
Computação Gráfica
Computer Graphics
Engenharia Informática (11569) – 3º ano, 2º semestre

Chap. 5 – 3D Projections and Scenes

Cap. 5: 3D Projections and Scenes

Outline

…:

– OpenGL rendering pipeline.

– Camera+plane+scene model.

– Camera types: classical camera, double-lens camera of Gauss, photorealsitic rendering camera.

– Rendering 3D scenes in OpenGL.

– Projection types: parallel projection and perspective projection.

– Projections in OpenGL.

– Moving camera.

– Projection window. Window-viewport transformation: revisited. Aspect ratio revisited.

– OpenGL examples.

Cap. 5: 3D Projections and Scenes

OpenGL® graphics pipeline

MODELVIEW
matrix

PROJECTION
matrix

perspective
division

viewport
transformation

original
vertex

vertex in eye
coordinates

2D projection
of the vertex

on the projection plane

normalized
coordinates

of the output device
(foreshortened)

pixel coordinates
in the viewport

𝑥"#"
𝑦"#"
𝑧"#"
𝑤"#"

𝑥
𝑦
𝑧
𝑤

𝑥'()*
𝑦'()*
𝑧'()*
𝑤'()*

𝑥+",
𝑦+",
1

𝑥./0
𝑦./0

Cap. 5: 3D Projections and ScenesHow to render 3D scenes through
graphics pipeline?

Gnerating a view of a given scene requires:

– A scene (i.e., geometric description of a scene)

– A camera or viewer (i.e., observer)

– A projection plane

Location/direction of the default OpenGL camera:

– It is at the origin and looking in the direction of the negative z-axis

– The camera allows us to project the 3D scene (geometry) onto a plane, as needed for
graphics output.

Such projection can be accomplished as follows:

– orthogonal projection (parallelism of lines is preserved)

– perspective projection : 1-point, 2-points ou 3-points

– oblique orthogonal projection

Cap. 5: 3D Projections and Scenes

Camera types

Classical camera (or pinhole camera)

– The most used camera model, also in OpenGL

– Infinite depth of field: everything is focused

Double Gauss lens

– This camera model was implemented in Princeton University (1995)

– It is used in many professional cameras

– It models the depth of field and non-linear optics (including lens flare)

Photo-realistic rendering camera

– It often employs the physical model of the human eye to render images

– It models the eye response to brightness and color levels

– It models the internal optics of the human eye (difraction by lens fibers, etc.)

Before generating an image, we must choose the kind of camera (or viewer).

Cap. 5: 3D Projections and Scenes

Classical camera

Cap. 5: 3D Projections and Scenes

Double Gauss lens camera

Cap. 5: 3D Projections and Scenes

Photo-realistic camera

Adaptation

Glare & Difraction

Cap. 5: 3D Projections and Scenes

Rendering 3D scenes in OpenGL®

9

PROJECTION matrix
// Projection matrix: 45º Field of View, 4:3 ratio,
// display range : 0.1 unit <-> 100 units
glm::mat4 Projection =
glm::perspective(glm::radians(45.0f),4.0f/3.0f,0.1f,100.0f);

glViewport(0,0,xres,yres)

camera
coordinate system

2D window
coordinate system

screen
coordinate system

Have a look at the graphics pipeline on page 3 for comparison sake

MODELVIEW matrix = View * Model

// Model matrix: an identity matrix
// (model at origin)
glm::mat4 Model = glm::mat4(1.0f);

// Camera matrix for perspective projection;
glm::mat4 View = glm::lookAt(...)

// Camera at the infinite when we have an
// orthognal projection; so there is no need
// to define the view marix

Cap. 5: 3D Projections and ScenesRendering 3D scenes in OpenGL®:
from geometry to image

MODELVIEW matrix

– It is the product of the modelling matrix (scene coordinate system) and view matrix (eye or
camera coordinate system).

– It serves to change from the scene coordinate system to the camera coordinate system.

PROJECTION matrix

– Then, we apply the projection matrix to map camera coordinates to projection plane
(window) coordinates.

glViewport

– Finally, window coordinates are mapped to screen coordinates of the viewport, what is done
in na automated manner through the window-viewport transformation.

ht
tp

://
w

w
w

.s
on

gh
o.

ca
/o

pe
ng

l/g
l_

tr
an

sf
or

m
.h

tm
l

Cap. 5: 3D Projections and Scenes

3Dè2D projection types

A kind of projection depends on 2 factors:

– Viewer’s location (which determines the direction of projection or visual)

– Location and orientation of the projection plane (where the viewing window lies in)

3-points

Projection

Perspective Parallel

2-points

Oblique

Axonometric

Orthogonal1-point

Cap. 5: 3D Projections and Scenes

Parallel projections

−The viewer is at the infinite.
− Projection or visual rays are parallel.

axonometric obliqueorthogonal

Cap. 5: 3D Projections and Scenes

Orthogonal parallel projection matrix

− It is the simpler projection: the visual rays are perpendicular to the projection plane.
− Usually, the projection plane is aligned with coordinate axes (z=0).
− Orthogonal parallel projections are also known as views (in technical drawing or drafting).

𝑥
𝑦
𝑧
1
→

𝑥
𝑦
0
1

⟹ 𝑃5 = 𝐌𝑃,where	𝐌 =
1 0 0 0
0 1 0 0
0
0

0
0

0 0
0 1

Cap. 5: 3D Projections and Scenes

Orthogonal parallel projections in OpenGL®

glm::ortho(xmin, xmax, ymin, ymax, zmin, zmax);

Cap. 5: 3D Projections and ScenesMulti–projections in distinct viewports:
example

Perspective

Left side view Front view

Top view

−This is performed through the re-positioning of the camera.
− Alternately, we can get the same result through the re-positioning of the object/scene.

Cap. 5: 3D Projections and ScenesAxonometric parallel projections:
isometric, dimetric, and trimetric
−If the object is aligned with the axes, we obtain an orthogonal projection;
−Otherwise, we have na axonometric projection.
−If the projection plane intersects the axes XYZ to the same distance relative to the origin, we obtain na
isometric projection.

𝑥 + 𝑦 + 𝑧 = 1

Cap. 5: 3D Projections and Scenes

Perspective projections

−The viewer is located at a finite distance from the object/scene.
−The visual rays are not parallel and converge to one or more points (viewers).

perspective with 1 point perspective with 2 points perspective with 3 points

Cap. 5: 3D Projections and ScenesProjeções em perspectiva
com um observador

Projection parameters:

– center of projection (COP)

– view frustum (q,f), or field of
view (FoV)

– projection direction

– up direction of the camera
(or viewer) axis

−The viewer is located at a finite distance from the object/scene.
−The visual rays converge to one point (viewer), known as COP (center of projection).
−In OpenGL, we use a single viewer.

Cap. 5: 3D Projections and Scenes

y

-
z

d

y
’

Perspective projection matrix
with a single viewer
−Consider a perspective projection with:
(a) the camera at the origin;
(b) view direction given by the negative z-axis;
(c) Projection plane at z = -d.

d

y’

y

PROJECTION
matrix

perspective
division

Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL®

−Using glm::frustrum

glm::frustum(xmin, xmax, ymin, ymax, zmin, zmax);

frustum = truncated pyramid of the FoV

Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® (cont.)

Specifying a glm::frustrum

– All points belonging to the line defined by the COP and (xmin,ymin,-zmin) are mapped to the
bottom-leftmost corner of the window.

– All points belonging to the line defined by the COP and (xmax,ymax,-zmin) are mapped to the
top-righmost corner of the window.

– zmin e zmax are positive distances along -z

– The view direction is always parallel to –z

– It is not mandatory to have a symmetric frustrum, but a non-symmetric frustrum introduces
obliquity in the projection.

§ For example, the following specification defines a non-symmetric frustum in OpenGL:

−Using glm::frustrum:

glm::frustrum(-1.0, 1.0, -1.0, 2.0, 5.0, 50.0);

Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® (cont.)

−Using glm::perspective

glm::perspective(fov, aspect, near, far);

?/A
0"B(

= tan	 F
A
⟹ ℎ = 2. 𝑛𝑒𝑎𝑟	. tan F

A

Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® (cont.)

Specifying a glm::perspective

– It only allows for symmetric
frusta.

– COP at the origin, view
direction along –z.

– FoV angle is in [0,180].

– aspect allows for a frustum with
the same aspect ratio as the
viewport as a way to avoid
image distortion.

Exemplo:

−Using glm::perspective

glm::perspective(60, 1.0, 1.0, 50.0);

Cap. 5: 3D Projections and Scenes

Moving camera in 3D

Limitations of glm::frustum and glm::perspective:

– fixed COP and fixed projection direction (or viewing direction)

Arbitrary positioning and orientation of the camera:

– For this purpose, we need to manipulate the MODELVIEW matrix before the generation of
the scene objects. This way, we position the camera relative to scene objects.

Example:

– There are 2 options to position the camera at (10.0, 2.0, 10.0) relative to the scene domain
coordinate system:

§ To change the coordinate system of the scene domain before creating the scene objects, what is
done using glm::translate(-10.0,-2.0,-10.0) and glm::rotate;

§ To use lookAt to position the camera relative to coordiante system of the scene domain:
glm::lookAt(10, 2, 10, …);

– These 2 options are equivalent.

Cap. 5: 3D Projections and ScenesMoving camera in 3D
using OpenGL®

−Using glm::lookAt:

glm::lookAt(eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz);

glm::translate(-eyex, -eyey, -eyez);
glm::rotate(theta, 1.0, 0.0, 0.0);
glm::rotate(phi, 0.0, 1.0, 0.0);

The same as:

Φ

Θ

Cap. 5: 3D Projections and Scenes

Projection window

Definition:

– The projection matrix defines a transformation from the 3D scene domain coordinate system
to a 2D window coordinate system belonging to the projection plane.

– The size of the projection window is defined as projection parameters:

§ glm::frustrum(l,r,b,t,n,f)

§ glm::perspective(f,a,n,f)
(l,b,-n)

(r,t,-n)

(w,h,-n)

(-w,-h,-n)

−After projecting a 3D scene onto a window of the projection plane, renderization takes place as in 2D.

Cap. 5: 3D Projections and ScenesWindow-viewport transformation:
revisited

−After projecting a 3D scene onto a window of the projection plane, renderization takes place as in 2D.
−Indeed, it is necessary to map window points to viewport pixels todetermine the pixel associated to each
vertex of the scene objects.

coordinates of the
normalized output device

coordinates of the viewport

Cap. 5: 3D Projections and ScenesWindow-viewport transformation:
revisited (cont.)

Normalized coordinates:

– After the projection onto the plane, every point
(xp,yp) of the projection window are transformed
into (xn,yn) of the normalized output device:
[-1,-1]´[+1,+1].

Viewport coordinates:

– Then, the graphics pipeline maps 2D normalized
coordinates to one or more viewports

Event resize:

– Usually, we need to redefine the window after
the resize event taking place to ensure the
correct window-viewport transformation

static void reshape(int width, int height)
{

glViewport(0, 0, width, height);
glm::mat4 P = glm::perspective(85.0, 1.0, 5, 50);

}

Cap. 5: 3D Projections and ScenesAspect ratio:
revisited

Definition:

– The aspect ratio defines the ratio of width to height of a window or viewport.

In OpenGL:

– Explicitly given by a parameter or argument of glm::perspective.

How to avoid distortion?

– Both aspect ratios of window and viewport must be the same.

aspect ratio = 1.25 aspect ratio = 0.5

Cap. 5: 3D Projections and Scenes

Examples in OpenGL

Cap. 5: 3D Projections and ScenesExample 1:
cube in a single view

void setMVP(void)
{

// Get a handle for our "MVP" uniform
MatrixID = glGetUniformLocation(programID, "MVP");

// Projection matrix :
// 45º Field of View, 4:3 ratio,
// display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(

glm::radians(45.0f),
4.0f / 3.0f,
0.1f,
100.0f);

// Camera matrix
glm::mat4 View = glm::lookAt(
glm::vec3(4,3,-3),// Camera at (4,3,-3) in world space
glm::vec3(0,0,0), // and looks at the origin
glm::vec3(0,1,0) // Head is up
);

// Model matrix: an identity matrix (model at origin)
glm::mat4 Model = glm::mat4(1.0f);

// Our MVP: multiplication of our 3 matrices
MVP = Projection * View * Model;

}

31

−Download cube.zip from course’s web page for the full code of this graphics application.

Cap. 5: 3D Projections and ScenesExample 2:
teapot in four views

void setMVP(void)
{

MatrixID = glGetUniformLocation(programID, "MVP");

// top left: top view
glViewport(0, Height/2, Width/2, Height/2);
glm::mat4 P = glm::ortho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
glm::mat4 V = glm::lookAt(

0.0, 5.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, -1.0);

glm::mat4 M = glm::mat4(1.0f);
MVP = P * V * M;
teapot();

. . .
// bottom right: rotating perspective view
glViewport(Width/2, 0, Width/2, Height/2);
glm::mat4 P = glm::perspective(70.0, 1.0, 1, 50);
glm::mat4 V = glm::lookAt(

0.0, 0.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

glm::mat4 M = glm::mat4(1.0f);
glm::mat4 R = glm::rotate(45.0, 1.0, 0.0, 0.0);
MVP = P * V * M * R;
teapot();

glutSwapBuffers();
}

32

Cap. 5: 3D Projections and Scenes

Summary:

…:

– OpenGL rendering pipeline.

– Camera+plane+scene model.

– Camera types: classical camera, double-lens camera of Gauss, photorealsitic rendering
camera.

– Rendering 3D scenes in OpenGL.

– Projection types: parallel projection and perspective projection.

– Projections in OpenGL.

– Moving camera.

– Projection window. Window-viewport transformation: revisited. Aspect ratio revisited.

– OpenGL examples.

