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Cap. 5: 3D Projections and Scenes

Outline

…:

– OpenGL rendering pipeline.

– Camera+plane+scene model.

– Camera types: classical camera, double-lens camera of Gauss, photorealsitic rendering camera.

– Rendering 3D scenes in OpenGL. 

– Projection types: parallel projection and perspective projection.

– Projections in OpenGL.

– Moving camera.

– Projection window. Window-viewport transformation: revisited. Aspect ratio revisited.

– OpenGL examples. 
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OpenGL® graphics pipeline
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Cap. 5: 3D Projections and ScenesHow to render 3D scenes through
graphics pipeline?

Gnerating a view of a given scene requires:

– A scene (i.e., geometric description of a scene)

– A camera or viewer (i.e., observer)

– A projection plane

Location/direction of the default OpenGL camera:

– It is at the origin and looking in the direction of the negative z-axis

– The camera allows us to project the 3D scene (geometry) onto a plane, as needed for 
graphics output.

Such projection can be accomplished as follows:

– orthogonal projection (parallelism of lines is preserved)

– perspective projection : 1-point, 2-points ou 3-points

– oblique orthogonal projection
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Camera types

Classical camera (or pinhole camera)

– The most used camera model, also in OpenGL

– Infinite depth of field: everything is focused

Double Gauss lens

– This camera model was implemented in Princeton University (1995)

– It is used in many professional cameras

– It models the depth of field and non-linear optics (including lens flare)

Photo-realistic rendering camera

– It often employs the physical model of the human eye to render images

– It models the eye response to brightness and color levels

– It models the internal optics of the human eye (difraction by lens fibers, etc.)

Before generating an image, we must choose the kind of camera (or viewer).
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Classical camera
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Double Gauss lens camera
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Photo-realistic camera

Adaptation

Glare & Difraction
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Rendering 3D scenes in OpenGL®

9

PROJECTION matrix
// Projection matrix: 45º Field of View, 4:3 ratio, 
// display range : 0.1 unit <-> 100 units
glm::mat4 Projection = 
glm::perspective(glm::radians(45.0f),4.0f/3.0f,0.1f,100.0f);

glViewport(0,0,xres,yres)

camera 
coordinate system

2D window 
coordinate system

screen 
coordinate system

Have a look at the graphics pipeline on page 3 for comparison sake

MODELVIEW matrix = View * Model

// Model matrix: an identity matrix 
// (model at origin)
glm::mat4 Model = glm::mat4(1.0f);

// Camera matrix for perspective projection;
glm::mat4 View = glm::lookAt(...)

// Camera at the infinite when we have an  
// orthognal projection; so there is no need 
// to define the view marix



Cap. 5: 3D Projections and ScenesRendering 3D scenes in OpenGL®:
from geometry to image

MODELVIEW matrix

– It is the product of the modelling matrix (scene coordinate system) and view matrix (eye or
camera coordinate system).

– It serves to change from the scene coordinate system to the camera coordinate system.

PROJECTION matrix

– Then, we apply the projection matrix to map camera coordinates to projection plane 
(window) coordinates.

glViewport

– Finally, window coordinates are mapped to screen coordinates of the viewport, what is done
in na automated manner through the window-viewport transformation.
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Cap. 5: 3D Projections and Scenes

3Dè2D projection types

A kind of projection depends on 2 factors:

– Viewer’s location (which determines the direction of projection or visual)

– Location and orientation of the projection plane (where the viewing window lies in)

3-points

Projection

Perspective Parallel

2-points

Oblique

Axonometric

Orthogonal1-point
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Parallel projections

−The viewer is at the infinite.
− Projection or visual rays are parallel.

axonometric obliqueorthogonal
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Orthogonal parallel projection matrix

− It is the simpler projection: the visual rays are perpendicular to the projection plane.
− Usually, the projection plane is aligned with coordinate axes (z=0).
− Orthogonal parallel projections are also known as views (in technical drawing or drafting).
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Orthogonal parallel projections in OpenGL®

glm::ortho(xmin, xmax, ymin, ymax, zmin, zmax);



Cap. 5: 3D Projections and ScenesMulti–projections in distinct viewports:
example

Perspective

Left side view Front view

Top view

−This is performed through the re-positioning of the camera. 
− Alternately, we can get the same result through the re-positioning of the object/scene.



Cap. 5: 3D Projections and ScenesAxonometric parallel projections:
isometric, dimetric, and trimetric
−If the object is aligned with the axes, we obtain an orthogonal projection;
−Otherwise, we have na axonometric projection.
−If the projection plane intersects the axes XYZ to the same distance relative to the origin, we obtain na 
isometric projection.

𝑥 + 𝑦 + 𝑧 = 1
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Perspective projections

−The viewer is located at a finite distance from the object/scene.
−The visual rays are not parallel and converge to one or more points (viewers).

perspective with 1 point perspective with 2 points perspective with 3 points



Cap. 5: 3D Projections and ScenesProjeções em perspectiva
com um observador

Projection parameters:

– center of projection (COP)

– view frustum (q,f), or field of 
view (FoV)

– projection direction

– up direction of the camera 
(or viewer) axis

−The viewer is located at a finite distance from the object/scene.
−The visual rays converge to one point (viewer), known as COP (center of projection).
−In OpenGL, we use a single viewer.
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Perspective projection matrix
with a single viewer
−Consider a perspective projection with:
(a) the camera at the origin;
(b) view direction given by the negative z-axis;
(c) Projection plane at z = -d.
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Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® 

−Using glm::frustrum

glm::frustum(xmin, xmax, ymin, ymax, zmin, zmax);

frustum = truncated pyramid of the FoV



Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® (cont.)

Specifying a glm::frustrum

– All points belonging to the line defined by the COP and (xmin,ymin,-zmin) are mapped to the
bottom-leftmost corner of the window.

– All points belonging to the line defined by the COP and (xmax,ymax,-zmin) are mapped to the
top-righmost corner of the window.

– zmin e zmax are positive distances along -z

– The view direction is always parallel to –z

– It is not mandatory to have a symmetric frustrum, but a non-symmetric frustrum introduces
obliquity in the projection. 

§ For example, the following specification defines a non-symmetric frustum in OpenGL:

−Using glm::frustrum:

glm::frustrum(-1.0, 1.0, -1.0, 2.0, 5.0, 50.0);



Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® (cont.)

−Using glm::perspective

glm::perspective(fov, aspect, near, far);
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Cap. 5: 3D Projections and ScenesPerspective projection matrix
with a single viewer in OpenGL® (cont.)

Specifying a glm::perspective

– It only allows for symmetric 
frusta.

– COP at the origin, view 
direction along –z.

– FoV angle is in [0,180].

– aspect allows for a frustum with 
the same aspect ratio as the 
viewport as a way to avoid 
image distortion.

Exemplo:

−Using glm::perspective

glm::perspective(60, 1.0, 1.0, 50.0);
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Moving camera in 3D

Limitations of glm::frustum and glm::perspective:

– fixed COP and fixed projection direction (or viewing direction)

Arbitrary positioning and orientation of the camera:

– For this purpose, we need to manipulate the MODELVIEW matrix before the generation of
the scene objects. This way, we position the camera relative to scene objects.

Example:

– There are 2 options to position the camera at (10.0, 2.0, 10.0) relative to the scene domain
coordinate system:

§ To change the coordinate system of the scene domain before creating the scene objects, what is
done using glm::translate(-10.0,-2.0,-10.0) and glm::rotate;

§ To use lookAt to position the camera relative to coordiante system of the scene domain: 
glm::lookAt(10, 2, 10, … );

– These 2 options are equivalent.



Cap. 5: 3D Projections and ScenesMoving camera in 3D
using OpenGL® 

−Using glm::lookAt:

glm::lookAt(eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz);

glm::translate(-eyex, -eyey, -eyez);
glm::rotate(theta, 1.0, 0.0, 0.0);
glm::rotate(phi, 0.0, 1.0, 0.0);

The same as:

Φ

Θ
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Projection window

Definition:

– The projection matrix defines a transformation from the 3D scene domain coordinate system
to a 2D window coordinate system belonging to the projection plane.

– The size of the projection window is defined as projection parameters:

§ glm::frustrum(l,r,b,t,n,f) 

§ glm::perspective(f,a,n,f)
(l,b,-n)

(r,t,-n)

(w,h,-n)

(-w,-h,-n)

−After projecting a 3D scene onto a window of the projection plane, renderization takes place as in 2D.



Cap. 5: 3D Projections and ScenesWindow-viewport transformation:
revisited

−After projecting a 3D scene onto a window of the projection plane, renderization takes place as in 2D.
−Indeed, it is necessary to map window points to viewport pixels todetermine the pixel associated to each
vertex of the scene objects.

coordinates of the 
normalized output device

coordinates of the viewport



Cap. 5: 3D Projections and ScenesWindow-viewport transformation:
revisited (cont.)

Normalized coordinates:

– After the projection onto the plane, every point
(xp,yp) of the projection window are transformed
into (xn,yn) of the normalized output device:          
[-1,-1]´[+1,+1].

Viewport coordinates:

– Then, the graphics pipeline maps 2D normalized
coordinates to one or more viewports

Event resize:

– Usually, we need to redefine the window after
the resize event taking place to ensure the
correct window-viewport transformation

static void reshape(int width, int height)
{

glViewport(0, 0, width, height);
glm::mat4 P = glm::perspective(85.0, 1.0, 5, 50);

}



Cap. 5: 3D Projections and ScenesAspect ratio:
revisited

Definition:

– The aspect ratio defines the ratio of width to height of a window or viewport.

In OpenGL:

– Explicitly given by a parameter or argument of glm::perspective.

How to avoid distortion?

– Both aspect ratios of window and viewport must be the same.

aspect ratio = 1.25 aspect ratio = 0.5
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Examples in OpenGL



Cap. 5: 3D Projections and ScenesExample 1:
cube in a single view

void setMVP(void)
{

// Get a handle for our "MVP" uniform
MatrixID = glGetUniformLocation(programID, "MVP");

// Projection matrix : 
// 45º Field of View, 4:3 ratio, 
// display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(

glm::radians(45.0f), 
4.0f / 3.0f, 
0.1f, 
100.0f);

// Camera matrix
glm::mat4 View = glm::lookAt(
glm::vec3(4,3,-3),// Camera at (4,3,-3) in world space
glm::vec3(0,0,0), // and looks at the origin
glm::vec3(0,1,0) // Head is up
);

// Model matrix: an identity matrix (model at origin)
glm::mat4 Model = glm::mat4(1.0f);

// Our MVP: multiplication of our 3 matrices
MVP = Projection * View * Model; 

}
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−Download cube.zip from course’s web page for the full code of this graphics application.



Cap. 5: 3D Projections and ScenesExample 2:
teapot in four views

void setMVP(void)
{

MatrixID = glGetUniformLocation(programID, "MVP");

// top left: top view
glViewport(0, Height/2, Width/2, Height/2);
glm::mat4 P = glm::ortho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
glm::mat4 V = glm::lookAt(

0.0, 5.0, 0.0, 
0.0, 0.0, 0.0, 
0.0, 0.0, -1.0);

glm::mat4 M = glm::mat4(1.0f);
MVP = P * V * M;
teapot();

. . .
// bottom right: rotating perspective view
glViewport(Width/2, 0, Width/2,  Height/2);
glm::mat4 P = glm::perspective(70.0, 1.0, 1, 50);
glm::mat4 V = glm::lookAt(

0.0, 0.0, 5.0, 
0.0, 0.0, 0.0, 
0.0, 1.0, 0.0);

glm::mat4 M = glm::mat4(1.0f);
glm::mat4 R = glm::rotate(45.0, 1.0, 0.0, 0.0);   
MVP = P * V * M * R;
teapot();

glutSwapBuffers();
} 
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Summary:

…:

– OpenGL rendering pipeline.

– Camera+plane+scene model.

– Camera types: classical camera, double-lens camera of Gauss, photorealsitic rendering 
camera.

– Rendering 3D scenes in OpenGL. 

– Projection types: parallel projection and perspective projection.

– Projections in OpenGL.

– Moving camera.

– Projection window. Window-viewport transformation: revisited. Aspect ratio revisited.

– OpenGL examples. 


