Polygon | and 2 share a common bounding line?”
Need to analyse all coordinates of points of Polygon | and compare with those of Polygon 2 and see if
two consecutive pairs are the same: inefficient!!

Coordinates of points along common boundary are recorded twice!
Redundancy: if we update coordinates of a point, we need to update them everywhere!

I v

t.-:.:__
00

A

Chapter 3: Geometric Object Data Structures

Faces list vertex references — “shared vertices”
Commonly used (e.g. OFF file format itself)
Augmented versions simple for mesh processing

\Y. V4

Vertex Table Face Table

Vo' (X0:Y0,20)
I Vit (Xpyzi)
Va: (X2,¥2,2))
V3: (X3,Y3,23)
r 0 Va: (X40Y4,Z4)

1
N>

Fy:0, 1,2
F|: |,4,2
F2: |,3,4

/

Note CCW ordering

Chapter 3: Geometric Object Data Structures

Incidence: V :E : F (decreasing dimension to left)
Adjacency: F :E :V (increasing dimension to left)

EE

WL LV — F FF

Chapter 3: Geometric Object Data Structures

Store all vertex, face, and edge incidences/adjacencies:VV,VE,VF EV, EE, EF, FV, FE, FF
Implement something simpler (like indexed face set plus vertex to face adjacency)
Storage is the issue

Edge Adjacency Table

eo: Vo, Vi; Fo, D5 J,e5,01,9
e :v,Vo; Fo,Fy; es,en,€0,€6

Face Adjacency Table

F(): VosV|)Y2s F|,@,@; €10€2,€p
F|: V,V4, VY2, @,Fo,FZ; €6, €,€5
F2: V|,V3)V4s @,F|,@; €4,€5,C3

Vertex Adjacency Table
Vo- V|,V Fo, €€y
V|:V3,V4VY2, V0, F2,F|,F0; €3,65,€,€p

000

Chapter 3: Geometric Object Data Structures

— Storing connectivity information explicitly allows for more efficient spatial queries.
— Topology/connectivity: important criterion to establish the correctness (integrity, consistency) of
geometric objects, with applications in CAD, geographical databases, etc.

If we store relation FE explicitly (i.e., for each polygon we store a list of IDs of edges bounding it), the
query: only requires checking whether the
two lists contain any common [Ds

e8

e9

el0 e3 el0
9 e4 el l
e5 el2

eb
e/

Chapter 3: Geometric Object Data Structures

Symmetric data structure

— Woo (1985)

Symmetric structure stores:

— three sets of entities: V, E, F

EV F
— relation EV and its inverse VE E FE

— relation FE and its inverse EF

Chapter 3: Geometric Object Data Structures

EV EF VE FE
el vl,v2 fl,f2 vl el,e7,e8 fO | e3, e4,e5,e6,e7,e8,e9,el0,ell,el?2
e v2,v3 fl,f2 v2 e2el fl e3,e4,e5,e6,e7,el,e?
e3 v3,v4 fl,f0 v3 e3,e2,el? f2 | el,e8,e9,el0,ell,el2,e2
e4 v4,v5 f1,f0 v4 e4,e3
e5 v5,v6 f1,f0 v5 e5,e4
eb vé,v7 f1,f0 v6 e6,e5
e’/ v/, vl fl,f0 v/ e/,eb
e8 vl,v8 2,0 v8 e8,e9
e9 v8,v9 2,0 v9 e%el0
el0 vo,vi0 2,0 viO elO,el |
ell viOvli| 2,0 vl ell,el2
el2 vilyv3 f2,f0

Chapter 3: Geometric Object Data Structures

Symmetric structure: space complexity

For every edge:
— 2 constant relations are stored (involving 2 entities): 4e
For every face:

— | variable relation (FE). Every edge is common to two faces, so each edge is stored
twice: 2e

For every vertex:

— | variable relation (VE). Every edge has two endpoints, so each edge is stored twice:
2e

TOTAL space required to represent relations: 8e

For each vertex we also store the two geometric coordinates: 2n

Chapter 3: Geometric Object Data Structures

Symmetric structure: EE

Calculating relation EE: Obtained by combining EV and VE (or EF and FE)

For example, if we want to calculate EE(e2)=(el,e3,el2), we retrieve the endpoints
v2 and v3 of e2 using EV. To retrieve el we consider the successor of €2 in the list
associated with v2 through VE (for e3 and el 2 the successors of €2 in the list
associated with v3). To do this in constant time, for each edge we need to store the
position of the edge in the lists associated to its endpoints through VE.

Chapter 3: Geometric Object Data Structures

Symmetric structure: FF , FV, VV, VF

As in DCEL:

- FF: FE+EF
FV: FE+EV
VV:VE+EV

= :

D .

2 :
VF:VE+EF

Example: FF

FF(fI) (f0,f2) obtained combining:
FE(f|)=(e3,e4,e5,e6,e7,el,e2)

* EF(e3)=(fl,f0)
EF(e4)=(f1,f0)
EF(e5)=(f1,f0)
EF(e6)=(fl,f0)
EF(e7)=(f1,f0)
EF(el)=(fl,f2)
* EF(e2)=(fl,f2)

I T TN T T

Chapter 3: Geometric Object Data Structures

Winged-edge data structure (1/4)

- — Baumgart (1975)

Entities and topological relations:

— three sets of entities: V, E, F
— relation EV and its inverse partial VE
— relation EF and its inverse partial EF

— partial EE

Chapter 3: Geometric Object Data Structures

Winged-edge data structure (2/4)
e4

o1 e3

Edge {
Edge el, e2, e3, e4;
Face 2, fl;

Vertex vl, v2;

}

Face { :
Edge edge; // any adjacent (boundary) edge left
)

Vertex {
Edge edge; // any incident edge
}

Chapter 3: Geometric Object Data Structures

Winged-edge data structure (3/4)

Mesh and its arrays:

— The winged-edge data structure has
three arrays, edge array, vertex
array, and face array.

— Each edge contains the eight pieces

information.

— Each vertex has one entry in the left f2
vertex array. Each entry has a
(pointer to an) incident edge of that
vertex.

— Each face has one entry in the face
array. Each entry has a (pointer to a)
boundary edge.

Chapter 3: Geometric Object Data Structures

Winged-edge data structure (4/4)

Queries to get other topological relations:

— Given a face, find all vertices
bordering that face: FV = FE + EV

— Given a vertex, find all edge-incident
(or neighbor) vertices: VV

— Given a face, find all neighbor faces:
FF

Chapter 3: Geometric Object Data Structures

Half-edge data structure (1/2)

— Eastman(19??)
— Each edge is a pair of symmetric oriented edges, called half-edges.

Entities and topological relations:

— three sets of entities: V, E, F
— partial relations: EV, VE, EF, FE, EE

— Similar to Winged Edge Data Structure, but
edges have unique orientation

— It requires slightly more storage

P2l N

:I \} EE
\

0ooo

Edge {

Edge previous_e, next_e, twin_e;

Face f;
Vertex v;

}

Face {
Edge edge;
}

Vertex {
Edge edge;
}

/I any adjacent (boundary) edge

/I any incident edge

Chapter 3: Geometric Object Data Structures

Chapter 3: Geometric Object Data Structures

Quad-edge data structure (1/2)

- — Guibas and Stolfi (1985)
— Each edge is directed or oriented.

Entities and topological relations:

— three sets of entities: V, E, F
— partial relations: EV, VE, EF, FE, EE

— Quad-edge: two primal twin edges + two
dual twin edges

Pamiml
V4 \
{ EE
) [4
V4 \
s~ w \\
EV 7 oEF
V4R 4 ~
SVE FENY

https://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/2001/pub/src/a2/quadedge.html

— Guibas and Stolfi (1975)

0000

Edge {
Vertex v; // origin vertex
Edge e; I/l next edge
Face f2,fl; // its incident faces

}

Face {
Edge edge; // any adjacent (boundary) edge

}

Vertex {
Edge edge; // any (outgoing) incident edge
}

QuadEdge{
Edge E[4];
}

https://lwww.cs.cmu.edu/afs/andrew/scs/cs/15-463/2001/pub/src/a2/quadedge.html

Chapter 3: Geometric Object Data Structures

Chapter 3: Geometric Object Data Structures

Cell-tuple data structure (1/4)

— Brisson (1989)
— A cell is an abstraction of vertex, edge, facet, etc.

Entities and topological relations:

— three sets of entities: V, E, F

— basic tools: tuples of cells and switch
operators

— cell-tuple: (d+1)-tuple of cells (cy, ..., Cj, ...,
cq), Where c; is an i-cell, and ¢; belongs to the
boundary of ¢;;, (i =0, I,...,d-1)

— total relations: EV, VE, EF, FE

— dimension-independent EV F
v FE

Chapter 3: Geometric Object Data Structures

— Brisson (1989)

Full set of cell-tuples:

Ctuple{ v & v (vl,el,f)
Cell tuple[]; // origin vertex i 4 (vl,e2
) f (v2,el,f)
© ® (v2e4f)
(v3,e3,f)
V2o @ V3 (364
Cell{ (v4,e2,f)
int d; // dimension (v4,e3,f)
}
e - T~ \
Y- 2 a 4. Setof cell-tuples for g:
2) (V3gA)
\o A g B b Il (v3,g,B)
\ d () ® / (V5,g,A)

SO0 L% (vsgB)

Chapter 3: Geometric Object Data Structures

Cell-tuple data structure (3/4): switch operator

switch operator:

— SWItchi (Ooyeey Ojyeeey O) = (Oopeees Vipeers Ou)
— where yiis an i-cell different from o,

— and (o,,..., V-, 05) is another cell-tuple

switchy(1,a,B)= (5,a,B)
c c
5 a 1
c S 3 ¢ 2

switch,(1,a,B)= (1,a,C)

Chapter 3: Geometric Object Data Structures

Cell-tuple data structure (4/4): graph

Cell-tuple graph:

— Caell tuples are represented as nodes of a labeled graph, where each arc of the graph
represents a switch operator.

— The label (=0,lor2 in the 2D case) of an arc;index of the switch operator described
by the arc.

— Verbose representation, but all topological relations can be retrieved in optimal time

(5.3, Bl(1ia C) 1.a.B)

Chapter 3: Geometric Object Data Structures

v-e+f=C-H
0-1+1

2 mef= make edge and face

Euler operators

Motivation for studying Euler operators:

e Allow the incremental construction of complex objects from basic building blocks such as vertices,
edges and faces.

* Applications: geometric CAD kernels, computational animation systems, etc.

Chapter 3: Geometric Object Data Structures

Summary:

— Motivation.

— Geometric structures versus topological structures.

— Topological data structures: introduction.

— Incidence and adjacency relationships.

— Spaghetti data structure.

— DCEL data structure.

— Symmetric data structure.

— Topological inference and reasoning on incidence and adjacency.

— Euler operators (still incomplete!: not considered for teaching and learning)

